Module docstring
{"# Index of a Subgroup
In this file we define the index of a subgroup, and prove several divisibility properties. Several theorems proved in this file are known as Lagrange's theorem.
Main definitions
H.index: the index ofH : Subgroup Gas a natural number, and returns 0 if the index is infinite.H.relindex K: the relative index ofH : Subgroup GinK : Subgroup Gas a natural number, and returns 0 if the relative index is infinite.
Main results
card_mul_index:Nat.card H * H.index = Nat.card Gindex_mul_card:H.index * Fintype.card H = Fintype.card Gindex_dvd_card:H.index ∣ Fintype.card Grelindex_mul_index: IfH ≤ K, thenH.relindex K * K.index = H.indexindex_dvd_of_le: IfH ≤ K, thenK.index ∣ H.indexrelindex_mul_relindex:relindexis multiplicative in towersMulAction.index_stabilizer: the index of the stabilizer is the cardinality of the orbit "}