doc-next-gen

Mathlib.Algebra.Order.Group.Unbundled.Basic

Module docstring

{"# Ordered groups

This file develops the basics of unbundled ordered groups.

Implementation details

Unfortunately, the number of ' appended to lemmas in this file may differ between the multiplicative and the additive version of a lemma. The reason is that we did not want to change existing names in the library. "}

Left.inv_le_one_iff theorem
: a⁻¹ ≤ 1 ↔ 1 ≤ a
Full source
/-- Uses `left` co(ntra)variant. -/
@[to_additive (attr := simp) "Uses `left` co(ntra)variant."]
theorem Left.inv_le_one_iff : a⁻¹a⁻¹ ≤ 1 ↔ 1 ≤ a := by
  rw [← mul_le_mul_iff_left a]
  simp
Inverse Inequality in Left-Covariant Division Monoid: $a^{-1} \leq 1 \leftrightarrow 1 \leq a$
Informal description
For any element $a$ in a left-covariant division monoid, the inequality $a^{-1} \leq 1$ holds if and only if $1 \leq a$.
Left.one_le_inv_iff theorem
: 1 ≤ a⁻¹ ↔ a ≤ 1
Full source
/-- Uses `left` co(ntra)variant. -/
@[to_additive (attr := simp) "Uses `left` co(ntra)variant."]
theorem Left.one_le_inv_iff : 1 ≤ a⁻¹ ↔ a ≤ 1 := by
  rw [← mul_le_mul_iff_left a]
  simp
Inverse Inequality: $1 \leq a^{-1} \leftrightarrow a \leq 1$
Informal description
In a division monoid $\alpha$, for any element $a \in \alpha$, the inequality $1 \leq a^{-1}$ holds if and only if $a \leq 1$.
le_inv_mul_iff_mul_le theorem
: b ≤ a⁻¹ * c ↔ a * b ≤ c
Full source
@[to_additive (attr := simp)]
theorem le_inv_mul_iff_mul_le : b ≤ a⁻¹ * c ↔ a * b ≤ c := by
  rw [← mul_le_mul_iff_left a]
  simp
Inequality Equivalence: $b \leq a^{-1}c \leftrightarrow ab \leq c$ in Division Monoids
Informal description
For elements $a$, $b$, and $c$ in a division monoid, the inequality $b \leq a^{-1} * c$ holds if and only if $a * b \leq c$.
le_inv_iff_mul_le_one_left theorem
: a ≤ b⁻¹ ↔ b * a ≤ 1
Full source
@[to_additive]
theorem le_inv_iff_mul_le_one_left : a ≤ b⁻¹ ↔ b * a ≤ 1 :=
  (mul_le_mul_iff_left b).symm.trans <| by rw [mul_inv_cancel]
Inequality Relating Element and Inverse: $a \leq b^{-1} \leftrightarrow b \cdot a \leq 1$
Informal description
For elements $a$ and $b$ in a division monoid, $a$ is less than or equal to the inverse of $b$ if and only if the product $b \cdot a$ is less than or equal to the identity element $1$.
Left.one_lt_inv_iff theorem
: 1 < a⁻¹ ↔ a < 1
Full source
/-- Uses `left` co(ntra)variant. -/
@[to_additive (attr := simp) Left.neg_pos_iff "Uses `left` co(ntra)variant."]
theorem Left.one_lt_inv_iff : 1 < a⁻¹ ↔ a < 1 := by
  rw [← mul_lt_mul_iff_left a, mul_inv_cancel, mul_one]
Inverse Greater Than One iff Element Less Than One (Left Variant)
Informal description
For an element $a$ in an ordered group, the inverse $a^{-1}$ is greater than the identity element $1$ if and only if $a$ is less than $1$.
Left.inv_lt_one_iff theorem
: a⁻¹ < 1 ↔ 1 < a
Full source
/-- Uses `left` co(ntra)variant. -/
@[to_additive (attr := simp) "Uses `left` co(ntra)variant."]
theorem Left.inv_lt_one_iff : a⁻¹a⁻¹ < 1 ↔ 1 < a := by
  rw [← mul_lt_mul_iff_left a, mul_inv_cancel, mul_one]
Inverse Less Than One iff One Less Than Element in Division Monoid
Informal description
For any element $a$ in a division monoid, the inverse $a^{-1}$ is less than the multiplicative identity $1$ if and only if $1$ is less than $a$.
lt_inv_mul_iff_mul_lt theorem
: b < a⁻¹ * c ↔ a * b < c
Full source
@[to_additive (attr := simp)]
theorem lt_inv_mul_iff_mul_lt : b < a⁻¹ * c ↔ a * b < c := by
  rw [← mul_lt_mul_iff_left a]
  simp
Inequality equivalence: $b < a^{-1}c \leftrightarrow ab < c$
Informal description
For elements $a$, $b$, and $c$ in a division monoid, the inequality $b < a^{-1} * c$ holds if and only if $a * b < c$.
