Module docstring
{"# Order of an element
This file defines the order of an element of a finite group. For a finite group G the order of
x ∈ G is the minimal n ≥ 1 such that x ^ n = 1.
Main definitions
IsOfFinOrderis a predicate on an elementxof a monoidGsaying thatxis of finite order.IsOfFinAddOrderis the additive analogue ofIsOfFinOrder.orderOf xdefines the order of an elementxof a monoidG, by convention its value is0ifxhas infinite order.addOrderOfis the additive analogue oforderOf.
Tags
order of an element "}