Module docstring
{"# Theorems about the Disjoint relation on Set.
","### Set coercion to a type ","### Disjointness ","### Lemmas about complement ","### Disjoint sets "}
{"# Theorems about the Disjoint relation on Set.
","### Set coercion to a type ","### Disjointness ","### Lemmas about complement ","### Disjoint sets "}
Set.disjoint_iff
theorem
: Disjoint s t ↔ s ∩ t ⊆ ∅
protected theorem disjoint_iff : DisjointDisjoint s t ↔ s ∩ t ⊆ ∅ :=
disjoint_iff_inf_le
Set.disjoint_iff_inter_eq_empty
theorem
: Disjoint s t ↔ s ∩ t = ∅
theorem disjoint_iff_inter_eq_empty : DisjointDisjoint s t ↔ s ∩ t = ∅ :=
disjoint_iff
Disjoint.inter_eq
theorem
: Disjoint s t → s ∩ t = ∅
theorem _root_.Disjoint.inter_eq : Disjoint s t → s ∩ t = ∅ :=
Disjoint.eq_bot
Set.disjoint_left
theorem
: Disjoint s t ↔ ∀ ⦃a⦄, a ∈ s → a ∉ t
theorem disjoint_left : DisjointDisjoint s t ↔ ∀ ⦃a⦄, a ∈ s → a ∉ t :=
disjoint_iff_inf_le.trans <| forall_congr' fun _ => not_and
Set.disjoint_right
theorem
: Disjoint s t ↔ ∀ ⦃a⦄, a ∈ t → a ∉ s
theorem disjoint_right : DisjointDisjoint s t ↔ ∀ ⦃a⦄, a ∈ t → a ∉ s := by rw [disjoint_comm, disjoint_left]
Set.not_disjoint_iff
theorem
: ¬Disjoint s t ↔ ∃ x, x ∈ s ∧ x ∈ t
lemma not_disjoint_iff : ¬Disjoint s t¬Disjoint s t ↔ ∃ x, x ∈ s ∧ x ∈ t :=
Set.disjoint_iff.not.trans <| not_forall.trans <| exists_congr fun _ ↦ not_not
Set.not_disjoint_iff_nonempty_inter
theorem
: ¬Disjoint s t ↔ (s ∩ t).Nonempty
lemma not_disjoint_iff_nonempty_inter : ¬ Disjoint s t¬ Disjoint s t ↔ (s ∩ t).Nonempty := not_disjoint_iff
Set.disjoint_or_nonempty_inter
theorem
(s t : Set α) : Disjoint s t ∨ (s ∩ t).Nonempty
lemma disjoint_or_nonempty_inter (s t : Set α) : DisjointDisjoint s t ∨ (s ∩ t).Nonempty :=
(em _).imp_right not_disjoint_iff_nonempty_inter.1
Set.disjoint_iff_forall_ne
theorem
: Disjoint s t ↔ ∀ ⦃a⦄, a ∈ s → ∀ ⦃b⦄, b ∈ t → a ≠ b
lemma disjoint_iff_forall_ne : DisjointDisjoint s t ↔ ∀ ⦃a⦄, a ∈ s → ∀ ⦃b⦄, b ∈ t → a ≠ b := by
simp only [Ne, disjoint_left, @imp_not_comm _ (_ = _), forall_eq']
Set.disjoint_of_subset_left
theorem
(h : s ⊆ u) (d : Disjoint u t) : Disjoint s t
lemma disjoint_of_subset_left (h : s ⊆ u) (d : Disjoint u t) : Disjoint s t := d.mono_left h
Set.disjoint_of_subset_right
theorem
(h : t ⊆ u) (d : Disjoint s u) : Disjoint s t
lemma disjoint_of_subset_right (h : t ⊆ u) (d : Disjoint s u) : Disjoint s t := d.mono_right h
Set.disjoint_of_subset
theorem
(hs : s₁ ⊆ s₂) (ht : t₁ ⊆ t₂) (h : Disjoint s₂ t₂) : Disjoint s₁ t₁
Set.disjoint_union_left
theorem
: Disjoint (s ∪ t) u ↔ Disjoint s u ∧ Disjoint t u
@[simp]
lemma disjoint_union_left : DisjointDisjoint (s ∪ t) u ↔ Disjoint s u ∧ Disjoint t u := disjoint_sup_left
Set.disjoint_union_right
theorem
: Disjoint s (t ∪ u) ↔ Disjoint s t ∧ Disjoint s u
@[simp]
lemma disjoint_union_right : DisjointDisjoint s (t ∪ u) ↔ Disjoint s t ∧ Disjoint s u := disjoint_sup_right
Set.disjoint_empty
theorem
(s : Set α) : Disjoint s ∅
@[simp] lemma disjoint_empty (s : Set α) : Disjoint s ∅ := disjoint_bot_right
Set.empty_disjoint
theorem
(s : Set α) : Disjoint ∅ s
@[simp] lemma empty_disjoint (s : Set α) : Disjoint ∅ s := disjoint_bot_left
Set.univ_disjoint
theorem
: Disjoint univ s ↔ s = ∅
