Full source
theorem add_mul_ediv_right (a b : Int) {c : Int} (H : c ≠ 0) : (a + b * c) / c = a / c + b :=
suffices ∀ {{a b c : Int}}, 0 < c → (a + b * c).ediv c = a.ediv c + b from
match Int.lt_trichotomy c 0 with
| Or.inl hlt => by
rw [← Int.neg_inj, ← Int.ediv_neg, Int.neg_add, ← Int.ediv_neg, ← Int.neg_mul_neg]
exact this (Int.neg_pos_of_neg hlt)
| Or.inr (Or.inl HEq) => absurd HEq H
| Or.inr (Or.inr hgt) => this hgt
suffices ∀ {k n : Nat} {a : Int}, (a + n * k.succ).ediv k.succ = a.ediv k.succ + n from
fun a b c H => match c, eq_succ_of_zero_lt H, b with
| _, ⟨_, rfl⟩, ofNat _ => this
| _, ⟨k, rfl⟩, -[n+1] => show (a - n.succ * k.succ).ediv k.succ = a.ediv k.succ - n.succ by
rw [← Int.add_sub_cancel (ediv ..), ← this, Int.sub_add_cancel]
fun {k n} => @fun
| ofNat _ => congrArg ofNat <| Nat.add_mul_div_right _ _ k.succ_pos
| -[m+1] => by
show ((n * k.succ : Nat) - m.succ : Int).ediv k.succ = n - (m / k.succ + 1 : Nat)
by_cases h : m < n * k.succ
· rw [← Int.ofNat_sub h, ← Int.ofNat_sub ((Nat.div_lt_iff_lt_mul k.succ_pos).2 h)]
apply congrArg ofNat
rw [Nat.mul_comm, Nat.mul_sub_div]; rwa [Nat.mul_comm]
· have h := Nat.not_lt.1 h
have H {a b : Nat} (h : a ≤ b) : (a : Int) + -((b : Int) + 1) = -[b - a +1] := by
rw [negSucc_eq, Int.ofNat_sub h]
simp only [Int.sub_eq_add_neg, Int.neg_add, Int.neg_neg, Int.add_left_comm, Int.add_assoc]
show ediv (↑(n * succ k) + -((m : Int) + 1)) (succ k) = n + -(↑(m / succ k) + 1 : Int)
rw [H h, H ((Nat.le_div_iff_mul_le k.succ_pos).2 h)]
apply congrArg negSucc
rw [Nat.mul_comm, Nat.sub_mul_div]; rwa [Nat.mul_comm]