Right.inv_le_one_iff theorem
: a⁻¹ ≤ 1 ↔ 1 ≤ a
Full source
/-- Uses `right` co(ntra)variant. -/
@[to_additive (attr := simp) "Uses `right` co(ntra)variant."]
theorem Right.inv_le_one_iff : a⁻¹a⁻¹ ≤ 1 ↔ 1 ≤ a := by
  rw [← mul_le_mul_iff_right a]
  simp
Inverse Inequality: $a^{-1} \leq 1 \leftrightarrow 1 \leq a$ in Division Monoids
Informal description
For any element $a$ in a division monoid, the inverse of $a$ is less than or equal to $1$ if and only if $1$ is less than or equal to $a$, i.e., $a^{-1} \leq 1 \leftrightarrow 1 \leq a$.
Right.one_le_inv_iff theorem
: 1 ≤ a⁻¹ ↔ a ≤ 1
Full source
/-- Uses `right` co(ntra)variant. -/
@[to_additive (attr := simp) "Uses `right` co(ntra)variant."]
theorem Right.one_le_inv_iff : 1 ≤ a⁻¹ ↔ a ≤ 1 := by
  rw [← mul_le_mul_iff_right a]
  simp
Right Inverse Inequality: $1 \leq a^{-1} \leftrightarrow a \leq 1$
Informal description
For any element $a$ in a division monoid, the inequality $1 \leq a^{-1}$ holds if and only if $a \leq 1$.
le_inv_iff_mul_le_one_right theorem
: a ≤ b⁻¹ ↔ a * b ≤ 1
Full source
@[to_additive]
theorem le_inv_iff_mul_le_one_right : a ≤ b⁻¹ ↔ a * b ≤ 1 :=
  (mul_le_mul_iff_right b).symm.trans <| by rw [inv_mul_cancel]
Inequality Relating Element to Inverse via Product with Identity
Informal description
For elements $a$ and $b$ in a division monoid, $a$ is less than or equal to the inverse of $b$ if and only if the product $a * b$ is less than or equal to the multiplicative identity $1$.
div_le_self_iff theorem
(a : α) {b : α} : a / b ≤ a ↔ 1 ≤ b
Full source
@[to_additive (attr := simp)]
theorem div_le_self_iff (a : α) {b : α} : a / b ≤ a ↔ 1 ≤ b := by
  simp [div_eq_mul_inv]
Division Inequality: $a / b \leq a \leftrightarrow 1 \leq b$
Informal description
For any elements $a$ and $b$ in a division monoid $\alpha$, the inequality $a / b \leq a$ holds if and only if $1 \leq b$.
le_div_self_iff theorem
(a : α) {b : α} : a ≤ a / b ↔ b ≤ 1
Full source
@[to_additive (attr := simp)]
theorem le_div_self_iff (a : α) {b : α} : a ≤ a / b ↔ b ≤ 1 := by
  simp [div_eq_mul_inv]
Inequality Characterizing Division by Elements Less Than or Equal to One
Informal description
For any elements $a$ and $b$ in a division monoid $\alpha$, the inequality $a \leq a / b$ holds if and only if $b \leq 1$.
mul_inv_le_inv_mul_iff theorem
: a * b⁻¹ ≤ d⁻¹ * c ↔ d * a ≤ c * b
Full source
@[to_additive]
theorem mul_inv_le_inv_mul_iff : a * b⁻¹ ≤ d⁻¹ * c ↔ d * a ≤ c * b := by
  rw [← mul_le_mul_iff_left d, ← mul_le_mul_iff_right b, mul_inv_cancel_left, mul_assoc,
    inv_mul_cancel_right]
Inequality Equivalence: $a b^{-1} \leq d^{-1} c \leftrightarrow d a \leq c b$
Informal description
For elements $a, b, c, d$ in a division monoid $\alpha$, the inequality $a * b^{-1} \leq d^{-1} * c$ holds if and only if $d * a \leq c * b$.