@[simp] lemma univ_disjoint : DisjointDisjoint univ s ↔ s = ∅ := top_disjoint
Set.disjoint_univ
theorem
: Disjoint s univ ↔ s = ∅
@[simp] lemma disjoint_univ : DisjointDisjoint s univ ↔ s = ∅ := disjoint_top
Set.disjoint_sdiff_left
theorem
: Disjoint (t \ s) s
lemma disjoint_sdiff_left : Disjoint (t \ s) s := disjoint_sdiff_self_left
Set.disjoint_sdiff_right
theorem
: Disjoint s (t \ s)
lemma disjoint_sdiff_right : Disjoint s (t \ s) := disjoint_sdiff_self_right
Set.disjoint_sdiff_inter
theorem
: Disjoint (s \ t) (s ∩ t)
theorem disjoint_sdiff_inter : Disjoint (s \ t) (s ∩ t) :=
disjoint_of_subset_right inter_subset_right disjoint_sdiff_left
Set.subset_diff
theorem
: s ⊆ t \ u ↔ s ⊆ t ∧ Disjoint s u
lemma subset_diff : s ⊆ t \ us ⊆ t \ u ↔ s ⊆ t ∧ Disjoint s u := le_iff_subset.symm.trans le_sdiff
Set.disjoint_of_subset_iff_left_eq_empty
theorem
(h : s ⊆ t) : Disjoint s t ↔ s = ∅
theorem disjoint_of_subset_iff_left_eq_empty (h : s ⊆ t) :
DisjointDisjoint s t ↔ s = ∅ :=
disjoint_of_le_iff_left_eq_bot h
Set.subset_compl_iff_disjoint_left
theorem
: s ⊆ tᶜ ↔ Disjoint t s
theorem subset_compl_iff_disjoint_left : s ⊆ tᶜs ⊆ tᶜ ↔ Disjoint t s :=
@le_compl_iff_disjoint_left (Set α) _ _ _
Set.subset_compl_iff_disjoint_right
theorem
: s ⊆ tᶜ ↔ Disjoint s t
theorem subset_compl_iff_disjoint_right : s ⊆ tᶜs ⊆ tᶜ ↔ Disjoint s t :=
@le_compl_iff_disjoint_right (Set α) _ _ _
Set.disjoint_compl_left_iff_subset
theorem
: Disjoint sᶜ t ↔ t ⊆ s
theorem disjoint_compl_left_iff_subset : DisjointDisjoint sᶜ t ↔ t ⊆ s :=
disjoint_compl_left_iff
Set.disjoint_compl_right_iff_subset
theorem
: Disjoint s tᶜ ↔ s ⊆ t
theorem disjoint_compl_right_iff_subset : DisjointDisjoint s tᶜ ↔ s ⊆ t :=
disjoint_compl_right_iff
Set.diff_ssubset_left_iff
theorem
: s \ t ⊂ s ↔ (s ∩ t).Nonempty
@[simp]
theorem diff_ssubset_left_iff : s \ ts \ t ⊂ ss \ t ⊂ s ↔ (s ∩ t).Nonempty :=
sdiff_lt_left.trans <| by rw [not_disjoint_iff_nonempty_inter, inter_comm]
HasSubset.Subset.diff_ssubset_of_nonempty
theorem
(hst : s ⊆ t) (hs : s.Nonempty) : t \ s ⊂ t
theorem _root_.HasSubset.Subset.diff_ssubset_of_nonempty (hst : s ⊆ t) (hs : s.Nonempty) :
t \ st \ s ⊂ t := by
simpa [inter_eq_self_of_subset_right hst]
Disjoint.union_left
theorem
(hs : Disjoint s u) (ht : Disjoint t u) : Disjoint (s ∪ t) u
Disjoint.union_right
theorem
(ht : Disjoint s t) (hu : Disjoint s u) : Disjoint s (t ∪ u)
Disjoint.inter_left
theorem
(u : Set α) (h : Disjoint s t) : Disjoint (s ∩ u) t
Disjoint.inter_left'
theorem
(u : Set α) (h : Disjoint s t) : Disjoint (u ∩ s) t
Disjoint.inter_right
theorem
(u : Set α) (h : Disjoint s t) : Disjoint s (t ∩ u)
Disjoint.inter_right'
theorem
(u : Set α) (h : Disjoint s t) : Disjoint s (u ∩ t)
theorem inter_right' (u : Set α) (h : Disjoint s t) : Disjoint s (u ∩ t) :=
h.inf_right' _
Disjoint.subset_left_of_subset_union
theorem
(h : s ⊆ t ∪ u) (hac : Disjoint s u) : s ⊆ t
theorem subset_left_of_subset_union (h : s ⊆ t ∪ u) (hac : Disjoint s u) : s ⊆ t :=
hac.left_le_of_le_sup_right h
Disjoint.subset_right_of_subset_union
theorem
(h : s ⊆ t ∪ u) (hab : Disjoint s t) : s ⊆ u
theorem subset_right_of_subset_union (h : s ⊆ t ∪ u) (hab : Disjoint s t) : s ⊆ u :=
hab.left_le_of_le_sup_left h