doc-next-gen

Mathlib.Analysis.NormedSpace.Multilinear.Basic

Module docstring

{"# Operator norm on the space of continuous multilinear maps

When f is a continuous multilinear map in finitely many variables, we define its norm ‖f‖ as the smallest number such that ‖f m‖ ≤ ‖f‖ * ∏ i, ‖m i‖ for all m.

We show that it is indeed a norm, and prove its basic properties.

Main results

Let f be a multilinear map in finitely many variables. * exists_bound_of_continuous asserts that, if f is continuous, then there exists C > 0 with ‖f m‖ ≤ C * ∏ i, ‖m i‖ for all m. * continuous_of_bound, conversely, asserts that this bound implies continuity. * mkContinuous constructs the associated continuous multilinear map.

Let f be a continuous multilinear map in finitely many variables. * ‖f‖ is its norm, i.e., the smallest number such that ‖f m‖ ≤ ‖f‖ * ∏ i, ‖m i‖ for all m. * le_opNorm f m asserts the fundamental inequality ‖f m‖ ≤ ‖f‖ * ∏ i, ‖m i‖. * norm_image_sub_le f m₁ m₂ gives a control of the difference f m₁ - f m₂ in terms of ‖f‖ and ‖m₁ - m₂‖.

Implementation notes

We mostly follow the API (and the proofs) of OperatorNorm.lean, with the additional complexity that we should deal with multilinear maps in several variables.

From the mathematical point of view, all the results follow from the results on operator norm in one variable, by applying them to one variable after the other through currying. However, this is only well defined when there is an order on the variables (for instance on Fin n) although the final result is independent of the order. While everything could be done following this approach, it turns out that direct proofs are easier and more efficient. ","### Type variables

We use the following type variables in this file:

  • 𝕜 : a NontriviallyNormedField;
  • ι, ι' : finite index types with decidable equality;
  • E, E₁ : families of normed vector spaces over 𝕜 indexed by i : ι;
  • E' : a family of normed vector spaces over 𝕜 indexed by i' : ι';
  • Ei : a family of normed vector spaces over 𝕜 indexed by i : Fin (Nat.succ n);
  • G, G' : normed vector spaces over 𝕜. ","### Continuity properties of multilinear maps

We relate continuity of multilinear maps to the inequality ‖f m‖ ≤ C * ∏ i, ‖m i‖, in both directions. Along the way, we prove useful bounds on the difference ‖f m₁ - f m₂‖. ","### Continuous multilinear maps

We define the norm ‖f‖ of a continuous multilinear map f in finitely many variables as the smallest number such that ‖f m‖ ≤ ‖f‖ * ∏ i, ‖m i‖ for all m. We show that this defines a normed space structure on ContinuousMultilinearMap 𝕜 E G. ","Results that are only true if the target space is a NormedAddCommGroup (and not just a SeminormedAddCommGroup). ","Results that are only true if the source is a NormedAddCommGroup (and not just a SeminormedAddCommGroup). "}

ContinuousLinearMap.continuous_uncurry_of_multilinear theorem
(f : G →L[𝕜] ContinuousMultilinearMap 𝕜 E F) : Continuous (fun (p : G × (Π i, E i)) ↦ f p.1 p.2)
Full source
lemma continuous_uncurry_of_multilinear (f : G →L[𝕜] ContinuousMultilinearMap 𝕜 E F) :
    Continuous (fun (p : G × (Π i, E i)) ↦ f p.1 p.2) := by
  fun_prop
Continuity of Uncurried Multilinear Map Associated to a Continuous Linear Map
Informal description
Let $G$ and $E_i$ for $i \in \iota$ be normed vector spaces over a nontrivially normed field $\mathbb{K}$, and let $F$ be another normed vector space over $\mathbb{K}$. Given a continuous linear map $f \colon G \to \mathcal{L}_{\text{cont}}(\prod_{i \in \iota} E_i, F)$ from $G$ to the space of continuous multilinear maps from $\prod_{i \in \iota} E_i$ to $F$, the uncurried function $(g, \mathbf{x}) \mapsto f(g)(\mathbf{x})$ is continuous on $G \times \prod_{i \in \iota} E_i$.
ContinuousLinearMap.continuousOn_uncurry_of_multilinear theorem
(f : G →L[𝕜] ContinuousMultilinearMap 𝕜 E F) {s} : ContinuousOn (fun (p : G × (Π i, E i)) ↦ f p.1 p.2) s
Full source
lemma continuousOn_uncurry_of_multilinear (f : G →L[𝕜] ContinuousMultilinearMap 𝕜 E F) {s} :
    ContinuousOn (fun (p : G × (Π i, E i)) ↦ f p.1 p.2) s :=
  f.continuous_uncurry_of_multilinear.continuousOn
Continuity on Subsets for Uncurried Multilinear Map Associated to a Continuous Linear Map
Informal description
Let $G$ and $E_i$ for $i \in \iota$ be normed vector spaces over a nontrivially normed field $\mathbb{K}$, and let $F$ be another normed vector space over $\mathbb{K}$. Given a continuous linear map $f \colon G \to \mathcal{L}_{\text{cont}}(\prod_{i \in \iota} E_i, F)$ from $G$ to the space of continuous multilinear maps from $\prod_{i \in \iota} E_i$ to $F$, the uncurried function $(g, \mathbf{x}) \mapsto f(g)(\mathbf{x})$ is continuous on any subset $s \subseteq G \times \prod_{i \in \iota} E_i$.
ContinuousLinearMap.continuousAt_uncurry_of_multilinear theorem
(f : G →L[𝕜] ContinuousMultilinearMap 𝕜 E F) {x} : ContinuousAt (fun (p : G × (Π i, E i)) ↦ f p.1 p.2) x
Full source
lemma continuousAt_uncurry_of_multilinear (f : G →L[𝕜] ContinuousMultilinearMap 𝕜 E F) {x} :
    ContinuousAt (fun (p : G × (Π i, E i)) ↦ f p.1 p.2) x :=
  f.continuous_uncurry_of_multilinear.continuousAt
Pointwise Continuity of Uncurried Multilinear Map Associated to a Continuous Linear Map
Informal description
Let $G$ and $E_i$ for $i \in \iota$ be normed vector spaces over a nontrivially normed field $\mathbb{K}$, and let $F$ be another normed vector space over $\mathbb{K}$. Given a continuous linear map $f \colon G \to \mathcal{L}_{\text{cont}}(\prod_{i \in \iota} E_i, F)$, the uncurried function $(g, \mathbf{x}) \mapsto f(g)(\mathbf{x})$ is continuous at every point $x \in G \times \prod_{i \in \iota} E_i$.
ContinuousLinearMap.continuousWithinAt_uncurry_of_multilinear theorem
(f : G →L[𝕜] ContinuousMultilinearMap 𝕜 E F) {s x} : ContinuousWithinAt (fun (p : G × (Π i, E i)) ↦ f p.1 p.2) s x
Full source
lemma continuousWithinAt_uncurry_of_multilinear (f : G →L[𝕜] ContinuousMultilinearMap 𝕜 E F) {s x} :
    ContinuousWithinAt (fun (p : G × (Π i, E i)) ↦ f p.1 p.2) s x :=
  f.continuous_uncurry_of_multilinear.continuousWithinAt
Continuity Within Subset for Uncurried Multilinear Map Associated to a Continuous Linear Map
Informal description
Let $G$ and $E_i$ for $i \in \iota$ be normed vector spaces over a nontrivially normed field $\mathbb{K}$, and let $F$ be another normed vector space over $\mathbb{K}$. Given a continuous linear map $f \colon G \to \mathcal{L}_{\text{cont}}(\prod_{i \in \iota} E_i, F)$ from $G$ to the space of continuous multilinear maps from $\prod_{i \in \iota} E_i$ to $F$, the uncurried function $(g, \mathbf{x}) \mapsto f(g)(\mathbf{x})$ is continuous within any subset $s \subseteq G \times \prod_{i \in \iota} E_i$ at any point $x \in s$.
MultilinearMap.norm_map_coord_zero theorem
(f : MultilinearMap 𝕜 E G) (hf : Continuous f) {m : ∀ i, E i} {i : ι} (hi : ‖m i‖ = 0) : ‖f m‖ = 0
Full source
/-- If `f` is a continuous multilinear map on `E`
and `m` is an element of `∀ i, E i` such that one of the `m i` has norm `0`,
then `f m` has norm `0`.

Note that we cannot drop the continuity assumption because `f (m : Unit → E) = f (m ())`,
where the domain has zero norm and the codomain has a nonzero norm
does not satisfy this condition. -/
lemma norm_map_coord_zero (f : MultilinearMap 𝕜 E G) (hf : Continuous f)
    {m : ∀ i, E i} {i : ι} (hi : ‖m i‖ = 0) : ‖f m‖ = 0 := by
  classical
  rw [← inseparable_zero_iff_norm] at hi ⊢
  have : Inseparable (update m i 0) m := inseparable_pi.2 <|
    (forall_update_iff m fun i a ↦ Inseparable a (m i)).2 ⟨hi.symm, fun _ _ ↦ rfl⟩
  simpa only [map_update_zero] using this.symm.map hf
Vanishing of Continuous Multilinear Map at Zero-Norm Component
Informal description
Let $f$ be a continuous multilinear map on a family of normed vector spaces $(E_i)_{i \in \iota}$ over a nontrivially normed field $\mathbb{K}$, and let $m \in \prod_{i \in \iota} E_i$ be such that $\|m_i\| = 0$ for some $i \in \iota$. Then $\|f(m)\| = 0$.
MultilinearMap.bound_of_shell_of_norm_map_coord_zero theorem
(f : MultilinearMap 𝕜 E G) (hf₀ : ∀ {m i}, ‖m i‖ = 0 → ‖f m‖ = 0) {ε : ι → ℝ} {C : ℝ} (hε : ∀ i, 0 < ε i) {c : ι → 𝕜} (hc : ∀ i, 1 < ‖c i‖) (hf : ∀ m : ∀ i, E i, (∀ i, ε i / ‖c i‖ ≤ ‖m i‖) → (∀ i, ‖m i‖ < ε i) → ‖f m‖ ≤ C * ∏ i, ‖m i‖) (m : ∀ i, E i) : ‖f m‖ ≤ C * ∏ i, ‖m i‖
Full source
/-- If a multilinear map in finitely many variables on seminormed spaces
sends vectors with a component of norm zero to vectors of norm zero
and satisfies the inequality `‖f m‖ ≤ C * ∏ i, ‖m i‖` on a shell `ε i / ‖c i‖ < ‖m i‖ < ε i`
for some positive numbers `ε i` and elements `c i : 𝕜`, `1 < ‖c i‖`,
then it satisfies this inequality for all `m`.

