doc-next-gen

Mathlib.Order.Interval.Set.Defs

Module docstring

{"# Intervals

In any preorder α, we define intervals (which on each side can be either infinite, open, or closed) using the following naming conventions: - i: infinite - o: open - c: closed

Each interval has the name I + letter for left side + letter for right side. For instance, Ioc a b denotes the interval (a, b].

We also define a typeclass Set.OrdConnected saying that a set includes Set.Icc a b whenever it contains both a and b. "}

Set.Ioo definition
(a b : α)
Full source
/-- `Ioo a b` is the left-open right-open interval $(a, b)$. -/
def Ioo (a b : α) := { x | a < x ∧ x < b }
Open interval $(a, b)$
Informal description
For any two elements $a$ and $b$ in a preorder $\alpha$, the interval $\text{Ioo}(a, b)$ is defined as the set of all elements $x$ such that $a < x < b$. This is the left-open right-open interval $(a, b)$.
Set.mem_Ioo theorem
: x ∈ Ioo a b ↔ a < x ∧ x < b
Full source
@[simp] theorem mem_Ioo : x ∈ Ioo a bx ∈ Ioo a b ↔ a < x ∧ x < b := Iff.rfl
Membership Criterion for Open Interval $(a, b)$
Informal description
For any elements $a$, $b$, and $x$ in a preorder $\alpha$, the element $x$ belongs to the open interval $(a, b)$ if and only if $a < x$ and $x < b$.
Set.Ioo_def theorem
(a b : α) : {x | a < x ∧ x < b} = Ioo a b
Full source
theorem Ioo_def (a b : α) : { x | a < x ∧ x < b } = Ioo a b := rfl
Definition of Open Interval via Set Comprehension: $\{x \mid a < x < b\} = (a, b)$
Informal description
For any elements $a$ and $b$ in a preorder $\alpha$, the set $\{x \mid a < x < b\}$ is equal to the open interval $\text{Ioo}(a, b)$.
Set.Ico definition
(a b : α)
Full source
/-- `Ico a b` is the left-closed right-open interval $[a, b)$. -/
def Ico (a b : α) := { x | a ≤ x ∧ x < b }
Left-closed right-open interval
Informal description
For any two elements $a$ and $b$ in a preorder $\alpha$, the interval $\text{Ico}(a, b)$ is defined as the set of all elements $x$ such that $a \leq x < b$. This is a left-closed, right-open interval.
Set.mem_Ico theorem
: x ∈ Ico a b ↔ a ≤ x ∧ x < b
Full source
@[simp] theorem mem_Ico : x ∈ Ico a bx ∈ Ico a b ↔ a ≤ x ∧ x < b := Iff.rfl
Membership Criterion for Left-Closed Right-Open Interval
Informal description
For any elements $a$, $b$, and $x$ in a preorder $\alpha$, the element $x$ belongs to the interval $\text{Ico}(a, b)$ if and only if $a \leq x$ and $x < b$.
Set.Ico_def theorem
(a b : α) : {x | a ≤ x ∧ x < b} = Ico a b
Full source
theorem Ico_def (a b : α) : { x | a ≤ x ∧ x < b } = Ico a b := rfl
Characterization of Left-Closed Right-Open Interval as Set of Elements Between $a$ and $b$
Informal description
For any elements $a$ and $b$ in a preorder $\alpha$, the set $\{x \mid a \leq x < b\}$ is equal to the left-closed right-open interval $\text{Ico}(a, b)$.
Set.Iio definition
(b : α)
Full source
/-- `Iio b` is the left-infinite right-open interval $(-∞, b)$. -/
def Iio (b : α) := { x | x < b }
Left-infinite right-open interval $(-\infty, b)$
Informal description
For an element $b$ in a preorder $\alpha$, the interval $\operatorname{Iio}(b)$ is defined as the set $\{x \mid x < b\}$, representing all elements less than $b$.
Set.mem_Iio theorem
: x ∈ Iio b ↔ x < b
Full source
@[simp] theorem mem_Iio : x ∈ Iio bx ∈ Iio b ↔ x < b := Iff.rfl
Membership in Left-Infinite Right-Open Interval: $x \in (-\infty, b) \leftrightarrow x < b$
Informal description
For any element $x$ in a preorder $\alpha$, $x$ belongs to the interval $(-\infty, b)$ if and only if $x < b$.
Set.Iio_def theorem
