Module docstring
{"# Lemmas about nonzero elements of an AddMonoidWithOne
"}
{"# Lemmas about nonzero elements of an AddMonoidWithOne
"}
NeZero.one_le
theorem
{n : ℕ} [NeZero n] : 1 ≤ n
NeZero.natCast_ne
theorem
(n : ℕ) (R) [AddMonoidWithOne R] [h : NeZero (n : R)] : (n : R) ≠ 0
lemma natCast_ne (n : ℕ) (R) [AddMonoidWithOne R] [h : NeZero (n : R)] : (n : R) ≠ 0 := h.out
NeZero.of_neZero_natCast
theorem
(R) [AddMonoidWithOne R] {n : ℕ} [h : NeZero (n : R)] : NeZero n
lemma of_neZero_natCast (R) [AddMonoidWithOne R] {n : ℕ} [h : NeZero (n : R)] : NeZero n :=
⟨by rintro rfl; exact h.out Nat.cast_zero⟩
NeZero.pos_of_neZero_natCast
theorem
(R) [AddMonoidWithOne R] {n : ℕ} [NeZero (n : R)] : 0 < n
lemma pos_of_neZero_natCast (R) [AddMonoidWithOne R] {n : ℕ} [NeZero (n : R)] : 0 < n :=
Nat.pos_of_ne_zero (of_neZero_natCast R).out