The first assumption is automatically satisfied on normed spaces, see `bound_of_shell` below.
For seminormed spaces, it follows from continuity of `f`, see next lemma,
see `bound_of_shell_of_continuous` below. -/
theorem bound_of_shell_of_norm_map_coord_zero (f : MultilinearMap 𝕜 E G)
    (hf₀ : ∀ {m i}, ‖m i‖ = 0 → ‖f m‖ = 0)
    {ε : ι → } {C : } (hε : ∀ i, 0 < ε i) {c : ι → 𝕜} (hc : ∀ i, 1 < ‖c i‖)
    (hf : ∀ m : ∀ i, E i, (∀ i, ε i / ‖c i‖‖m i‖) → (∀ i, ‖m i‖ < ε i) → ‖f m‖ ≤ C * ∏ i, ‖m i‖)
    (m : ∀ i, E i) : ‖f m‖ ≤ C * ∏ i, ‖m i‖ := by
  rcases em (∃ i, ‖m i‖ = 0) with (⟨i, hi⟩ | hm)
  · rw [hf₀ hi, prod_eq_zero (mem_univ i) hi, mul_zero]
  push_neg at hm
  choose δ hδ0 hδm_lt hle_δm _ using fun i => rescale_to_shell_semi_normed (hc i) (hε i) (hm i)
  have hδ0 : 0 < ∏ i, ‖δ i‖ := prod_pos fun i _ => norm_pos_iff.2 (hδ0 i)
  simpa [map_smul_univ, norm_smul, prod_mul_distrib, mul_left_comm C, mul_le_mul_left hδ0] using
    hf (fun i => δ i • m i) hle_δm hδm_lt
Shell Condition Implies Global Bound for Vanishing Multilinear Maps
Informal description
Let $f$ be a multilinear map on a family of seminormed vector spaces $(E_i)_{i \in \iota}$ over a nontrivially normed field $\mathbb{K}$. Suppose that: 1. $f$ vanishes on vectors with a zero-norm component, i.e., $\|m_i\| = 0$ implies $\|f(m)\| = 0$ for any $m \in \prod_{i \in \iota} E_i$ and $i \in \iota$; 2. There exist positive numbers $\varepsilon_i > 0$ and elements $c_i \in \mathbb{K}$ with $\|c_i\| > 1$ for each $i \in \iota$; 3. For all $m$ satisfying $\varepsilon_i / \|c_i\| \leq \|m_i\| < \varepsilon_i$ for each $i$, the inequality $\|f(m)\| \leq C \prod_{i} \|m_i\|$ holds. Then for all $m \in \prod_{i \in \iota} E_i$, the inequality $\|f(m)\| \leq C \prod_{i} \|m_i\|$ holds.
MultilinearMap.bound_of_shell_of_continuous theorem
(f : MultilinearMap 𝕜 E G) (hfc : Continuous f) {ε : ι → ℝ} {C : ℝ} (hε : ∀ i, 0 < ε i) {c : ι → 𝕜} (hc : ∀ i, 1 < ‖c i‖) (hf : ∀ m : ∀ i, E i, (∀ i, ε i / ‖c i‖ ≤ ‖m i‖) → (∀ i, ‖m i‖ < ε i) → ‖f m‖ ≤ C * ∏ i, ‖m i‖) (m : ∀ i, E i) : ‖f m‖ ≤ C * ∏ i, ‖m i‖
Full source
/-- If a continuous multilinear map in finitely many variables on normed spaces satisfies
the inequality `‖f m‖ ≤ C * ∏ i, ‖m i‖` on a shell `ε i / ‖c i‖ < ‖m i‖ < ε i` for some positive
numbers `ε i` and elements `c i : 𝕜`, `1 < ‖c i‖`, then it satisfies this inequality for all `m`. -/
theorem bound_of_shell_of_continuous (f : MultilinearMap 𝕜 E G) (hfc : Continuous f)
    {ε : ι → } {C : } (hε : ∀ i, 0 < ε i) {c : ι → 𝕜} (hc : ∀ i, 1 < ‖c i‖)
    (hf : ∀ m : ∀ i, E i, (∀ i, ε i / ‖c i‖‖m i‖) → (∀ i, ‖m i‖ < ε i) → ‖f m‖ ≤ C * ∏ i, ‖m i‖)
    (m : ∀ i, E i) : ‖f m‖ ≤ C * ∏ i, ‖m i‖ :=
  bound_of_shell_of_norm_map_coord_zero f (norm_map_coord_zero f hfc) hε hc hf m
Shell Condition Implies Global Bound for Continuous Multilinear Maps
Informal description
Let $f$ be a continuous multilinear map from a family of normed vector spaces $(E_i)_{i \in \iota}$ to a normed vector space $G$ over a nontrivially normed field $\mathbb{K}$. Suppose there exist positive numbers $\varepsilon_i > 0$ and elements $c_i \in \mathbb{K}$ with $\|c_i\| > 1$ for each $i \in \iota$, such that for all $m \in \prod_{i \in \iota} E_i$ satisfying $\varepsilon_i / \|c_i\| \leq \|m_i\| < \varepsilon_i$ for each $i$, the inequality $\|f(m)\| \leq C \prod_{i} \|m_i\|$ holds. Then for all $m \in \prod_{i \in \iota} E_i$, the inequality $\|f(m)\| \leq C \prod_{i} \|m_i\|$ holds.
MultilinearMap.exists_bound_of_continuous theorem
(f : MultilinearMap 𝕜 E G) (hf : Continuous f) : ∃ C : ℝ, 0 < C ∧ ∀ m, ‖f m‖ ≤ C * ∏ i, ‖m i‖
Full source
/-- If a multilinear map in finitely many variables on normed spaces is continuous, then it
satisfies the inequality `‖f m‖ ≤ C * ∏ i, ‖m i‖`, for some `C` which can be chosen to be
positive. -/
theorem exists_bound_of_continuous (f : MultilinearMap 𝕜 E G) (hf : Continuous f) :
    ∃ C : ℝ, 0 < C ∧ ∀ m, ‖f m‖ ≤ C * ∏ i, ‖m i‖ := by
  cases isEmpty_or_nonempty ι
  · refine ⟨‖f 0‖ + 1, add_pos_of_nonneg_of_pos (norm_nonneg _) zero_lt_one, fun m => ?_⟩
    obtain rfl : m = 0 := funext (IsEmpty.elim ‹_›)
    simp [univ_eq_empty, zero_le_one]
  obtain ⟨ε : , ε0 : 0 < ε, hε : ∀ m : ∀ i, E i, ‖m - 0‖ < ε → ‖f m - f 0‖ < 1⟩ :=
    NormedAddCommGroup.tendsto_nhds_nhds.1 (hf.tendsto 0) 1 zero_lt_one
  simp only [sub_zero, f.map_zero] at hε
  rcases NormedField.exists_one_lt_norm 𝕜 with ⟨c, hc⟩
  have : 0 < (‖c‖ / ε) ^ Fintype.card ι := pow_pos (div_pos (zero_lt_one.trans hc) ε0) _
  refine ⟨_, this, ?_⟩
  refine f.bound_of_shell_of_continuous hf (fun _ => ε0) (fun _ => hc) fun m hcm hm => ?_
  refine (hε m ((pi_norm_lt_iff ε0).2 hm)).le.trans ?_
  rw [← div_le_iff₀' this, one_div, ← inv_pow, inv_div, Fintype.card, ← prod_const]
  exact prod_le_prod (fun _ _ => div_nonneg ε0.le (norm_nonneg _)) fun i _ => hcm i
Existence of Bound for Continuous Multilinear Maps
Informal description
Let $f$ be a continuous multilinear map from a family of normed vector spaces $(E_i)_{i \in \iota}$ to a normed vector space $G$ over a nontrivially normed field $\mathbb{K}$. Then there exists a positive constant $C > 0$ such that for all $m \in \prod_{i \in \iota} E_i$, the inequality $\|f(m)\| \leq C \prod_{i \in \iota} \|m_i\|$ holds.
MultilinearMap.norm_image_sub_le_of_bound' theorem
[DecidableEq ι] (f : MultilinearMap 𝕜 E G) {C : ℝ} (hC : 0 ≤ C) (H : ∀ m, ‖f m‖ ≤ C * ∏ i, ‖m i‖) (m₁ m₂ : ∀ i, E i) : ‖f m₁ - f m₂‖ ≤ C * ∑ i, ∏ j, if j = i then ‖m₁ i - m₂ i‖ else max ‖m₁ j‖ ‖m₂ j‖
Full source
/-- If a multilinear map `f` satisfies a boundedness property around `0`,
one can deduce a bound on `f m₁ - f m₂` using the multilinearity.
Here, we give a precise but hard to use version.
See `norm_image_sub_le_of_bound` for a less precise but more usable version.
The bound reads
`‖f m - f m'‖ ≤
  C * ‖m 1 - m' 1‖ * max ‖m 2‖ ‖m' 2‖ * max ‖m 3‖ ‖m' 3‖ * ... * max ‖m n‖ ‖m' n‖ + ...`,
where the other terms in the sum are the same products where `1` is replaced by any `i`. -/
theorem norm_image_sub_le_of_bound' [DecidableEq ι] (f : MultilinearMap 𝕜 E G) {C : } (hC : 0 ≤ C)
    (H : ∀ m, ‖f m‖ ≤ C * ∏ i, ‖m i‖) (m₁ m₂ : ∀ i, E i) :
    ‖f m₁ - f m₂‖ ≤ C * ∑ i, ∏ j, if j = i then ‖m₁ i - m₂ i‖ else max ‖m₁ j‖ ‖m₂ j‖ := by
  have A :
    ∀ s : Finset ι,
      ‖f m₁ - f (s.piecewise m₂ m₁)‖ ≤
        C * ∑ i ∈ s, ∏ j, if j = i then ‖m₁ i - m₂ i‖ else max ‖m₁ j‖ ‖m₂ j‖ := by
    intro s
    induction' s using Finset.induction with i s his Hrec
    · simp
    have I :
      ‖f (s.piecewise m₂ m₁) - f ((insert i s).piecewise m₂ m₁)‖ ≤
        C * ∏ j, if j = i then ‖m₁ i - m₂ i‖ else max ‖m₁ j‖ ‖m₂ j‖ := by
