Module docstring
{"# Big operators
In this file we define products and sums indexed by finite sets (specifically, Finset).
Notation
We introduce the following notation.
Let s be a Finset α, and f : α → β a function.
∏ x ∈ s, f xis notation forFinset.prod s f(assumingβis aCommMonoid)∑ x ∈ s, f xis notation forFinset.sum s f(assumingβis anAddCommMonoid)∏ x, f xis notation forFinset.prod Finset.univ f(assumingαis aFintypeandβis aCommMonoid)∑ x, f xis notation forFinset.sum Finset.univ f(assumingαis aFintypeandβis anAddCommMonoid)
Implementation Notes
The first arguments in all definitions and lemmas is the codomain of the function of the big
operator. This is necessary for the heuristic in @[to_additive].
See the documentation of to_additive.attr for more information.
","### Additive, Multiplicative "}