div_lt_self_iff theorem
(a : α) {b : α} : a / b < a ↔ 1 < b
Full source
@[to_additive (attr := simp)]
theorem div_lt_self_iff (a : α) {b : α} : a / b < a ↔ 1 < b := by
  simp [div_eq_mul_inv]
Inequality $a / b < a$ iff $1 < b$ in a division monoid
Informal description
For any elements $a$ and $b$ in a division monoid $\alpha$, the inequality $a / b < a$ holds if and only if $1 < b$.
lt_inv' theorem
: a < b⁻¹ ↔ b < a⁻¹
Full source
@[to_additive lt_neg]
theorem lt_inv' : a < b⁻¹ ↔ b < a⁻¹ := by rw [← inv_lt_inv_iff, inv_inv]
Inequality Equivalence: $a < b^{-1} \leftrightarrow b < a^{-1}$
Informal description
For any elements $a$ and $b$ in an ordered group, the inequality $a < b^{-1}$ holds if and only if $b < a^{-1}$.
mul_inv_lt_inv_mul_iff theorem
: a * b⁻¹ < d⁻¹ * c ↔ d * a < c * b
Full source
@[to_additive]
theorem mul_inv_lt_inv_mul_iff : a * b⁻¹ < d⁻¹ * c ↔ d * a < c * b := by
  rw [← mul_lt_mul_iff_left d, ← mul_lt_mul_iff_right b, mul_inv_cancel_left, mul_assoc,
    inv_mul_cancel_right]
Inequality equivalence: $a b^{-1} < d^{-1} c \leftrightarrow d a < c b$ in a division monoid
Informal description
For elements $a, b, c, d$ in a division monoid, the inequality $a * b^{-1} < d^{-1} * c$ holds if and only if $d * a < c * b$.
Left.inv_le_self theorem
(h : 1 ≤ a) : a⁻¹ ≤ a
Full source
@[to_additive]
theorem Left.inv_le_self (h : 1 ≤ a) : a⁻¹ ≤ a :=
  le_trans (Left.inv_le_one_iff.mpr h) h
Inverse Inequality in Left-Covariant Division Monoid: $1 \leq a \Rightarrow a^{-1} \leq a$
Informal description
For any element $a$ in a left-covariant division monoid, if $1 \leq a$, then the inverse $a^{-1}$ is less than or equal to $a$.
Left.self_le_inv theorem
(h : a ≤ 1) : a ≤ a⁻¹
Full source
@[to_additive]
theorem Left.self_le_inv (h : a ≤ 1) : a ≤ a⁻¹ :=
  le_trans h (Left.one_le_inv_iff.mpr h)
Element Less Than or Equal to One Implies $a \leq a^{-1}$
Informal description
For any element $a$ in a division monoid, if $a \leq 1$, then $a \leq a^{-1}$.
Left.inv_lt_self theorem
(h : 1 < a) : a⁻¹ < a
Full source
@[to_additive]
theorem Left.inv_lt_self (h : 1 < a) : a⁻¹ < a :=
  (Left.inv_lt_one_iff.mpr h).trans h
Inverse is Less Than Element When Greater Than One
Informal description
For any element $a$ in a division monoid, if $1 < a$, then the inverse $a^{-1}$ is strictly less than $a$.
Left.self_lt_inv theorem
(h : a < 1) : a < a⁻¹
Full source
@[to_additive]
theorem Left.self_lt_inv (h : a < 1) : a < a⁻¹ :=
  lt_trans h (Left.one_lt_inv_iff.mpr h)
Element is Less Than Its Inverse When Less Than One (Left Variant)
Informal description
For any element $a$ in a division monoid, if $a < 1$, then $a < a^{-1}$.
Right.inv_le_self theorem
(h : 1 ≤ a) : a⁻¹ ≤ a
Full source
@[to_additive]
theorem Right.inv_le_self (h : 1 ≤ a) : a⁻¹ ≤ a :=
  le_trans (Right.inv_le_one_iff.mpr h) h
Inverse is Less Than or Equal to Element When One is Less Than or Equal to Element in Division Monoid
Informal description
For any element $a$ in a division monoid, if $1 \leq a$, then the inverse $a^{-1}$ is less than or equal to $a$.