      have A : (insert i s).piecewise m₂ m₁ = Function.update (s.piecewise m₂ m₁) i (m₂ i) :=
        s.piecewise_insert _ _ _
      have B : s.piecewise m₂ m₁ = Function.update (s.piecewise m₂ m₁) i (m₁ i) := by
        simp [eq_update_iff, his]
      rw [B, A, ← f.map_update_sub]
      apply le_trans (H _)
      gcongr with j
      by_cases h : j = i
      · rw [h]
        simp
      · by_cases h' : j ∈ s <;> simp [h', h, le_refl]
    calc
      ‖f m₁ - f ((insert i s).piecewise m₂ m₁)‖‖f m₁ - f (s.piecewise m₂ m₁)‖ +
            ‖f (s.piecewise m₂ m₁) - f ((insert i s).piecewise m₂ m₁)‖ := by
        rw [← dist_eq_norm, ← dist_eq_norm, ← dist_eq_norm]
        exact dist_triangle _ _ _
      _ ≤ (C * ∑ i ∈ s, ∏ j, if j = i then ‖m₁ i - m₂ i‖ else max ‖m₁ j‖ ‖m₂ j‖) +
            C * ∏ j, if j = i then ‖m₁ i - m₂ i‖ else max ‖m₁ j‖ ‖m₂ j‖ :=
        (add_le_add Hrec I)
      _ = C * ∑ i ∈ insert i s, ∏ j, if j = i then ‖m₁ i - m₂ i‖ else max ‖m₁ j‖ ‖m₂ j‖ := by
        simp [his, add_comm, left_distrib]
  convert A univ
  simp
Precise Bound on Multilinear Map Difference: $\|f(m_1) - f(m_2)\|$ under Boundedness Condition
Informal description
Let $f$ be a multilinear map from a family of normed vector spaces $(E_i)_{i \in \iota}$ to a normed vector space $G$ over a nontrivially normed field $\mathbb{K}$, where $\iota$ is a finite index type with decidable equality. Suppose there exists a nonnegative constant $C \geq 0$ such that for all $m = (m_i)_{i \in \iota}$, the norm $\|f(m)\| \leq C \prod_{i \in \iota} \|m_i\|$. Then for any two vectors $m_1, m_2 \in \prod_{i \in \iota} E_i$, the difference satisfies the inequality: \[ \|f(m_1) - f(m_2)\| \leq C \sum_{i \in \iota} \left( \|m_1(i) - m_2(i)\| \cdot \prod_{j \neq i} \max(\|m_1(j)\|, \|m_2(j)\|) \right). \]
MultilinearMap.norm_image_sub_le_of_bound theorem
(f : MultilinearMap 𝕜 E G) {C : ℝ} (hC : 0 ≤ C) (H : ∀ m, ‖f m‖ ≤ C * ∏ i, ‖m i‖) (m₁ m₂ : ∀ i, E i) : ‖f m₁ - f m₂‖ ≤ C * Fintype.card ι * max ‖m₁‖ ‖m₂‖ ^ (Fintype.card ι - 1) * ‖m₁ - m₂‖
Full source
/-- If `f` satisfies a boundedness property around `0`, one can deduce a bound on `f m₁ - f m₂`
using the multilinearity. Here, we give a usable but not very precise version. See
`norm_image_sub_le_of_bound'` for a more precise but less usable version. The bound is
`‖f m - f m'‖ ≤ C * card ι * ‖m - m'‖ * (max ‖m‖ ‖m'‖) ^ (card ι - 1)`. -/
theorem norm_image_sub_le_of_bound (f : MultilinearMap 𝕜 E G)
    {C : } (hC : 0 ≤ C) (H : ∀ m, ‖f m‖ ≤ C * ∏ i, ‖m i‖) (m₁ m₂ : ∀ i, E i) :
    ‖f m₁ - f m₂‖ ≤ C * Fintype.card ι * max ‖m₁‖ ‖m₂‖ ^ (Fintype.card ι - 1) * ‖m₁ - m₂‖ := by
  classical
  have A :
    ∀ i : ι,
      ∏ j, (if j = i then ‖m₁ i - m₂ i‖ else max ‖m₁ j‖ ‖m₂ j‖)‖m₁ - m₂‖ * max ‖m₁‖ ‖m₂‖ ^ (Fintype.card ι - 1) := by
    intro i
    calc
      ∏ j, (if j = i then ‖m₁ i - m₂ i‖ else max ‖m₁ j‖ ‖m₂ j‖)∏ j : ι, Function.update (fun _ => max ‖m₁‖ ‖m₂‖) i ‖m₁ - m₂‖ j := by
        apply Finset.prod_le_prod
        · intro j _
          by_cases h : j = i <;> simp [h, norm_nonneg]
        · intro j _
          by_cases h : j = i
          · rw [h]
            simp only [ite_true, Function.update_self]
            exact norm_le_pi_norm (m₁ - m₂) i
          · simp [h, - le_sup_iff, - sup_le_iff, sup_le_sup, norm_le_pi_norm]
      _ = ‖m₁ - m₂‖ * max ‖m₁‖ ‖m₂‖ ^ (Fintype.card ι - 1) := by
        rw [prod_update_of_mem (Finset.mem_univ _)]
        simp [card_univ_diff]
  calc
    ‖f m₁ - f m₂‖ ≤ C * ∑ i, ∏ j, if j = i then ‖m₁ i - m₂ i‖ else max ‖m₁ j‖ ‖m₂ j‖ :=
      f.norm_image_sub_le_of_bound' hC H m₁ m₂
    _ ≤ C * ∑ _i, ‖m₁ - m₂‖ * max ‖m₁‖ ‖m₂‖ ^ (Fintype.card ι - 1) := by gcongr; apply A
    _ = C * Fintype.card ι * max ‖m₁‖ ‖m₂‖ ^ (Fintype.card ι - 1) * ‖m₁ - m₂‖ := by
      rw [sum_const, card_univ, nsmul_eq_mul]
      ring
Bound on Multilinear Map Difference: $\|f(m_1) - f(m_2)\|$ under Boundedness Condition
Informal description
Let $f$ be a multilinear map from a family of normed vector spaces $(E_i)_{i \in \iota}$ to a normed vector space $G$ over a nontrivially normed field $\mathbb{K}$, where $\iota$ is a finite index type. Suppose there exists a nonnegative constant $C \geq 0$ such that for all $m = (m_i)_{i \in \iota}$, the norm $\|f(m)\| \leq C \prod_{i \in \iota} \|m_i\|$. Then for any two vectors $m_1, m_2 \in \prod_{i \in \iota} E_i$, the difference satisfies the inequality: \[ \|f(m_1) - f(m_2)\| \leq C \cdot |\iota| \cdot \max(\|m_1\|, \|m_2\|)^{|\iota| - 1} \cdot \|m_1 - m_2\|, \] where $|\iota|$ denotes the cardinality of the index set $\iota$.
MultilinearMap.continuous_of_bound theorem
(f : MultilinearMap 𝕜 E G) (C : ℝ) (H : ∀ m, ‖f m‖ ≤ C * ∏ i, ‖m i‖) : Continuous f
Full source
/-- If a multilinear map satisfies an inequality `‖f m‖ ≤ C * ∏ i, ‖m i‖`, then it is
continuous. -/
theorem continuous_of_bound (f : MultilinearMap 𝕜 E G) (C : ) (H : ∀ m, ‖f m‖ ≤ C * ∏ i, ‖m i‖) :
    Continuous f := by
  let D := max C 1
  have D_pos : 0 ≤ D := le_trans zero_le_one (le_max_right _ _)
  replace H (m) : ‖f m‖ ≤ D * ∏ i, ‖m i‖ :=
    (H m).trans (mul_le_mul_of_nonneg_right (le_max_left _ _) <| by positivity)
  refine continuous_iff_continuousAt.2 fun m => ?_
  refine
    continuousAt_of_locally_lipschitz zero_lt_one
      (D * Fintype.card ι * (‖m‖ + 1) ^ (Fintype.card ι - 1)) fun m' h' => ?_
  rw [dist_eq_norm, dist_eq_norm]
  have : max ‖m'‖ ‖m‖‖m‖ + 1 := by
    simp [zero_le_one, norm_le_of_mem_closedBall (le_of_lt h')]
  calc
    ‖f m' - f m‖ ≤ D * Fintype.card ι * max ‖m'‖ ‖m‖ ^ (Fintype.card ι - 1) * ‖m' - m‖ :=
      f.norm_image_sub_le_of_bound D_pos H m' m
    _ ≤ D * Fintype.card ι * (‖m‖ + 1) ^ (Fintype.card ι - 1) * ‖m' - m‖ := by gcongr
Continuity of Bounded Multilinear Maps
Informal description
Let $f$ be a multilinear map from a family of normed vector spaces $(E_i)_{i \in \iota}$ to a normed vector space $G$ over a nontrivially normed field $\mathbb{K}$, where $\iota$ is a finite index type. If there exists a constant $C \in \mathbb{R}$ such that for all $m = (m_i)_{i \in \iota} \in \prod_{i \in \iota} E_i$, the norm satisfies $\|f(m)\| \leq C \prod_{i \in \iota} \|m_i\|$, then $f$ is continuous.
MultilinearMap.coe_mkContinuous theorem
(f : MultilinearMap 𝕜 E G) (C : ℝ) (H : ∀ m, ‖f m‖ ≤ C * ∏ i, ‖m i‖) : ⇑(f.mkContinuous C H) = f
Full source
@[simp]
theorem coe_mkContinuous (f : MultilinearMap 𝕜 E G) (C : ) (H : ∀ m, ‖f m‖ ≤ C * ∏ i, ‖m i‖) :
    ⇑(f.mkContinuous C H) = f :=
  rfl
Equality of Underlying Functions in Continuous Multilinear Map Construction
Informal description
