Module docstring
{"# Infinitude of intervals
Bounded intervals in dense orders are infinite, as are unbounded intervals in orders that are unbounded on the appropriate side. We also prove that an unbounded preorder is an infinite type. "}
{"# Infinitude of intervals
Bounded intervals in dense orders are infinite, as are unbounded intervals in orders that are unbounded on the appropriate side. We also prove that an unbounded preorder is an infinite type. "}
NoMaxOrder.infinite
instance
[Nonempty α] [NoMaxOrder α] : Infinite α
/-- A nonempty preorder with no maximal element is infinite. -/
instance NoMaxOrder.infinite [Nonempty α] [NoMaxOrder α] : Infinite α :=
let ⟨f, hf⟩ := Nat.exists_strictMono α
Infinite.of_injective f hf.injective
NoMinOrder.infinite
instance
[Nonempty α] [NoMinOrder α] : Infinite α
/-- A nonempty preorder with no minimal element is infinite. -/
instance NoMinOrder.infinite [Nonempty α] [NoMinOrder α] : Infinite α :=
@NoMaxOrder.infinite αᵒᵈ _ _ _
Set.Ioo.infinite
theorem
: Infinite (Ioo a b)
theorem Ioo.infinite : Infinite (Ioo a b) :=
@NoMaxOrder.infinite _ _ (nonempty_Ioo_subtype h) _
Set.Ioo_infinite
theorem
: (Ioo a b).Infinite
theorem Ioo_infinite : (Ioo a b).Infinite :=
infinite_coe_iff.1 <| Ioo.infinite h
Set.Ico_infinite
theorem
: (Ico a b).Infinite
theorem Ico_infinite : (Ico a b).Infinite :=
(Ioo_infinite h).mono Ioo_subset_Ico_self
Set.Ico.infinite
theorem
: Infinite (Ico a b)
theorem Ico.infinite : Infinite (Ico a b) :=
infinite_coe_iff.2 <| Ico_infinite h
Set.Ioc_infinite
theorem
: (Ioc a b).Infinite
theorem Ioc_infinite : (Ioc a b).Infinite :=
(Ioo_infinite h).mono Ioo_subset_Ioc_self
Set.Ioc.infinite
theorem
: Infinite (Ioc a b)
theorem Ioc.infinite : Infinite (Ioc a b) :=
infinite_coe_iff.2 <| Ioc_infinite h
Set.Icc_infinite
theorem
: (Icc a b).Infinite
theorem Icc_infinite : (Icc a b).Infinite :=
(Ioo_infinite h).mono Ioo_subset_Icc_self
Set.Icc.infinite
theorem
: Infinite (Icc a b)
theorem Icc.infinite : Infinite (Icc a b) :=
infinite_coe_iff.2 <| Icc_infinite h
Set.instInfiniteElemIioOfNoMinOrder
instance
[NoMinOrder α] {a : α} : Infinite (Iio a)
instance [NoMinOrder α] {a : α} : Infinite (Iio a) :=
NoMinOrder.infinite
Set.Iio_infinite
theorem
[NoMinOrder α] (a : α) : (Iio a).Infinite
theorem Iio_infinite [NoMinOrder α] (a : α) : (Iio a).Infinite :=
infinite_coe_iff.1 inferInstance
Set.instInfiniteElemIicOfNoMinOrder
instance
[NoMinOrder α] {a : α} : Infinite (Iic a)
instance [NoMinOrder α] {a : α} : Infinite (Iic a) :=
NoMinOrder.infinite
Set.Iic_infinite
theorem
[NoMinOrder α] (a : α) : (Iic a).Infinite
theorem Iic_infinite [NoMinOrder α] (a : α) : (Iic a).Infinite :=
infinite_coe_iff.1 inferInstance
Set.instInfiniteElemIoiOfNoMaxOrder
instance
[NoMaxOrder α] {a : α} : Infinite (Ioi a)
instance [NoMaxOrder α] {a : α} : Infinite (Ioi a) :=
NoMaxOrder.infinite
Set.Ioi_infinite
theorem
[NoMaxOrder α] (a : α) : (Ioi a).Infinite
theorem Ioi_infinite [NoMaxOrder α] (a : α) : (Ioi a).Infinite :=
infinite_coe_iff.1 inferInstance
Set.instInfiniteElemIciOfNoMaxOrder
instance
[NoMaxOrder α] {a : α} : Infinite (Ici a)
instance [NoMaxOrder α] {a : α} : Infinite (Ici a) :=
NoMaxOrder.infinite
Set.Ici_infinite
theorem
[NoMaxOrder α] (a : α) : (Ici a).Infinite
theorem Ici_infinite [NoMaxOrder α] (a : α) : (Ici a).Infinite :=
infinite_coe_iff.1 inferInstance