Right.self_le_inv theorem
(h : a ≤ 1) : a ≤ a⁻¹
Full source
@[to_additive]
theorem Right.self_le_inv (h : a ≤ 1) : a ≤ a⁻¹ :=
  le_trans h (Right.one_le_inv_iff.mpr h)
Element is Less Than or Equal to Its Inverse When Less Than or Equal to One
Informal description
For any element $a$ in a division monoid, if $a \leq 1$, then $a \leq a^{-1}$.
Right.inv_lt_self theorem
(h : 1 < a) : a⁻¹ < a
Full source
@[to_additive]
theorem Right.inv_lt_self (h : 1 < a) : a⁻¹ < a :=
  (Right.inv_lt_one_iff.mpr h).trans h
Inverse is Less Than Element When One is Less Than Element in Division Monoid
Informal description
For any element $a$ in a division monoid, if $1 < a$, then the inverse $a^{-1}$ is strictly less than $a$.
mul_inv_le_mul_inv_iff' theorem
: a * b⁻¹ ≤ c * d⁻¹ ↔ a * d ≤ c * b
Full source
@[to_additive add_neg_le_add_neg_iff]
theorem mul_inv_le_mul_inv_iff' : a * b⁻¹ ≤ c * d⁻¹ ↔ a * d ≤ c * b := by
  rw [mul_comm c, mul_inv_le_inv_mul_iff, mul_comm]
Inequality Equivalence: $a b^{-1} \leq c d^{-1} \leftrightarrow a d \leq c b$
Informal description
For elements $a, b, c, d$ in a division monoid, the inequality $a \cdot b^{-1} \leq c \cdot d^{-1}$ holds if and only if $a \cdot d \leq c \cdot b$.
div_le_div_right' theorem
(h : a ≤ b) (c : α) : a / c ≤ b / c
Full source
@[to_additive (attr := gcongr) sub_le_sub_right]
theorem div_le_div_right' (h : a ≤ b) (c : α) : a / c ≤ b / c :=
  (div_le_div_iff_right c).2 h
Right Division Preserves Order in Ordered Groups
Informal description
For any elements $a, b, c$ in an ordered group $\alpha$, if $a \leq b$, then $a / c \leq b / c$.
AddGroup.toOrderedSub instance
{α : Type*} [AddGroup α] [LE α] [AddRightMono α] : OrderedSub α
Full source
instance (priority := 100) AddGroup.toOrderedSub {α : Type*} [AddGroup α] [LE α]
    [AddRightMono α] : OrderedSub α :=
  ⟨fun _ _ _ => sub_le_iff_le_add⟩
Ordered Subtraction in Additive Groups with Right-Monotone Addition
Informal description
For any additive group $\alpha$ with a partial order and right-monotone addition, $\alpha$ has an ordered subtraction structure.
div_le_div_iff_left theorem
(a : α) : a / b ≤ a / c ↔ c ≤ b
Full source
@[to_additive]
theorem div_le_div_iff_left (a : α) : a / b ≤ a / c ↔ c ≤ b := by
  rw [div_eq_mul_inv, div_eq_mul_inv, ← mul_le_mul_iff_left a⁻¹, inv_mul_cancel_left,
    inv_mul_cancel_left, inv_le_inv_iff]
Division Inequality Comparison: $a / b \leq a / c \leftrightarrow c \leq b$
Informal description
For any elements $a$, $b$, and $c$ in a division monoid $\alpha$, the inequality $a / b \leq a / c$ holds if and only if $c \leq b$.
div_le_div_left' theorem
(h : a ≤ b) (c : α) : c / b ≤ c / a
Full source
@[to_additive (attr := gcongr) sub_le_sub_left]
theorem div_le_div_left' (h : a ≤ b) (c : α) : c / b ≤ c / a :=
  (div_le_div_iff_left c).2 h
Division Inequality: $a \leq b$ implies $c / b \leq c / a$
Informal description
For any elements $a$, $b$, and $c$ in a division monoid $\alpha$, if $a \leq b$, then $c / b \leq c / a$.
div_le_div_iff' theorem
: a / b ≤ c / d ↔ a * d ≤ c * b
Full source
/-- See also `div_le_div_iff` for a version that works for `LinearOrderedSemifield` with
additional assumptions. -/
@[to_additive sub_le_sub_iff]
theorem div_le_div_iff' : a / b ≤ c / d ↔ a * d ≤ c * b := by
  simpa only [div_eq_mul_inv] using mul_inv_le_mul_inv_iff'
Inequality Equivalence: $\frac{a}{b} \leq \frac{c}{d} \leftrightarrow a d \leq c b$
Informal description
For elements $a, b, c, d$ in an ordered group, the inequality $\frac{a}{b} \leq \frac{c}{d}$ holds if and only if $a \cdot d \leq c \cdot b$.