Let $f$ be a multilinear map from a family of normed vector spaces $(E_i)_{i \in \iota}$ to a normed vector space $G$ over a nontrivially normed field $\mathbb{K}$, where $\iota$ is a finite index type. If there exists a constant $C \in \mathbb{R}$ such that for all $m \in \prod_{i \in \iota} E_i$, the norm satisfies $\|f(m)\| \leq C \prod_{i \in \iota} \|m_i\|$, then the underlying function of the continuous multilinear map constructed from $f$ via `mkContinuous` coincides with $f$ itself. In other words, the map $\text{mkContinuous}(f, C, H)$ and $f$ have the same underlying function.
MultilinearMap.restr_norm_le theorem
{k n : ℕ} (f : MultilinearMap 𝕜 (fun _ : Fin n => G) G') (s : Finset (Fin n)) (hk : #s = k) (z : G) {C : ℝ} (H : ∀ m, ‖f m‖ ≤ C * ∏ i, ‖m i‖) (v : Fin k → G) : ‖f.restr s hk z v‖ ≤ C * ‖z‖ ^ (n - k) * ∏ i, ‖v i‖
Full source
/-- Given a multilinear map in `n` variables, if one restricts it to `k` variables putting `z` on
the other coordinates, then the resulting restricted function satisfies an inequality
`‖f.restr v‖ ≤ C * ‖z‖^(n-k) * Π ‖v i‖` if the original function satisfies `‖f v‖ ≤ C * Π ‖v i‖`. -/
theorem restr_norm_le {k n : } (f : MultilinearMap 𝕜 (fun _ : Fin n => G) G')
    (s : Finset (Fin n)) (hk : #s = k) (z : G) {C : } (H : ∀ m, ‖f m‖ ≤ C * ∏ i, ‖m i‖)
    (v : Fin k → G) : ‖f.restr s hk z v‖ ≤ C * ‖z‖ ^ (n - k) * ∏ i, ‖v i‖ := by
  rw [mul_right_comm, mul_assoc]
  convert H _ using 2
  simp only [apply_dite norm, Fintype.prod_dite, prod_const ‖z‖, Finset.card_univ,
    Fintype.card_of_subtype sᶜ fun _ => mem_compl, card_compl, Fintype.card_fin, hk, mk_coe, ←
    (s.orderIsoOfFin hk).symm.bijective.prod_comp fun x => ‖v x‖]
  convert rfl
Norm Bound for Restricted Multilinear Map: $\|f_{\text{restr}}(v)\| \leq C \|z\|^{n-k} \prod \|v_i\|$
Informal description
Let $f$ be a multilinear map from $G^n$ to $G'$ (where $G$ and $G'$ are normed vector spaces over a nontrivially normed field $\mathbb{K}$), and suppose there exists a constant $C > 0$ such that for all $m \in G^n$, $\|f(m)\| \leq C \prod_{i=1}^n \|m_i\|$. Given a subset $s$ of $\{1,\dots,n\}$ with cardinality $k$, and a fixed vector $z \in G$, the restricted map $f_{\text{restr}}$ (obtained by setting the coordinates not in $s$ to $z$) satisfies the inequality: \[ \|f_{\text{restr}}(v)\| \leq C \|z\|^{n-k} \prod_{i=1}^k \|v_i\| \] for all $v \in G^k$.
ContinuousMultilinearMap.bound theorem
(f : ContinuousMultilinearMap 𝕜 E G) : ∃ C : ℝ, 0 < C ∧ ∀ m, ‖f m‖ ≤ C * ∏ i, ‖m i‖
Full source
theorem bound (f : ContinuousMultilinearMap 𝕜 E G) :
    ∃ C : ℝ, 0 < C ∧ ∀ m, ‖f m‖ ≤ C * ∏ i, ‖m i‖ :=
  f.toMultilinearMap.exists_bound_of_continuous f.2
Existence of Bound for Continuous Multilinear Maps
Informal description
Let $f$ be a continuous multilinear map from a family of normed vector spaces $(E_i)_{i \in \iota}$ to a normed vector space $G$ over a nontrivially normed field $\mathbb{K}$. Then there exists a positive constant $C > 0$ such that for all $m \in \prod_{i \in \iota} E_i$, the inequality $\|f(m)\| \leq C \prod_{i \in \iota} \|m_i\|$ holds.
ContinuousMultilinearMap.norm_def theorem
(f : ContinuousMultilinearMap 𝕜 E G) : ‖f‖ = sInf {c | 0 ≤ (c : ℝ) ∧ ∀ m, ‖f m‖ ≤ c * ∏ i, ‖m i‖}
Full source
theorem norm_def (f : ContinuousMultilinearMap 𝕜 E G) :
    ‖f‖ = sInf { c | 0 ≤ (c : ℝ) ∧ ∀ m, ‖f m‖ ≤ c * ∏ i, ‖m i‖ } :=
  rfl
Definition of Operator Norm for Continuous Multilinear Maps
Informal description
For a continuous multilinear map $f$ from a family of normed vector spaces $(E_i)_{i \in \iota}$ to a normed vector space $G$ over a nontrivially normed field $\mathbb{K}$, the operator norm $\|f\|$ is defined as the infimum of all nonnegative real numbers $c$ satisfying the inequality $\|f(m)\| \leq c \cdot \prod_{i \in \iota} \|m_i\|$ for all $m \in \prod_{i \in \iota} E_i$.
ContinuousMultilinearMap.bounds_nonempty theorem
{f : ContinuousMultilinearMap 𝕜 E G} : ∃ c, c ∈ {c | 0 ≤ c ∧ ∀ m, ‖f m‖ ≤ c * ∏ i, ‖m i‖}
Full source
theorem bounds_nonempty {f : ContinuousMultilinearMap 𝕜 E G} :
    ∃ c, c ∈ { c | 0 ≤ c ∧ ∀ m, ‖f m‖ ≤ c * ∏ i, ‖m i‖ } :=
  let ⟨M, hMp, hMb⟩ := f.bound
  ⟨M, le_of_lt hMp, hMb⟩
Existence of Bounding Constant for Continuous Multilinear Maps
Informal description
For any continuous multilinear map $f$ from a family of normed vector spaces $(E_i)_{i \in \iota}$ to a normed vector space $G$ over a nontrivially normed field $\mathbb{K}$, there exists a nonnegative real number $c$ such that $\|f(m)\| \leq c \cdot \prod_{i \in \iota} \|m_i\|$ holds for all $m \in \prod_{i \in \iota} E_i$.
ContinuousMultilinearMap.bounds_bddBelow theorem
{f : ContinuousMultilinearMap 𝕜 E G} : BddBelow {c | 0 ≤ c ∧ ∀ m, ‖f m‖ ≤ c * ∏ i, ‖m i‖}
Full source
theorem bounds_bddBelow {f : ContinuousMultilinearMap 𝕜 E G} :
    BddBelow { c | 0 ≤ c ∧ ∀ m, ‖f m‖ ≤ c * ∏ i, ‖m i‖ } :=
  ⟨0, fun _ ⟨hn, _⟩ => hn⟩
Lower Bound Exists for Multilinear Operator Norm Coefficients
Informal description
For any continuous multilinear map $f$ from a family of normed vector spaces $(E_i)_{i \in \iota}$ to a normed vector space $G$ over a nontrivially normed field $\mathbb{K}$, the set of nonnegative real numbers $c$ satisfying $\|f(m)\| \leq c \cdot \prod_{i} \|m_i\|$ for all $m$ is bounded below.
ContinuousMultilinearMap.isLeast_opNorm theorem
(f : ContinuousMultilinearMap 𝕜 E G) : IsLeast {c : ℝ | 0 ≤ c ∧ ∀ m, ‖f m‖ ≤ c * ∏ i, ‖m i‖} ‖f‖
Full source
theorem isLeast_opNorm (f : ContinuousMultilinearMap 𝕜 E G) :
    IsLeast {c : ℝ | 0 ≤ c ∧ ∀ m, ‖f m‖ ≤ c * ∏ i, ‖m i‖} ‖f‖ := by
  refine IsClosed.isLeast_csInf ?_ bounds_nonempty bounds_bddBelow
  simp only [Set.setOf_and, Set.setOf_forall]
  exact isClosed_Ici.inter (isClosed_iInter fun m ↦
    isClosed_le continuous_const (continuous_id.mul continuous_const))
Operator Norm is Minimal Bounding Constant for Continuous Multilinear Maps
Informal description
For any continuous multilinear map $f$ from a family of normed vector spaces $(E_i)_{i \in \iota}$ to a normed vector space $G$ over a nontrivially normed field $\mathbb{K}$, the operator norm $\|f\|$ is the least element of the set of nonnegative real numbers $c$ satisfying $\|f(m)\| \leq c \cdot \prod_{i \in \iota} \|m_i\|$ for all $m \in \prod_{i \in \iota} E_i$. In other words: 1. $\|f\| \geq 0$ and $\|f(m)\| \leq \|f\| \cdot \prod_{i} \|m_i\|$ for all $m$; 2. $\|f\| \leq c$ for any $c \geq 0$ satisfying $\|f(m)\| \leq c \cdot \prod_{i} \|m_i\|$ for all $m$.
ContinuousMultilinearMap.opNorm_nonneg theorem
(f : ContinuousMultilinearMap 𝕜 E G) : 0 ≤ ‖f‖
Full source
theorem opNorm_nonneg (f : ContinuousMultilinearMap 𝕜 E G) : 0 ≤ ‖f‖ :=
  Real.sInf_nonneg fun _ ⟨hx, _⟩ => hx
Nonnegativity of the Operator Norm for Continuous Multilinear Maps
Informal description
