doc-next-gen

Mathlib.Order.Interval.Set.Infinite

Module docstring

{"# Infinitude of intervals

Bounded intervals in dense orders are infinite, as are unbounded intervals in orders that are unbounded on the appropriate side. We also prove that an unbounded preorder is an infinite type. "}

NoMinOrder.infinite instance
[Nonempty α] [NoMinOrder α] : Infinite α
Full source
/-- A nonempty preorder with no minimal element is infinite. -/
instance NoMinOrder.infinite [Nonempty α] [NoMinOrder α] : Infinite α :=
  @NoMaxOrder.infinite αᵒᵈ _ _ _
Nonempty Preorders without Minimal Elements are Infinite
Informal description
For any nonempty preorder $\alpha$ with no minimal element, the type $\alpha$ is infinite.
Set.Ioo.infinite theorem
: Infinite (Ioo a b)
Full source
theorem Ioo.infinite : Infinite (Ioo a b) :=
  @NoMaxOrder.infinite _ _ (nonempty_Ioo_subtype h) _
Infinitude of Open Intervals in Dense Orders
Informal description
For any elements $a$ and $b$ in a dense linear order, the open interval $(a, b)$ is infinite.
Set.Ioo_infinite theorem
: (Ioo a b).Infinite
Full source
theorem Ioo_infinite : (Ioo a b).Infinite :=
  infinite_coe_iff.1 <| Ioo.infinite h
Infinitude of Open Intervals in Dense Orders
Informal description
For any elements $a$ and $b$ in a dense linear order, the open interval $(a, b)$ is infinite.
Set.Ico_infinite theorem
: (Ico a b).Infinite
Full source
theorem Ico_infinite : (Ico a b).Infinite :=
  (Ioo_infinite h).mono Ioo_subset_Ico_self
Infinitude of Left-Closed Right-Open Intervals in Dense Orders
Informal description
For any elements $a$ and $b$ in a dense linear order, the left-closed right-open interval $[a, b)$ is infinite.
Set.Ico.infinite theorem
: Infinite (Ico a b)
Full source
theorem Ico.infinite : Infinite (Ico a b) :=
  infinite_coe_iff.2 <| Ico_infinite h
Infinitude of $[a, b)$ in Dense Orders
Informal description
For any elements $a$ and $b$ in a dense linear order, the left-closed right-open interval $[a, b)$ is infinite.
Set.Ioc_infinite theorem
: (Ioc a b).Infinite
Full source
theorem Ioc_infinite : (Ioc a b).Infinite :=
  (Ioo_infinite h).mono Ioo_subset_Ioc_self
Infinitude of Right-Half-Open Intervals in Dense Orders
Informal description
For any elements $a$ and $b$ in a dense linear order, the half-open interval $(a, b]$ is infinite.
Set.Ioc.infinite theorem
: Infinite (Ioc a b)
Full source
theorem Ioc.infinite : Infinite (Ioc a b) :=
  infinite_coe_iff.2 <| Ioc_infinite h
Infinitude of Right-Half-Open Intervals in Dense Orders
Informal description
For any elements $a$ and $b$ in a dense linear order, the half-open interval $(a, b]$ is infinite.
Set.Icc_infinite theorem
: (Icc a b).Infinite
Full source
theorem Icc_infinite : (Icc a b).Infinite :=
  (Ioo_infinite h).mono Ioo_subset_Icc_self
Infinitude of Closed Intervals in Dense Orders
Informal description
For any elements $a$ and $b$ in a dense linear order, the closed interval $[a, b]$ is infinite.
Set.Icc.infinite theorem
: Infinite (Icc a b)
Full source
theorem Icc.infinite : Infinite (Icc a b) :=
  infinite_coe_iff.2 <| Icc_infinite h
Infinitude of Closed Intervals in Dense Orders
Informal description
For any elements $a$ and $b$ in a dense linear order, the closed interval $[a, b]$ is infinite.
Set.instInfiniteElemIioOfNoMinOrder instance
[NoMinOrder α] {a : α} : Infinite (Iio a)
Full source
instance [NoMinOrder α] {a : α} : Infinite (Iio a) :=
  NoMinOrder.infinite
Open Intervals Below are Infinite in Orders Without Minimal Elements
Informal description
For any preorder $\alpha$ with no minimal element and any element $a \in \alpha$, the open interval $(-\infty, a)$ is infinite.
Set.Iio_infinite theorem
[NoMinOrder α] (a : α) : (Iio a).Infinite
Full source
theorem Iio_infinite [NoMinOrder α] (a : α) : (Iio a).Infinite :=
  infinite_coe_iff.1 inferInstance
Infinite Open Left Interval in No-Min-Order Preorders
Informal description
For any preorder $\alpha$ with no minimal element and any element $a \in \alpha$, the open interval $(-\infty, a)$ is infinite.
Set.instInfiniteElemIicOfNoMinOrder instance
[NoMinOrder α] {a : α} : Infinite (Iic a)
Full source
instance [NoMinOrder α] {a : α} : Infinite (Iic a) :=
  NoMinOrder.infinite
Closed Intervals Below are Infinite in NoMinOrder
Informal description
For any preorder $\alpha$ with no minimal element and any element $a \in \alpha$, the closed interval $(-\infty, a]$ is infinite.
Set.Iic_infinite theorem
[NoMinOrder α] (a : α) : (Iic a).Infinite
Full source
theorem Iic_infinite [NoMinOrder α] (a : α) : (Iic a).Infinite :=
  infinite_coe_iff.1 inferInstance
Infinite Closed Left Interval in No-Min-Order Preorders
Informal description
For any preorder $\alpha$ with no minimal element and any element $a \in \alpha$, the closed interval $(-\infty, a]$ is infinite.
Set.instInfiniteElemIoiOfNoMaxOrder instance
[NoMaxOrder α] {a : α} : Infinite (Ioi a)
Full source
instance [NoMaxOrder α] {a : α} : Infinite (Ioi a) :=
  NoMaxOrder.infinite
Open Intervals Above are Infinite in NoMaxOrder
Informal description
For any preorder $\alpha$ with no maximal element and any element $a \in \alpha$, the open interval $(a, \infty)$ is infinite.
Set.Ioi_infinite theorem
[NoMaxOrder α] (a : α) : (Ioi a).Infinite
Full source
theorem Ioi_infinite [NoMaxOrder α] (a : α) : (Ioi a).Infinite :=
  infinite_coe_iff.1 inferInstance
Open Intervals Above are Infinite in NoMaxOrder Preorders
Informal description
For any preorder $\alpha$ with no maximal element and any element $a \in \alpha$, the open interval $(a, \infty)$ is infinite.
Set.instInfiniteElemIciOfNoMaxOrder instance
[NoMaxOrder α] {a : α} : Infinite (Ici a)
Full source
instance [NoMaxOrder α] {a : α} : Infinite (Ici a) :=
  NoMaxOrder.infinite
Closed Intervals are Infinite in NoMaxOrder Preorders
Informal description
For any preorder $\alpha$ with no maximal element and any element $a \in \alpha$, the closed interval $[a, \infty)$ is infinite.
Set.Ici_infinite theorem
[NoMaxOrder α] (a : α) : (Ici a).Infinite
Full source
theorem Ici_infinite [NoMaxOrder α] (a : α) : (Ici a).Infinite :=
  infinite_coe_iff.1 inferInstance
Infinite Closed Interval in NoMaxOrder Preorder
Informal description
For any preorder $\alpha$ with no maximal element and any element $a \in \alpha$, the closed interval $[a, \infty)$ is infinite.