(a : α) : {x | x < a} = Iio a
Full source
theorem Iio_def (a : α) : { x | x < a } = Iio a := rfl
Characterization of $\operatorname{Iio}(a)$ as $\{x \mid x < a\}$
Informal description
For any element $a$ in a preorder $\alpha$, the set $\{x \mid x < a\}$ is equal to the left-infinite right-open interval $(-\infty, a)$, denoted as $\operatorname{Iio}(a)$.
Set.Icc definition
(a b : α)
Full source
/-- `Icc a b` is the left-closed right-closed interval $[a, b]$. -/
def Icc (a b : α) := { x | a ≤ x ∧ x ≤ b }
Closed interval \([a, b]\)
Informal description
For elements \( a \) and \( b \) in a preorder \( \alpha \), the set \( \text{Icc}(a, b) \) is defined as the closed interval \([a, b]\), consisting of all elements \( x \) such that \( a \leq x \leq b \).
Set.mem_Icc theorem
: x ∈ Icc a b ↔ a ≤ x ∧ x ≤ b
Full source
@[simp] theorem mem_Icc : x ∈ Icc a bx ∈ Icc a b ↔ a ≤ x ∧ x ≤ b := Iff.rfl
Membership Criterion for Closed Interval $[a, b]$
Informal description
For any elements $a, b, x$ in a preorder $\alpha$, the element $x$ belongs to the closed interval $[a, b]$ if and only if $a \leq x$ and $x \leq b$.
Set.Icc_def theorem
(a b : α) : {x | a ≤ x ∧ x ≤ b} = Icc a b
Full source
theorem Icc_def (a b : α) : { x | a ≤ x ∧ x ≤ b } = Icc a b := rfl
Definition of Closed Interval via Set Comprehension
Informal description
For any elements $a$ and $b$ in a preorder $\alpha$, the set $\{x \mid a \leq x \leq b\}$ is equal to the closed interval $[a, b]$.
Set.Iic definition
(b : α)
Full source
/-- `Iic b` is the left-infinite right-closed interval $(-∞, b]$. -/
def Iic (b : α) := { x | x ≤ b }
Left-infinite right-closed interval \( (-\infty, b] \)
Informal description
For an element \( b \) in a preorder \( \alpha \), the set \( \text{Iic } b \) is defined as the left-infinite right-closed interval \( (-\infty, b] \), consisting of all elements \( x \) in \( \alpha \) such that \( x \leq b \).
Set.mem_Iic theorem
: x ∈ Iic b ↔ x ≤ b
Full source
@[simp] theorem mem_Iic : x ∈ Iic bx ∈ Iic b ↔ x ≤ b := Iff.rfl
Membership Criterion for Left-Infinite Right-Closed Interval: $x \in (-\infty, b] \leftrightarrow x \leq b$
Informal description
For an element $x$ in a preorder $\alpha$ and an element $b \in \alpha$, $x$ belongs to the left-infinite right-closed interval $(-\infty, b]$ if and only if $x \leq b$.
Set.Iic_def theorem
(b : α) : {x | x ≤ b} = Iic b
Full source
theorem Iic_def (b : α) : { x | x ≤ b } = Iic b := rfl
Characterization of Left-Infinite Right-Closed Interval as Lower Set
Informal description
For any element $b$ in a preorder $\alpha$, the set $\{x \mid x \leq b\}$ is equal to the left-infinite right-closed interval $(-\infty, b]$.
Set.Ioc definition
(a b : α)
Full source
/-- `Ioc a b` is the left-open right-closed interval $(a, b]$. -/
def Ioc (a b : α) := { x | a < x ∧ x ≤ b }
Left-open right-closed interval
Informal description
For any two elements $a$ and $b$ in a preorder $\alpha$, the interval $\text{Ioc}(a, b)$ is defined as the set of all elements $x$ such that $a < x \leq b$. This is a left-open right-closed interval.
Set.mem_Ioc theorem
: x ∈ Ioc a b ↔ a < x ∧ x ≤ b
Full source
@[simp] theorem mem_Ioc : x ∈ Ioc a bx ∈ Ioc a b ↔ a < x ∧ x ≤ b := Iff.rfl
Membership Criterion for Left-Open Right-Closed Interval: $x \in (a, b] \leftrightarrow a < x \leq b$
Informal description
For any elements $a$, $b$, and $x$ in a preorder $\alpha$, the element $x$ belongs to the left-open right-closed interval $\text{Ioc}(a, b)$ if and only if $a < x$ and $x \leq b$.
Set.Ioc_def theorem