For any continuous multilinear map $f$ from a family of normed vector spaces $(E_i)_{i \in \iota}$ to a normed vector space $G$ over a nontrivially normed field $\mathbb{K}$, the operator norm $\|f\|$ is nonnegative, i.e., $\|f\| \geq 0$.
ContinuousMultilinearMap.le_opNorm theorem
(f : ContinuousMultilinearMap 𝕜 E G) (m : ∀ i, E i) : ‖f m‖ ≤ ‖f‖ * ∏ i, ‖m i‖
Full source
/-- The fundamental property of the operator norm of a continuous multilinear map:
`‖f m‖` is bounded by `‖f‖` times the product of the `‖m i‖`. -/
theorem le_opNorm (f : ContinuousMultilinearMap 𝕜 E G) (m : ∀ i, E i) :
    ‖f m‖‖f‖ * ∏ i, ‖m i‖ :=
  f.isLeast_opNorm.1.2 m
Fundamental Inequality for Operator Norm of Continuous Multilinear Maps
Informal description
For any continuous multilinear map $f$ from a family of normed vector spaces $(E_i)_{i \in \iota}$ to a normed vector space $G$ over a nontrivially normed field $\mathbb{K}$, and for any $m \in \prod_{i \in \iota} E_i$, the following inequality holds: \[ \|f(m)\| \leq \|f\| \cdot \prod_{i \in \iota} \|m_i\|. \]
ContinuousMultilinearMap.le_mul_prod_of_opNorm_le_of_le theorem
{f : ContinuousMultilinearMap 𝕜 E G} {m : ∀ i, E i} {C : ℝ} {b : ι → ℝ} (hC : ‖f‖ ≤ C) (hm : ∀ i, ‖m i‖ ≤ b i) : ‖f m‖ ≤ C * ∏ i, b i
Full source
theorem le_mul_prod_of_opNorm_le_of_le {f : ContinuousMultilinearMap 𝕜 E G}
    {m : ∀ i, E i} {C : } {b : ι → } (hC : ‖f‖ ≤ C) (hm : ∀ i, ‖m i‖ ≤ b i) :
    ‖f m‖ ≤ C * ∏ i, b i :=
  (f.le_opNorm m).trans <| by gcongr; exacts [f.opNorm_nonneg.trans hC, hm _]
Norm Bound for Continuous Multilinear Maps with Componentwise Bounds
Informal description
Let $f$ be a continuous multilinear map from a family of normed vector spaces $(E_i)_{i \in \iota}$ to a normed vector space $G$ over a nontrivially normed field $\mathbb{K}$. Suppose $\|f\| \leq C$ for some $C \geq 0$, and let $m \in \prod_{i \in \iota} E_i$ satisfy $\|m_i\| \leq b_i$ for some $b_i \geq 0$ for each $i \in \iota$. Then: \[ \|f(m)\| \leq C \cdot \prod_{i \in \iota} b_i. \]
ContinuousMultilinearMap.le_opNorm_mul_prod_of_le theorem
(f : ContinuousMultilinearMap 𝕜 E G) {m : ∀ i, E i} {b : ι → ℝ} (hm : ∀ i, ‖m i‖ ≤ b i) : ‖f m‖ ≤ ‖f‖ * ∏ i, b i
Full source
theorem le_opNorm_mul_prod_of_le (f : ContinuousMultilinearMap 𝕜 E G)
    {m : ∀ i, E i} {b : ι → } (hm : ∀ i, ‖m i‖ ≤ b i) : ‖f m‖‖f‖ * ∏ i, b i :=
  le_mul_prod_of_opNorm_le_of_le le_rfl hm
Operator Norm Bound for Continuous Multilinear Maps with Componentwise Norm Constraints
Informal description
Let $f$ be a continuous multilinear map from a family of normed vector spaces $(E_i)_{i \in \iota}$ to a normed vector space $G$ over a nontrivially normed field $\mathbb{K}$. For any $m \in \prod_{i \in \iota} E_i$ and any family of nonnegative real numbers $(b_i)_{i \in \iota}$ such that $\|m_i\| \leq b_i$ for each $i$, the following inequality holds: \[ \|f(m)\| \leq \|f\| \cdot \prod_{i \in \iota} b_i. \]
ContinuousMultilinearMap.le_opNorm_mul_pow_of_le theorem
{n : ℕ} {Ei : Fin n → Type*} [∀ i, SeminormedAddCommGroup (Ei i)] [∀ i, NormedSpace 𝕜 (Ei i)] (f : ContinuousMultilinearMap 𝕜 Ei G) {m : ∀ i, Ei i} {b : ℝ} (hm : ‖m‖ ≤ b) : ‖f m‖ ≤ ‖f‖ * b ^ n
Full source
theorem le_opNorm_mul_pow_of_le {n : } {Ei : Fin n → Type*} [∀ i, SeminormedAddCommGroup (Ei i)]
    [∀ i, NormedSpace 𝕜 (Ei i)] (f : ContinuousMultilinearMap 𝕜 Ei G) {m : ∀ i, Ei i} {b : }
    (hm : ‖m‖ ≤ b) : ‖f m‖‖f‖ * b ^ n := by
  simpa only [Fintype.card_fin] using f.le_opNorm_mul_pow_card_of_le hm
Operator Norm Bound for Continuous Multilinear Maps: $\|f(m)\| \leq \|f\| \cdot b^n$
Informal description
Let $n$ be a natural number, $(E_i)_{i \in \text{Fin } n}$ be a family of seminormed additive commutative groups equipped with a normed space structure over a nontrivially normed field $\mathbb{K}$, and $G$ be a normed vector space over $\mathbb{K}$. For any continuous multilinear map $f \colon \prod_{i \in \text{Fin } n} E_i \to G$, and any $m \in \prod_{i \in \text{Fin } n} E_i$ and $b \in \mathbb{R}$ such that $\|m\| \leq b$, the following inequality holds: \[ \|f(m)\| \leq \|f\| \cdot b^n. \]
ContinuousMultilinearMap.le_of_opNorm_le theorem
{f : ContinuousMultilinearMap 𝕜 E G} {C : ℝ} (h : ‖f‖ ≤ C) (m : ∀ i, E i) : ‖f m‖ ≤ C * ∏ i, ‖m i‖
Full source
theorem le_of_opNorm_le {f : ContinuousMultilinearMap 𝕜 E G} {C : } (h : ‖f‖ ≤ C) (m : ∀ i, E i) :
    ‖f m‖ ≤ C * ∏ i, ‖m i‖ :=
  le_mul_prod_of_opNorm_le_of_le h fun _ ↦ le_rfl
Operator Norm Bound for Continuous Multilinear Maps: $\|f(m)\| \leq C \cdot \prod \|m_i\|$
Informal description
Let $f$ be a continuous multilinear map from a family of normed vector spaces $(E_i)_{i \in \iota}$ to a normed vector space $G$ over a nontrivially normed field $\mathbb{K}$. If the operator norm of $f$ satisfies $\|f\| \leq C$ for some constant $C \geq 0$, then for any $m \in \prod_{i \in \iota} E_i$, the following inequality holds: \[ \|f(m)\| \leq C \cdot \prod_{i \in \iota} \|m_i\|. \]
ContinuousMultilinearMap.ratio_le_opNorm theorem
(f : ContinuousMultilinearMap 𝕜 E G) (m : ∀ i, E i) : (‖f m‖ / ∏ i, ‖m i‖) ≤ ‖f‖
Full source
theorem ratio_le_opNorm (f : ContinuousMultilinearMap 𝕜 E G) (m : ∀ i, E i) :
    (‖f m‖ / ∏ i, ‖m i‖) ≤ ‖f‖ :=
  div_le_of_le_mul₀ (by positivity) (opNorm_nonneg _) (f.le_opNorm m)
Ratio Bound for Continuous Multilinear Maps: $\frac{\|f(m)\|}{\prod \|m_i\|} \leq \|f\|$
Informal description
For any continuous multilinear map $f$ from a family of normed vector spaces $(E_i)_{i \in \iota}$ to a normed vector space $G$ over a nontrivially normed field $\mathbb{K}$, and for any $m \in \prod_{i \in \iota} E_i$, the ratio of the norm of $f(m)$ to the product of the norms of the $m_i$ is bounded by the operator norm of $f$: \[ \frac{\|f(m)\|}{\prod_{i \in \iota} \|m_i\|} \leq \|f\|. \]
ContinuousMultilinearMap.unit_le_opNorm theorem
(f : ContinuousMultilinearMap 𝕜 E G) {m : ∀ i, E i} (h : ‖m‖ ≤ 1) : ‖f m‖ ≤ ‖f‖
Full source
/-- The image of the unit ball under a continuous multilinear map is bounded. -/
theorem unit_le_opNorm (f : ContinuousMultilinearMap 𝕜 E G) {m : ∀ i, E i} (h : ‖m‖ ≤ 1) :
    ‖f m‖‖f‖ :=
  (le_opNorm_mul_pow_card_of_le f h).trans <| by simp
Norm Bound on Unit Ball for Continuous Multilinear Maps: $\|f(m)\| \leq \|f\|$ when $\|m\| \leq 1$
Informal description
Let $f$ be a continuous multilinear map from a family of normed vector spaces $(E_i)_{i \in \iota}$ to a normed vector space $G$ over a nontrivially normed field $\mathbb{K}$. For any $m \in \prod_{i \in \iota} E_i$ with $\|m\| \leq 1$, the norm of $f(m)$ is bounded by the operator norm of $f$: \[ \|f(m)\| \leq \|f\|. \]
ContinuousMultilinearMap.opNorm_le_bound theorem
{f : ContinuousMultilinearMap 𝕜 E G} {M : ℝ} (hMp : 0 ≤ M) (hM : ∀ m, ‖f m‖ ≤ M * ∏ i, ‖m i‖) : ‖f‖ ≤ M
Full source
