Module docstring
{"# Submonoids: membership criteria
In this file we prove various facts about membership in a submonoid:
pow_mem,nsmul_mem: ifx ∈ SwhereSis a multiplicative (resp., additive) submonoid andnis a natural number, thenx^n(resp.,n • x) belongs toS;mem_iSup_of_directed,coe_iSup_of_directed,mem_sSup_of_directedOn,coe_sSup_of_directedOn: the supremum of a directed collection of submonoid is their union.sup_eq_range,mem_sup: supremum of two submonoidsS,Tof a commutative monoid is the set of products;closure_singleton_eq,mem_closure_singleton,mem_closure_pair: the multiplicative (resp., additive) closure of{x}consists of powers (resp., natural multiples) ofx, and a similar result holds for the closure of{x, y}.
Tags
submonoid, submonoids "}