Informal description
For natural numbers $p$, $m$, and $n$, and for any element $i$ of $\text{Fin}\,n$, the following equality holds:
\[
\text{natAdd}\,m\,(\text{castAdd}\,p\,i) = \text{cast}\,(\text{Nat.add\_assoc}\,\ldots)\,(\text{castAdd}\,p\,(\text{natAdd}\,m\,i))
\]
where:
- $\text{natAdd}\,m$ adds $m$ to the bound of a $\text{Fin}$ type,
- $\text{castAdd}\,p$ casts an element of $\text{Fin}\,n$ to $\text{Fin}\,(n + p)$,
- $\text{cast}\,h$ casts between $\text{Fin}$ types using a proof $h$ of equality of their bounds,
- $\text{Nat.add\_assoc}\,\ldots$ is the associativity of addition on natural numbers.