Module docstring
{"# Results about CovariantClass G α HSMul.hSMul LE.le
When working with group actions rather than modules, we drop the 0 < c condition.
Notably these are relevant for pointwise actions on set-like objects. "}
{"# Results about CovariantClass G α HSMul.hSMul LE.le
When working with group actions rather than modules, we drop the 0 < c condition.
Notably these are relevant for pointwise actions on set-like objects. "}
smul_mono_right
      theorem
     [SMul M α] [Preorder α] [CovariantClass M α HSMul.hSMul LE.le] (m : M) : Monotone (HSMul.hSMul m : α → α)
        theorem smul_mono_right [SMul M α] [Preorder α] [CovariantClass M α HSMul.hSMul LE.le]
    (m : M) : Monotone (HSMul.hSMul m : α → α) :=
  fun _ _ => CovariantClass.elim _
        smul_le_smul_left
      theorem
     [SMul M α] [Preorder α] [CovariantClass M α HSMul.hSMul LE.le] (m : M) {a b : α} (h : a ≤ b) : m • a ≤ m • b
        /-- A copy of `smul_mono_right` that is understood by `gcongr`. -/
@[gcongr]
theorem smul_le_smul_left [SMul M α] [Preorder α] [CovariantClass M α HSMul.hSMul LE.le]
    (m : M) {a b : α} (h : a ≤ b) :
    m • a ≤ m • b :=
  smul_mono_right _ h
        smul_inf_le
      theorem
     [SMul M α] [SemilatticeInf α] [CovariantClass M α HSMul.hSMul LE.le] (m : M) (a₁ a₂ : α) :
  m • (a₁ ⊓ a₂) ≤ m • a₁ ⊓ m • a₂
        theorem smul_inf_le [SMul M α] [SemilatticeInf α] [CovariantClass M α HSMul.hSMul LE.le]
    (m : M) (a₁ a₂ : α) : m • (a₁ ⊓ a₂) ≤ m • a₁ ⊓ m • a₂ :=
  (smul_mono_right _).map_inf_le _ _
        smul_iInf_le
      theorem
     [SMul M α] [CompleteLattice α] [CovariantClass M α HSMul.hSMul LE.le] {m : M} {t : ι → α} : m • iInf t ≤ ⨅ i, m • t i
        theorem smul_iInf_le [SMul M α] [CompleteLattice α] [CovariantClass M α HSMul.hSMul LE.le]
    {m : M} {t : ι → α} :
    m • iInf t ≤ ⨅ i, m • t i :=
  le_iInf fun _ => smul_mono_right _ (iInf_le _ _)
        smul_strictMono_right
      theorem
     [SMul M α] [Preorder α] [CovariantClass M α HSMul.hSMul LT.lt] (m : M) : StrictMono (HSMul.hSMul m : α → α)
        theorem smul_strictMono_right [SMul M α] [Preorder α] [CovariantClass M α HSMul.hSMul LT.lt]
    (m : M) : StrictMono (HSMul.hSMul m : α → α) :=
  fun _ _ => CovariantClass.elim _
        le_pow_smul
      theorem
     {G : Type*} [Monoid G] {α : Type*} [Preorder α] {g : G} {a : α} [MulAction G α] [CovariantClass G α HSMul.hSMul LE.le]
  (h : a ≤ g • a) (n : ℕ) : a ≤ g ^ n • a
        lemma le_pow_smul {G : Type*} [Monoid G] {α : Type*} [Preorder α] {g : G} {a : α}
    [MulAction G α] [CovariantClass G α HSMul.hSMul LE.le]
    (h : a ≤ g • a) (n : ℕ) : a ≤ g ^ n • a := by
  induction n with
  | zero => rw [pow_zero, one_smul]
  | succ n hn =>
    rw [pow_succ', mul_smul]
    exact h.trans (smul_mono_right g hn)
        pow_smul_le
      theorem
     {G : Type*} [Monoid G] {α : Type*} [Preorder α] {g : G} {a : α} [MulAction G α] [CovariantClass G α HSMul.hSMul LE.le]
  (h : g • a ≤ a) (n : ℕ) : g ^ n • a ≤ a
        lemma pow_smul_le {G : Type*} [Monoid G] {α : Type*} [Preorder α] {g : G} {a : α}
    [MulAction G α] [CovariantClass G α HSMul.hSMul LE.le]
    (h : g • a ≤ a) (n : ℕ) : g ^ n • a ≤ a := by
  induction n with
  | zero => rw [pow_zero, one_smul]
  | succ n hn =>
    rw [pow_succ', mul_smul]
    exact (smul_mono_right g hn).trans h