/-- If one controls the norm of every `f x`, then one controls the norm of `f`. -/
theorem opNorm_le_bound {f : ContinuousMultilinearMap 𝕜 E G}
    {M : } (hMp : 0 ≤ M) (hM : ∀ m, ‖f m‖ ≤ M * ∏ i, ‖m i‖) : ‖f‖ ≤ M :=
  csInf_le bounds_bddBelow ⟨hMp, hM⟩
Operator Norm Bound for Continuous Multilinear Maps
Informal description
Let $f$ be a continuous multilinear map from a family of normed vector spaces $(E_i)_{i \in \iota}$ to a normed vector space $G$ over a nontrivially normed field $\mathbb{K}$. If there exists a nonnegative real number $M$ such that for all $m \in \prod_i E_i$, the inequality $\|f(m)\| \leq M \cdot \prod_i \|m_i\|$ holds, then the operator norm of $f$ satisfies $\|f\| \leq M$.
ContinuousMultilinearMap.opNorm_le_iff theorem
{f : ContinuousMultilinearMap 𝕜 E G} {C : ℝ} (hC : 0 ≤ C) : ‖f‖ ≤ C ↔ ∀ m, ‖f m‖ ≤ C * ∏ i, ‖m i‖
Full source
theorem opNorm_le_iff {f : ContinuousMultilinearMap 𝕜 E G} {C : } (hC : 0 ≤ C) :
    ‖f‖‖f‖ ≤ C ↔ ∀ m, ‖f m‖ ≤ C * ∏ i, ‖m i‖ :=
  ⟨fun h _ ↦ le_of_opNorm_le h _, opNorm_le_bound hC⟩
Characterization of Operator Norm for Continuous Multilinear Maps: $\|f\| \leq C \leftrightarrow \forall m, \|f(m)\| \leq C \prod \|m_i\|$
Informal description
Let $f$ be a continuous multilinear map from a family of normed vector spaces $(E_i)_{i \in \iota}$ to a normed vector space $G$ over a nontrivially normed field $\mathbb{K}$. For any nonnegative real number $C \geq 0$, the operator norm of $f$ satisfies $\|f\| \leq C$ if and only if for all $m \in \prod_{i \in \iota} E_i$, the following inequality holds: \[ \|f(m)\| \leq C \cdot \prod_{i \in \iota} \|m_i\|. \]
ContinuousMultilinearMap.opNorm_add_le theorem
(f g : ContinuousMultilinearMap 𝕜 E G) : ‖f + g‖ ≤ ‖f‖ + ‖g‖
Full source
/-- The operator norm satisfies the triangle inequality. -/
theorem opNorm_add_le (f g : ContinuousMultilinearMap 𝕜 E G) : ‖f + g‖‖f‖ + ‖g‖ :=
  opNorm_le_bound (add_nonneg (opNorm_nonneg f) (opNorm_nonneg g)) fun x => by
    rw [add_mul]
    exact norm_add_le_of_le (le_opNorm _ _) (le_opNorm _ _)
Triangle Inequality for Operator Norm of Continuous Multilinear Maps
Informal description
For any two continuous multilinear maps $f$ and $g$ from a family of normed vector spaces $(E_i)_{i \in \iota}$ to a normed vector space $G$ over a nontrivially normed field $\mathbb{K}$, the operator norm of their sum satisfies the triangle inequality: \[ \|f + g\| \leq \|f\| + \|g\|. \]
ContinuousMultilinearMap.opNorm_smul_le theorem
(c : 𝕜') (f : ContinuousMultilinearMap 𝕜 E G) : ‖c • f‖ ≤ ‖c‖ * ‖f‖
Full source
theorem opNorm_smul_le (c : 𝕜') (f : ContinuousMultilinearMap 𝕜 E G) : ‖c • f‖‖c‖ * ‖f‖ :=
  (c • f).opNorm_le_bound (mul_nonneg (norm_nonneg _) (opNorm_nonneg _)) fun m ↦ by
    rw [smul_apply, norm_smul, mul_assoc]
    exact mul_le_mul_of_nonneg_left (le_opNorm _ _) (norm_nonneg _)
Operator Norm Inequality for Scalar Multiplication of Continuous Multilinear Maps
Informal description
For any scalar $c$ in a normed field $\mathbb{K}'$ and any continuous multilinear map $f$ from a family of normed vector spaces $(E_i)_{i \in \iota}$ to a normed vector space $G$ over a nontrivially normed field $\mathbb{K}$, the operator norm of the scalar multiple $c \cdot f$ satisfies the inequality: \[ \|c \cdot f\| \leq \|c\| \cdot \|f\|. \]
ContinuousMultilinearMap.opNorm_neg theorem
(f : ContinuousMultilinearMap 𝕜 E G) : ‖-f‖ = ‖f‖
Full source
@[deprecated norm_neg (since := "2024-11-24")]
theorem opNorm_neg (f : ContinuousMultilinearMap 𝕜 E G) : ‖-f‖ = ‖f‖ := norm_neg f
Operator Norm of Negated Continuous Multilinear Map Equals Original Norm
Informal description
For any continuous multilinear map $f$ from a family of normed vector spaces $(E_i)_{i \in \iota}$ to a normed vector space $G$ over a nontrivially normed field $\mathbb{K}$, the operator norm of the negation $-f$ satisfies $\|-f\| = \|f\|$.
ContinuousMultilinearMap.le_opNNNorm theorem
(f : ContinuousMultilinearMap 𝕜 E G) (m : ∀ i, E i) : ‖f m‖₊ ≤ ‖f‖₊ * ∏ i, ‖m i‖₊
Full source
/-- The fundamental property of the operator norm of a continuous multilinear map:
`‖f m‖` is bounded by `‖f‖` times the product of the `‖m i‖`, `nnnorm` version. -/
theorem le_opNNNorm (f : ContinuousMultilinearMap 𝕜 E G) (m : ∀ i, E i) :
    ‖f m‖₊‖f‖₊ * ∏ i, ‖m i‖₊ :=
  NNReal.coe_le_coe.1 <| by
    push_cast
    exact f.le_opNorm m
Fundamental Inequality for Non-Negative Operator Norm of Continuous Multilinear Maps
Informal description
For any continuous multilinear map $f$ from a family of normed vector spaces $(E_i)_{i \in \iota}$ to a normed vector space $G$ over a nontrivially normed field $\mathbb{K}$, and for any $m \in \prod_{i \in \iota} E_i$, the following inequality holds for the non-negative operator norm: \[ \|f(m)\|_{\mathbb{R}_{\geq 0}} \leq \|f\|_{\mathbb{R}_{\geq 0}} \cdot \prod_{i \in \iota} \|m_i\|_{\mathbb{R}_{\geq 0}}. \]
ContinuousMultilinearMap.le_of_opNNNorm_le theorem
(f : ContinuousMultilinearMap 𝕜 E G) {C : ℝ≥0} (h : ‖f‖₊ ≤ C) (m : ∀ i, E i) : ‖f m‖₊ ≤ C * ∏ i, ‖m i‖₊
Full source
theorem le_of_opNNNorm_le (f : ContinuousMultilinearMap 𝕜 E G)
    {C : ℝ≥0} (h : ‖f‖₊ ≤ C) (m : ∀ i, E i) : ‖f m‖₊ ≤ C * ∏ i, ‖m i‖₊ :=
  (f.le_opNNNorm m).trans <| mul_le_mul' h le_rfl
Operator Norm Bound Implies Pointwise Bound for Continuous Multilinear Maps
Informal description
For any continuous multilinear map $f$ from a family of normed vector spaces $(E_i)_{i \in \iota}$ to a normed vector space $G$ over a nontrivially normed field $\mathbb{K}$, if the operator seminorm $\|f\|_{\mathbb{R}_{\geq 0}}$ is bounded above by a constant $C \geq 0$, then for any $m \in \prod_{i \in \iota} E_i$, the following inequality holds: \[ \|f(m)\|_{\mathbb{R}_{\geq 0}} \leq C \cdot \prod_{i \in \iota} \|m_i\|_{\mathbb{R}_{\geq 0}}. \]
ContinuousMultilinearMap.opNNNorm_le_iff theorem
{f : ContinuousMultilinearMap 𝕜 E G} {C : ℝ≥0} : ‖f‖₊ ≤ C ↔ ∀ m, ‖f m‖₊ ≤ C * ∏ i, ‖m i‖₊
Full source
theorem opNNNorm_le_iff {f : ContinuousMultilinearMap 𝕜 E G} {C : ℝ≥0} :
    ‖f‖₊‖f‖₊ ≤ C ↔ ∀ m, ‖f m‖₊ ≤ C * ∏ i, ‖m i‖₊ := by
  simp only [← NNReal.coe_le_coe]; simp [opNorm_le_iff C.coe_nonneg, NNReal.coe_prod]
Characterization of Operator Seminorm for Continuous Multilinear Maps: $\|f\|_{\text{op}} \leq C \leftrightarrow \forall m, \|f(m)\| \leq C \prod \|m_i\|$
Informal description
Let $f$ be a continuous multilinear map from a family of normed vector spaces $(E_i)_{i \in \iota}$ to a normed vector space $G$ over a nontrivially normed field $\mathbb{K}$. For any nonnegative real number $C \geq 0$ (represented as an element of $\mathbb{R}_{\geq 0}$), the operator seminorm of $f$ satisfies $\|f\|_{\text{op}} \leq C$ if and only if for all $m \in \prod_{i \in \iota} E_i$, the following inequality holds: \[ \|f(m)\| \leq C \cdot \prod_{i \in \iota} \|m_i\|. \]