(a b : α) : {x | a < x ∧ x ≤ b} = Ioc a b
Full source
theorem Ioc_def (a b : α) : { x | a < x ∧ x ≤ b } = Ioc a b := rfl
Definition of Left-Open Right-Closed Interval via Set Builder Notation
Informal description
For any elements $a$ and $b$ in a preorder $\alpha$, the set $\{x \mid a < x \wedge x \leq b\}$ is equal to the left-open right-closed interval $\text{Ioc}(a, b)$.
Set.Ici definition
(a : α)
Full source
/-- `Ici a` is the left-closed right-infinite interval $[a, ∞)$. -/
def Ici (a : α) := { x | a ≤ x }
Left-closed right-infinite interval
Informal description
The set `Ici a` is defined as the left-closed right-infinite interval $[a, \infty)$, consisting of all elements $x$ in the preorder $\alpha$ such that $a \leq x$.
Set.mem_Ici theorem
: x ∈ Ici a ↔ a ≤ x
Full source
@[simp] theorem mem_Ici : x ∈ Ici ax ∈ Ici a ↔ a ≤ x := Iff.rfl
Membership in $[a, \infty)$ is equivalent to $a \leq x$
Informal description
An element $x$ belongs to the left-closed right-infinite interval $[a, \infty)$ if and only if $a \leq x$.
Set.Ici_def theorem
(a : α) : {x | a ≤ x} = Ici a
Full source
theorem Ici_def (a : α) : { x | a ≤ x } = Ici a := rfl
Characterization of the Left-Closed Right-Infinite Interval as an Upper Set
Informal description
For any element $a$ in a preorder $\alpha$, the set $\{x \mid a \leq x\}$ is equal to the left-closed right-infinite interval $[a, \infty)$ (denoted as `Ici a`).
Set.Ioi definition
(a : α)
Full source
/-- `Ioi a` is the left-open right-infinite interval $(a, ∞)$. -/
def Ioi (a : α) := { x | a < x }
Left-open right-infinite interval
Informal description
For an element \( a \) in a preorder \( \alpha \), the set \( \text{Ioi}(a) \) is defined as the left-open right-infinite interval \( (a, \infty) \), consisting of all elements \( x \) in \( \alpha \) such that \( a < x \).
Set.mem_Ioi theorem
: x ∈ Ioi a ↔ a < x
Full source
@[simp] theorem mem_Ioi : x ∈ Ioi ax ∈ Ioi a ↔ a < x := Iff.rfl
Membership Criterion for Left-Open Right-Infinite Interval: $x \in (a, \infty) \leftrightarrow a < x$
Informal description
For any element $x$ in a preorder $\alpha$, $x$ belongs to the left-open right-infinite interval $(a, \infty)$ if and only if $a < x$.
Set.Ioi_def theorem
(a : α) : {x | a < x} = Ioi a
Full source
theorem Ioi_def (a : α) : { x | a < x } = Ioi a := rfl
Definition of $\text{Ioi}(a)$ as $\{x \mid a < x\}$
Informal description
For any element $a$ in a preorder $\alpha$, the set $\{x \mid a < x\}$ is equal to the left-open right-infinite interval $\text{Ioi}(a)$.
Set.OrdConnected structure
(s : Set α)
Full source
/-- We say that a set `s : Set α` is `OrdConnected` if for all `x y ∈ s` it includes the
interval `[[x, y]]`. If `α` is a `DenselyOrdered` `ConditionallyCompleteLinearOrder` with
the `OrderTopology`, then this condition is equivalent to `IsPreconnected s`. If `α` is a
`LinearOrderedField`, then this condition is also equivalent to `Convex α s`. -/
class OrdConnected (s : Set α) : Prop where
  /-- `s : Set α` is `OrdConnected` if for all `x y ∈ s` it includes the interval `[[x, y]]`. -/
  out' ⦃x : α⦄ (hx : x ∈ s) ⦃y : α⦄ (hy : y ∈ s) : IccIcc x y ⊆ s
Order Connected Set
Informal description
A set $s$ in a preorder $\alpha$ is called *order connected* if for any two elements $x, y \in s$, the closed interval $[x, y]$ is entirely contained in $s$. In a densely ordered conditionally complete linear order with the order topology, this condition is equivalent to $s$ being preconnected. For a linear ordered field, it is also equivalent to $s$ being convex.