div_le_div'' theorem
(hab : a ≤ b) (hcd : c ≤ d) : a / d ≤ b / c
Full source
@[to_additive (attr := gcongr) sub_le_sub]
theorem div_le_div'' (hab : a ≤ b) (hcd : c ≤ d) : a / d ≤ b / c := by
  rw [div_eq_mul_inv, div_eq_mul_inv, mul_comm b, mul_inv_le_inv_mul_iff, mul_comm]
  exact mul_le_mul' hab hcd
Division Inequality: $a \leq b$ and $c \leq d$ implies $a/d \leq b/c$
Informal description
For any elements $a, b, c, d$ in an ordered group such that $a \leq b$ and $c \leq d$, the inequality $a / d \leq b / c$ holds.
div_lt_div_iff_right theorem
(c : α) : a / c < b / c ↔ a < b
Full source
@[to_additive (attr := simp)]
theorem div_lt_div_iff_right (c : α) : a / c < b / c ↔ a < b := by
  simpa only [div_eq_mul_inv] using mul_lt_mul_iff_right _
Division preserves strict inequality in ordered groups: $a / c < b / c \leftrightarrow a < b$
Informal description
For any elements $a$, $b$, and $c$ in an ordered group, the inequality $a / c < b / c$ holds if and only if $a < b$.
div_lt_div_right' theorem
(h : a < b) (c : α) : a / c < b / c
Full source
@[to_additive (attr := gcongr) sub_lt_sub_right]
theorem div_lt_div_right' (h : a < b) (c : α) : a / c < b / c :=
  (div_lt_div_iff_right c).2 h
Right Division Preserves Strict Inequality in Ordered Groups: $a / c < b / c$ when $a < b$
Informal description
For any elements $a$ and $b$ in an ordered group with $a < b$, and for any element $c$ in the same group, the inequality $a / c < b / c$ holds.
div_lt_div_iff_left theorem
(a : α) : a / b < a / c ↔ c < b
Full source
@[to_additive (attr := simp)]
theorem div_lt_div_iff_left (a : α) : a / b < a / c ↔ c < b := by
  rw [div_eq_mul_inv, div_eq_mul_inv, ← mul_lt_mul_iff_left a⁻¹, inv_mul_cancel_left,
    inv_mul_cancel_left, inv_lt_inv_iff]
Division Inequality: $a/b < a/c \leftrightarrow c < b$
Informal description
For any element $a$ in an ordered group, and for any elements $b$ and $c$ in the same group, the inequality $a / b < a / c$ holds if and only if $c < b$.
div_lt_div_left' theorem
(h : a < b) (c : α) : c / b < c / a
Full source
@[to_additive (attr := gcongr) sub_lt_sub_left]
theorem div_lt_div_left' (h : a < b) (c : α) : c / b < c / a :=
  (div_lt_div_iff_left c).2 h
Division Inequality: $c/b < c/a$ when $a < b$
Informal description
For any elements $a$ and $b$ in an ordered group such that $a < b$, and for any element $c$ in the same group, the inequality $c / b < c / a$ holds.
div_lt_div'' theorem
(hab : a < b) (hcd : c < d) : a / d < b / c
Full source
@[to_additive (attr := gcongr) sub_lt_sub]
theorem div_lt_div'' (hab : a < b) (hcd : c < d) : a / d < b / c := by
  rw [div_eq_mul_inv, div_eq_mul_inv, mul_comm b, mul_inv_lt_inv_mul_iff, mul_comm]
  exact mul_lt_mul_of_lt_of_lt hab hcd
Inequality of Quotients under Componentwise Inequalities: $a < b$ and $c < d$ implies $a/d < b/c$
Informal description
For elements $a, b, c, d$ in an ordered group, if $a < b$ and $c < d$, then $a / d < b / c$.
lt_or_lt_of_div_lt_div theorem
: a / d < b / c → a < b ∨ c < d
Full source
@[to_additive] lemma lt_or_lt_of_div_lt_div : a / d < b / c → a < b ∨ c < d := by
  contrapose!; exact fun h ↦ div_le_div'' h.1 h.2
Disjunction from Quotient Inequality: $a/d < b/c$ implies $a < b$ or $c < d$
Informal description
For any elements $a, b, c, d$ in an ordered group, if $a / d < b / c$, then either $a < b$ or $c < d$.
