Module docstring
{"# NeZero typeclass
We give basic facts about the NeZero n typeclass.
"}
{"# NeZero typeclass
We give basic facts about the NeZero n typeclass.
"}
not_neZero
theorem
{n : R} : ¬NeZero n ↔ n = 0
theorem not_neZero {n : R} : ¬NeZero n¬NeZero n ↔ n = 0 := by simp [neZero_iff]
zero_ne_one
theorem
[One α] [NeZero (1 : α)] : (0 : α) ≠ 1
@[simp] lemma zero_ne_one [One α] [NeZero (1 : α)] : (0 : α) ≠ 1 := NeZero.ne' (1 : α)
one_ne_zero
theorem
[One α] [NeZero (1 : α)] : (1 : α) ≠ 0
@[simp] lemma one_ne_zero [One α] [NeZero (1 : α)] : (1 : α) ≠ 0 := NeZero.ne (1 : α)
ne_zero_of_eq_one
theorem
[One α] [NeZero (1 : α)] {a : α} (h : a = 1) : a ≠ 0
lemma ne_zero_of_eq_one [One α] [NeZero (1 : α)] {a : α} (h : a = 1) : a ≠ 0 := h ▸ one_ne_zero
two_ne_zero
theorem
[OfNat α 2] [NeZero (2 : α)] : (2 : α) ≠ 0
@[field_simps]
lemma two_ne_zero [OfNat α 2] [NeZero (2 : α)] : (2 : α) ≠ 0 := NeZero.ne (2 : α)
three_ne_zero
theorem
[OfNat α 3] [NeZero (3 : α)] : (3 : α) ≠ 0
@[field_simps]
lemma three_ne_zero [OfNat α 3] [NeZero (3 : α)] : (3 : α) ≠ 0 := NeZero.ne (3 : α)
four_ne_zero
theorem
[OfNat α 4] [NeZero (4 : α)] : (4 : α) ≠ 0
@[field_simps]
lemma four_ne_zero [OfNat α 4] [NeZero (4 : α)] : (4 : α) ≠ 0 := NeZero.ne (4 : α)
zero_ne_one'
theorem
[One α] [NeZero (1 : α)] : (0 : α) ≠ 1
lemma zero_ne_one' [One α] [NeZero (1 : α)] : (0 : α) ≠ 1 := zero_ne_one
one_ne_zero'
theorem
[One α] [NeZero (1 : α)] : (1 : α) ≠ 0
lemma one_ne_zero' [One α] [NeZero (1 : α)] : (1 : α) ≠ 0 := one_ne_zero
two_ne_zero'
theorem
[OfNat α 2] [NeZero (2 : α)] : (2 : α) ≠ 0
lemma two_ne_zero' [OfNat α 2] [NeZero (2 : α)] : (2 : α) ≠ 0 := two_ne_zero
three_ne_zero'
theorem
[OfNat α 3] [NeZero (3 : α)] : (3 : α) ≠ 0
lemma three_ne_zero' [OfNat α 3] [NeZero (3 : α)] : (3 : α) ≠ 0 := three_ne_zero
four_ne_zero'
theorem
[OfNat α 4] [NeZero (4 : α)] : (4 : α) ≠ 0
lemma four_ne_zero' [OfNat α 4] [NeZero (4 : α)] : (4 : α) ≠ 0 := four_ne_zero
NeZero.of_pos
theorem
[Preorder M] [Zero M] (h : 0 < x) : NeZero x
theorem of_pos [Preorder M] [Zero M] (h : 0 < x) : NeZero x := ⟨ne_of_gt h⟩