ContinuousMultilinearMap.isLeast_opNNNorm theorem
(f : ContinuousMultilinearMap 𝕜 E G) : IsLeast {C : ℝ≥0 | ∀ m, ‖f m‖₊ ≤ C * ∏ i, ‖m i‖₊} ‖f‖₊
Full source
theorem isLeast_opNNNorm (f : ContinuousMultilinearMap 𝕜 E G) :
    IsLeast {C : ℝ≥0 | ∀ m, ‖f m‖₊ ≤ C * ∏ i, ‖m i‖₊} ‖f‖₊ := by
  simpa only [← opNNNorm_le_iff] using isLeast_Ici
Minimality of Operator Seminorm for Continuous Multilinear Maps
Informal description
For any continuous multilinear map $f$ from a family of normed vector spaces $(E_i)_{i \in \iota}$ to a normed vector space $G$ over a nontrivially normed field $\mathbb{K}$, the operator seminorm $\|f\|_*$ is the least element of the set of nonnegative real numbers $C$ such that for all $m \in \prod_{i \in \iota} E_i$, the inequality $\|f(m)\| \leq C \prod_{i \in \iota} \|m_i\|$ holds.
ContinuousMultilinearMap.opNNNorm_prod theorem
(f : ContinuousMultilinearMap 𝕜 E G) (g : ContinuousMultilinearMap 𝕜 E G') : ‖f.prod g‖₊ = max ‖f‖₊ ‖g‖₊
Full source
theorem opNNNorm_prod (f : ContinuousMultilinearMap 𝕜 E G) (g : ContinuousMultilinearMap 𝕜 E G') :
    ‖f.prod g‖₊ = max ‖f‖₊ ‖g‖₊ :=
  eq_of_forall_ge_iff fun _ ↦ by
    simp only [opNNNorm_le_iff, prod_apply, Prod.nnnorm_def, max_le_iff, forall_and]
Operator Seminorm of Product of Continuous Multilinear Maps is Maximum of Seminorms
Informal description
Let $f$ and $g$ be continuous multilinear maps from a family of normed vector spaces $E$ over a nontrivially normed field $\mathbb{K}$ to normed vector spaces $G$ and $G'$ respectively. The operator seminorm of the product map $f \times g$ is equal to the maximum of the operator seminorms of $f$ and $g$, i.e., \[ \|f \times g\|_{\text{op}} = \max(\|f\|_{\text{op}}, \|g\|_{\text{op}}). \]
ContinuousMultilinearMap.opNorm_prod theorem
(f : ContinuousMultilinearMap 𝕜 E G) (g : ContinuousMultilinearMap 𝕜 E G') : ‖f.prod g‖ = max ‖f‖ ‖g‖
Full source
theorem opNorm_prod (f : ContinuousMultilinearMap 𝕜 E G) (g : ContinuousMultilinearMap 𝕜 E G') :
    ‖f.prod g‖ = max ‖f‖ ‖g‖ :=
  congr_arg NNReal.toReal (opNNNorm_prod f g)
Operator Norm of Product of Continuous Multilinear Maps is Maximum of Norms
Informal description
Let $\mathbb{K}$ be a nontrivially normed field, $E$ a family of normed vector spaces over $\mathbb{K}$, and $G$, $G'$ normed vector spaces over $\mathbb{K}$. For any continuous multilinear maps $f \colon \prod_{i} E_i \to G$ and $g \colon \prod_{i} E_i \to G'$, the operator norm of their product map $f \times g \colon \prod_{i} E_i \to G \times G'$ satisfies \[ \|f \times g\| = \max(\|f\|, \|g\|). \]
ContinuousMultilinearMap.opNNNorm_pi theorem
[∀ i', SeminormedAddCommGroup (E' i')] [∀ i', NormedSpace 𝕜 (E' i')] (f : ∀ i', ContinuousMultilinearMap 𝕜 E (E' i')) : ‖pi f‖₊ = ‖f‖₊
Full source
theorem opNNNorm_pi
    [∀ i', SeminormedAddCommGroup (E' i')] [∀ i', NormedSpace 𝕜 (E' i')]
    (f : ∀ i', ContinuousMultilinearMap 𝕜 E (E' i')) : ‖pi f‖₊ = ‖f‖₊ :=
  eq_of_forall_ge_iff fun _ ↦ by simpa [opNNNorm_le_iff, pi_nnnorm_le_iff] using forall_swap
Operator Seminorm of Product of Continuous Multilinear Maps Equals Supremum of Component Seminorms
Informal description
Let $\mathbb{K}$ be a nontrivially normed field, $\iota'$ a finite index type, and for each $i' \in \iota'$, let $E'_{i'}$ be a seminormed additive commutative group and a normed space over $\mathbb{K}$. Given a family of continuous multilinear maps $f = (f_{i'} : \text{ContinuousMultilinearMap}_{\mathbb{K}} E (E'_{i'}))_{i' \in \iota'}$, the operator seminorm of the product map $\pi f$ (which combines all $f_{i'}$ into a single multilinear map) is equal to the supremum of the operator seminorms of the individual maps $f_{i'}$, i.e., $$\|\pi f\|_{\text{op}} = \sup_{i'} \|f_{i'}\|_{\text{op}}.$$
ContinuousMultilinearMap.opNorm_pi theorem
{ι' : Type v'} [Fintype ι'] {E' : ι' → Type wE'} [∀ i', SeminormedAddCommGroup (E' i')] [∀ i', NormedSpace 𝕜 (E' i')] (f : ∀ i', ContinuousMultilinearMap 𝕜 E (E' i')) : ‖pi f‖ = ‖f‖
Full source
theorem opNorm_pi {ι' : Type v'} [Fintype ι'] {E' : ι' → Type wE'}
    [∀ i', SeminormedAddCommGroup (E' i')] [∀ i', NormedSpace 𝕜 (E' i')]
    (f : ∀ i', ContinuousMultilinearMap 𝕜 E (E' i')) :
    ‖pi f‖ = ‖f‖ :=
  congr_arg NNReal.toReal (opNNNorm_pi f)
Operator Norm of Product of Continuous Multilinear Maps Equals Supremum of Component Norms
Informal description
Let $\mathbb{K}$ be a nontrivially normed field, $\iota'$ a finite index type, and for each $i' \in \iota'$, let $E'_{i'}$ be a seminormed additive commutative group and a normed space over $\mathbb{K}$. Given a family of continuous multilinear maps $f = (f_{i'} : \text{ContinuousMultilinearMap}_{\mathbb{K}} E (E'_{i'}))_{i' \in \iota'}$, the operator norm of the product map $\pi f$ (which combines all $f_{i'}$ into a single multilinear map) is equal to the supremum of the operator norms of the individual maps $f_{i'}$, i.e., $$\|\pi f\| = \sup_{i'} \|f_{i'}\|.$$
ContinuousMultilinearMap.norm_ofSubsingleton theorem
[Subsingleton ι] (i : ι) (f : G →L[𝕜] G') : ‖ofSubsingleton 𝕜 G G' i f‖ = ‖f‖
Full source
@[simp]
theorem norm_ofSubsingleton [Subsingleton ι] (i : ι) (f : G →L[𝕜] G') :
    ‖ofSubsingleton 𝕜 G G' i f‖ = ‖f‖ := by
  letI : Unique ι := uniqueOfSubsingleton i
  simp [norm_def, ContinuousLinearMap.norm_def, (Equiv.funUnique _ _).symm.surjective.forall]
Operator Norm Preservation under Subsingleton Construction of Multilinear Maps
Informal description
Let $\iota$ be a finite index type with decidable equality that is a subsingleton (i.e., all elements are equal), and let $G$, $G'$ be normed vector spaces over a nontrivially normed field $\mathbb{K}$. For any $i \in \iota$ and any continuous linear map $f : G \to G'$, the operator norm of the continuous multilinear map constructed from $f$ via `ofSubsingleton` equals the operator norm of $f$, i.e., $$\|\text{ofSubsingleton}_{\mathbb{K},G,G'}(i, f)\| = \|f\|.$$
ContinuousMultilinearMap.norm_ofSubsingleton_id_le theorem
[Subsingleton ι] (i : ι) : ‖ofSubsingleton 𝕜 G G i (.id _ _)‖ ≤ 1
Full source
theorem norm_ofSubsingleton_id_le [Subsingleton ι] (i : ι) :
    ‖ofSubsingleton 𝕜 G G i (.id _ _)‖ ≤ 1 := by
  rw [norm_ofSubsingleton]
  apply ContinuousLinearMap.norm_id_le
Operator Norm Bound for Identity Map in Subsingleton Multilinear Construction
Informal description
Let $\iota$ be a finite index type with decidable equality that is a subsingleton (i.e., all elements are equal), and let $G$ be a normed vector space over a nontrivially normed field $\mathbb{K}$. For any $i \in \iota$, the operator norm of the continuous multilinear map constructed from the identity map $\text{id} \colon G \to G$ via `ofSubsingleton` satisfies $$\|\text{ofSubsingleton}_{\mathbb{K},G,G}(i, \text{id})\| \leq 1.$$