cmp_div_one' theorem
[MulRightMono α] (a b : α) : cmp (a / b) 1 = cmp a b
Full source
@[to_additive (attr := simp) cmp_sub_zero]
theorem cmp_div_one' [MulRightMono α] (a b : α) :
    cmp (a / b) 1 = cmp a b := by rw [← cmp_mul_right' _ _ b, one_mul, div_mul_cancel]
Comparison of Quotient with One Equals Comparison of Elements in Right-Monotone Division Monoid
Informal description
Let $\alpha$ be a division monoid with a right-monotone multiplication. For any elements $a, b \in \alpha$, the comparison between $a / b$ and $1$ is equal to the comparison between $a$ and $b$, i.e., $\text{cmp}(a / b, 1) = \text{cmp}(a, b)$.
le_of_forall_one_lt_lt_mul theorem
(h : ∀ ε : α, 1 < ε → a < b * ε) : a ≤ b
Full source
@[to_additive]
theorem le_of_forall_one_lt_lt_mul (h : ∀ ε : α, 1 < ε → a < b * ε) : a ≤ b :=
  le_of_not_lt fun h₁ => lt_irrefl a (by simpa using h _ (lt_inv_mul_iff_lt.mpr h₁))
Order relation from multiplicative inequalities: $a \leq b$ via $a < b \cdot \varepsilon$ for all $\varepsilon > 1$
Informal description
For elements $a$ and $b$ in a division monoid, if for every $\varepsilon > 1$ we have $a < b \cdot \varepsilon$, then $a \leq b$.
le_iff_forall_one_lt_lt_mul theorem
: a ≤ b ↔ ∀ ε, 1 < ε → a < b * ε
Full source
@[to_additive]
theorem le_iff_forall_one_lt_lt_mul : a ≤ b ↔ ∀ ε, 1 < ε → a < b * ε :=
  ⟨fun h _ => lt_mul_of_le_of_one_lt h, le_of_forall_one_lt_lt_mul⟩
Characterization of Order via Multiplicative Inequalities: $a \leq b \leftrightarrow \forall \varepsilon > 1, a < b \cdot \varepsilon$
Informal description
For elements $a$ and $b$ in a division monoid, the inequality $a \leq b$ holds if and only if for every $\varepsilon > 1$, we have $a < b \cdot \varepsilon$.
div_le_inv_mul_iff theorem
[MulRightMono α] : a / b ≤ a⁻¹ * b ↔ a ≤ b
Full source
@[to_additive]
theorem div_le_inv_mul_iff [MulRightMono α] :
    a / b ≤ a⁻¹ * b ↔ a ≤ b := by
  rw [div_eq_mul_inv, mul_inv_le_inv_mul_iff]
  exact
    ⟨fun h => not_lt.mp fun k => not_lt.mpr h (mul_lt_mul_of_lt_of_lt k k), fun h =>
      mul_le_mul' h h⟩
Inequality Equivalence: $a / b \leq a^{-1} b \leftrightarrow a \leq b$
Informal description
For elements $a$ and $b$ in a division monoid $\alpha$ with right-monotone multiplication, the inequality $a / b \leq a^{-1} * b$ holds if and only if $a \leq b$.
div_le_div_flip theorem
{α : Type*} [CommGroup α] [LinearOrder α] [MulLeftMono α] {a b : α} : a / b ≤ b / a ↔ a ≤ b
Full source
@[to_additive]
theorem div_le_div_flip {α : Type*} [CommGroup α] [LinearOrder α]
    [MulLeftMono α] {a b : α} : a / b ≤ b / a ↔ a ≤ b := by
  rw [div_eq_mul_inv b, mul_comm]
  exact div_le_inv_mul_iff
Inequality Equivalence: $a / b \leq b / a \leftrightarrow a \leq b$
Informal description
For elements $a$ and $b$ in a commutative group $\alpha$ with a linear order and left-monotone multiplication, the inequality $a / b \leq b / a$ holds if and only if $a \leq b$.
