Informal description
Let $M$ and $N$ be modules over a ring $R$, and let $s \subseteq M$ and $t \subseteq N$ be subsets. Given a predicate $p : M \times N \to \mathrm{Prop}$ such that:
1. For all $x \in s$ and $y \in t$, $p(x,y)$ holds;
2. For all $y \in \operatorname{span}_R t$, $p(0,y)$ holds;
3. For all $x \in \operatorname{span}_R s$, $p(x,0)$ holds;
4. For all $x, y \in \operatorname{span}_R s$ and $z \in \operatorname{span}_R t$, if $p(x,z)$ and $p(y,z)$ hold, then $p(x+y,z)$ holds;
5. For all $x \in \operatorname{span}_R s$ and $y, z \in \operatorname{span}_R t$, if $p(x,y)$ and $p(x,z)$ hold, then $p(x,y+z)$ holds;
6. For all $r \in R$, $x \in \operatorname{span}_R s$, and $y \in \operatorname{span}_R t$, if $p(x,y)$ holds, then $p(r \cdot x, y)$ holds;
7. For all $r \in R$, $x \in \operatorname{span}_R s$, and $y \in \operatorname{span}_R t$, if $p(x,y)$ holds, then $p(x, r \cdot y)$ holds.
Then, for all $a \in \operatorname{span}_R s$ and $b \in \operatorname{span}_R t$, the predicate $p(a,b)$ holds.