Full source
          /-- Given an affinely independent family of points, a weighted subtraction lies in the
`vectorSpan` of two points given as affine combinations if and only if it is a weighted
subtraction with weights a multiple of the difference between the weights of the two points. -/
theorem weightedVSub_mem_vectorSpan_pair {p : ι → P} (h : AffineIndependent k p) {w w₁ w₂ : ι → k}
    {s : Finset ι} (hw : ∑ i ∈ s, w i = 0) (hw₁ : ∑ i ∈ s, w₁ i = 1)
    (hw₂ : ∑ i ∈ s, w₂ i = 1) :
    s.weightedVSub p w ∈
        vectorSpan k ({s.affineCombination k p w₁, s.affineCombination k p w₂} : Set P)s.weightedVSub p w ∈
        vectorSpan k ({s.affineCombination k p w₁, s.affineCombination k p w₂} : Set P) ↔
      ∃ r : k, ∀ i ∈ s, w i = r * (w₁ i - w₂ i) := by
  rw [mem_vectorSpan_pair]
  refine ⟨fun h => ?_, fun h => ?_⟩
  · rcases h with ⟨r, hr⟩
    refine ⟨r, fun i hi => ?_⟩
    rw [s.affineCombination_vsub, ← s.weightedVSub_const_smul, ← sub_eq_zero, ← map_sub] at hr
    have hw' : (∑ j ∈ s, (r • (w₁ - w₂) - w) j) = 0 := by
      simp_rw [Pi.sub_apply, Pi.smul_apply, Pi.sub_apply, smul_sub, Finset.sum_sub_distrib, ←
        Finset.smul_sum, hw, hw₁, hw₂, sub_self]
    have hr' := h s _ hw' hr i hi
    rw [eq_comm, ← sub_eq_zero, ← smul_eq_mul]
    exact hr'
  · rcases h with ⟨r, hr⟩
    refine ⟨r, ?_⟩
    let w' i := r * (w₁ i - w₂ i)
    change ∀ i ∈ s, w i = w' i at hr
    rw [s.weightedVSub_congr hr fun _ _ => rfl, s.affineCombination_vsub, ←
      s.weightedVSub_const_smul]
    congr