Monotone.inv theorem
(hf : Monotone f) : Antitone fun x => (f x)⁻¹
Full source
@[to_additive]
theorem Monotone.inv (hf : Monotone f) : Antitone fun x => (f x)⁻¹ := fun _ _ hxy =>
  inv_le_inv_iff.2 (hf hxy)
Inverse of Monotone Function is Antitone
Informal description
If a function $f$ is monotone (i.e., order-preserving), then the function $x \mapsto (f(x))^{-1}$ is antitone (i.e., order-reversing).
Antitone.inv theorem
(hf : Antitone f) : Monotone fun x => (f x)⁻¹
Full source
@[to_additive]
theorem Antitone.inv (hf : Antitone f) : Monotone fun x => (f x)⁻¹ := fun _ _ hxy =>
  inv_le_inv_iff.2 (hf hxy)
Monotonicity of the Inverse of an Antitone Function
Informal description
If a function $f$ is antitone (i.e., order-reversing), then the function $x \mapsto (f(x))^{-1}$ is monotone (i.e., order-preserving).
MonotoneOn.inv theorem
(hf : MonotoneOn f s) : AntitoneOn (fun x => (f x)⁻¹) s
Full source
@[to_additive]
theorem MonotoneOn.inv (hf : MonotoneOn f s) : AntitoneOn (fun x => (f x)⁻¹) s :=
  fun _ hx _ hy hxy => inv_le_inv_iff.2 (hf hx hy hxy)
Inverse of Monotone Function is Antitone on Set
Informal description
For any function $f$ that is monotone on a set $s$, the function $x \mapsto (f(x))^{-1}$ is antitone on $s$.
AntitoneOn.inv theorem
(hf : AntitoneOn f s) : MonotoneOn (fun x => (f x)⁻¹) s
Full source
@[to_additive]
theorem AntitoneOn.inv (hf : AntitoneOn f s) : MonotoneOn (fun x => (f x)⁻¹) s :=
  fun _ hx _ hy hxy => inv_le_inv_iff.2 (hf hx hy hxy)
Monotonicity of the Inverse of an Antitone Function on a Set
Informal description
For any function $f$ that is antitone on a set $s$, the function $x \mapsto (f(x))^{-1}$ is monotone on $s$.
StrictMono.inv theorem
(hf : StrictMono f) : StrictAnti fun x => (f x)⁻¹
Full source
@[to_additive]
theorem StrictMono.inv (hf : StrictMono f) : StrictAnti fun x => (f x)⁻¹ := fun _ _ hxy =>
  inv_lt_inv_iff.2 (hf hxy)
Strict Monotonicity Implies Strict Antitonicity of Inverse
Informal description
If a function $f$ is strictly monotone, then the function $x \mapsto (f(x))^{-1}$ is strictly antitone.
StrictAnti.inv theorem
(hf : StrictAnti f) : StrictMono fun x => (f x)⁻¹
Full source
@[to_additive]
theorem StrictAnti.inv (hf : StrictAnti f) : StrictMono fun x => (f x)⁻¹ := fun _ _ hxy =>
  inv_lt_inv_iff.2 (hf hxy)
Inverse of Strictly Antitone Function is Strictly Monotone
Informal description
If a function $f$ is strictly antitone, then the function $x \mapsto (f(x))^{-1}$ is strictly monotone.
StrictMonoOn.inv theorem
(hf : StrictMonoOn f s) : StrictAntiOn (fun x => (f x)⁻¹) s
Full source
@[to_additive]
theorem StrictMonoOn.inv (hf : StrictMonoOn f s) : StrictAntiOn (fun x => (f x)⁻¹) s :=
  fun _ hx _ hy hxy => inv_lt_inv_iff.2 (hf hx hy hxy)
Inverse of Strictly Monotone Function is Strictly Antitone on Set
Informal description
If a function $f$ is strictly monotone on a set $s$, then the function $x \mapsto (f(x))^{-1}$ is strictly antitone on $s$.
StrictAntiOn.inv theorem
(hf : StrictAntiOn f s) : StrictMonoOn (fun x => (f x)⁻¹) s
Full source
@[to_additive]
theorem StrictAntiOn.inv (hf : StrictAntiOn f s) : StrictMonoOn (fun x => (f x)⁻¹) s :=
  fun _ hx _ hy hxy => inv_lt_inv_iff.2 (hf hx hy hxy)
Inverse of Strictly Antitone Function is Strictly Monotone
Informal description
If a function $f$ is strictly antitone on a set $s$, then the function $x \mapsto (f(x))^{-1}$ is strictly monotone on $s$.