ContinuousMultilinearMap.nnnorm_ofSubsingleton_id_le theorem
[Subsingleton ι] (i : ι) : ‖ofSubsingleton 𝕜 G G i (.id _ _)‖₊ ≤ 1
Full source
theorem nnnorm_ofSubsingleton_id_le [Subsingleton ι] (i : ι) :
    ‖ofSubsingleton 𝕜 G G i (.id _ _)‖₊ ≤ 1 :=
  norm_ofSubsingleton_id_le _ _ _
Non-negative operator norm bound for identity map in subsingleton multilinear construction
Informal description
Let $\iota$ be a finite index type with decidable equality that is a subsingleton (i.e., all elements are equal), and let $G$ be a normed vector space over a nontrivially normed field $\mathbb{K}$. For any $i \in \iota$, the non-negative operator norm of the continuous multilinear map constructed from the identity map $\text{id} \colon G \to G$ via `ofSubsingleton` satisfies $$\|\text{ofSubsingleton}_{\mathbb{K},G,G}(i, \text{id})\|_{\mathbb{R}_+} \leq 1.$$
ContinuousMultilinearMap.norm_constOfIsEmpty theorem
[IsEmpty ι] (x : G) : ‖constOfIsEmpty 𝕜 E x‖ = ‖x‖
Full source
@[simp]
theorem norm_constOfIsEmpty [IsEmpty ι] (x : G) : ‖constOfIsEmpty 𝕜 E x‖ = ‖x‖ := by
  apply le_antisymm
  · refine opNorm_le_bound (norm_nonneg _) fun x => ?_
    rw [Fintype.prod_empty, mul_one, constOfIsEmpty_apply]
  · simpa using (constOfIsEmpty 𝕜 E x).le_opNorm 0
Operator Norm of Constant Multilinear Map on Empty Index Type
Informal description
For any normed vector space $G$ over a nontrivially normed field $\mathbb{K}$ and any empty index type $\iota$, the operator norm of the constant multilinear map `constOfIsEmpty 𝕜 E x` is equal to the norm of $x \in G$, i.e., $\|\text{constOfIsEmpty}_{\mathbb{K},E}(x)\| = \|x\|$.
ContinuousMultilinearMap.nnnorm_constOfIsEmpty theorem
[IsEmpty ι] (x : G) : ‖constOfIsEmpty 𝕜 E x‖₊ = ‖x‖₊
Full source
@[simp]
theorem nnnorm_constOfIsEmpty [IsEmpty ι] (x : G) : ‖constOfIsEmpty 𝕜 E x‖₊ = ‖x‖₊ :=
  NNReal.eq <| norm_constOfIsEmpty _ _ _
Non-negative operator norm equality for constant multilinear maps on empty index type
Informal description
For any normed vector space $G$ over a nontrivially normed field $\mathbb{K}$ and any empty index type $\iota$, the operator norm (with non-negative real values) of the constant multilinear map $\text{constOfIsEmpty}_{\mathbb{K},E}(x)$ is equal to the norm of $x \in G$, i.e., $\|\text{constOfIsEmpty}_{\mathbb{K},E}(x)\|_{\mathbb{R}_+} = \|x\|_{\mathbb{R}_+}$.
ContinuousMultilinearMap.norm_restrictScalars theorem
(f : ContinuousMultilinearMap 𝕜 E G) : ‖f.restrictScalars 𝕜'‖ = ‖f‖
Full source
@[simp]
theorem norm_restrictScalars (f : ContinuousMultilinearMap 𝕜 E G) :
    ‖f.restrictScalars 𝕜'‖ = ‖f‖ :=
  rfl
Invariance of Operator Norm under Scalar Restriction for Continuous Multilinear Maps
Informal description
Let $f$ be a continuous multilinear map from $E$ to $G$ over a nontrivially normed field $\mathbb{K}$. Then the operator norm of $f$ remains unchanged when restricting the scalar field to a subfield $\mathbb{K}'$ of $\mathbb{K}$, i.e., $\|f\|_{\mathbb{K}'} = \|f\|_{\mathbb{K}}$.
ContinuousMultilinearMap.norm_image_sub_le' theorem
[DecidableEq ι] (f : ContinuousMultilinearMap 𝕜 E G) (m₁ m₂ : ∀ i, E i) : ‖f m₁ - f m₂‖ ≤ ‖f‖ * ∑ i, ∏ j, if j = i then ‖m₁ i - m₂ i‖ else max ‖m₁ j‖ ‖m₂ j‖
Full source
/-- The difference `f m₁ - f m₂` is controlled in terms of `‖f‖` and `‖m₁ - m₂‖`, precise version.
For a less precise but more usable version, see `norm_image_sub_le`. The bound reads
`‖f m - f m'‖ ≤
  ‖f‖ * ‖m 1 - m' 1‖ * max ‖m 2‖ ‖m' 2‖ * max ‖m 3‖ ‖m' 3‖ * ... * max ‖m n‖ ‖m' n‖ + ...`,
where the other terms in the sum are the same products where `1` is replaced by any `i`. -/
theorem norm_image_sub_le' [DecidableEq ι] (f : ContinuousMultilinearMap 𝕜 E G) (m₁ m₂ : ∀ i, E i) :
    ‖f m₁ - f m₂‖‖f‖ * ∑ i, ∏ j, if j = i then ‖m₁ i - m₂ i‖ else max ‖m₁ j‖ ‖m₂ j‖ :=
  f.toMultilinearMap.norm_image_sub_le_of_bound' (norm_nonneg _) f.le_opNorm _ _
Precise Bound on Continuous Multilinear Map Difference: $\|f(m_1) - f(m_2)\|$ in Terms of Operator Norm and Input Differences
Informal description
Let $f$ be a continuous multilinear map from a family of normed vector spaces $(E_i)_{i \in \iota}$ to a normed vector space $G$ over a nontrivially normed field $\mathbb{K}$, where $\iota$ is a finite index type with decidable equality. For any two vectors $m_1, m_2 \in \prod_{i \in \iota} E_i$, the difference satisfies the inequality: \[ \|f(m_1) - f(m_2)\| \leq \|f\| \sum_{i \in \iota} \left( \|m_1(i) - m_2(i)\| \cdot \prod_{j \neq i} \max(\|m_1(j)\|, \|m_2(j)\|) \right). \]
ContinuousMultilinearMap.norm_image_sub_le theorem
(f : ContinuousMultilinearMap 𝕜 E G) (m₁ m₂ : ∀ i, E i) : ‖f m₁ - f m₂‖ ≤ ‖f‖ * Fintype.card ι * max ‖m₁‖ ‖m₂‖ ^ (Fintype.card ι - 1) * ‖m₁ - m₂‖
Full source
/-- The difference `f m₁ - f m₂` is controlled in terms of `‖f‖` and `‖m₁ - m₂‖`, less precise
version. For a more precise but less usable version, see `norm_image_sub_le'`.
The bound is `‖f m - f m'‖ ≤ ‖f‖ * card ι * ‖m - m'‖ * (max ‖m‖ ‖m'‖) ^ (card ι - 1)`. -/
theorem norm_image_sub_le (f : ContinuousMultilinearMap 𝕜 E G) (m₁ m₂ : ∀ i, E i) :
    ‖f m₁ - f m₂‖‖f‖ * Fintype.card ι * max ‖m₁‖ ‖m₂‖ ^ (Fintype.card ι - 1) * ‖m₁ - m₂‖ :=
  f.toMultilinearMap.norm_image_sub_le_of_bound (norm_nonneg _) f.le_opNorm _ _
Lipschitz-like bound for continuous multilinear maps: $\|f(m_1) - f(m_2)\| \leq \|f\| \cdot |\iota| \cdot \max(\|m_1\|, \|m_2\|)^{|\iota| - 1} \cdot \|m_1 - m_2\|$
Informal description
For any continuous multilinear map $f$ from a family of normed vector spaces $(E_i)_{i \in \iota}$ to a normed vector space $G$ over a nontrivially normed field $\mathbb{K}$, and for any $m_1, m_2 \in \prod_{i \in \iota} E_i$, the difference satisfies the inequality: \[ \|f(m_1) - f(m_2)\| \leq \|f\| \cdot |\iota| \cdot \max(\|m_1\|, \|m_2\|)^{|\iota| - 1} \cdot \|m_1 - m_2\|, \] where $|\iota|$ denotes the cardinality of the index set $\iota$.
MultilinearMap.mkContinuous_norm_le theorem
(f : MultilinearMap 𝕜 E G) {C : ℝ} (hC : 0 ≤ C) (H : ∀ m, ‖f m‖ ≤ C * ∏ i, ‖m i‖) : ‖f.mkContinuous C H‖ ≤ C
Full source
/-- If a continuous multilinear map is constructed from a multilinear map via the constructor
`mkContinuous`, then its norm is bounded by the bound given to the constructor if it is
nonnegative. -/
theorem MultilinearMap.mkContinuous_norm_le (f : MultilinearMap 𝕜 E G) {C : } (hC : 0 ≤ C)
    (H : ∀ m, ‖f m‖ ≤ C * ∏ i, ‖m i‖) : ‖f.mkContinuous C H‖ ≤ C :=
  ContinuousMultilinearMap.opNorm_le_bound hC fun m => H m
Operator Norm Bound for $\mathrm{mkContinuous}$ Construction: $\|\mathrm{mkContinuous}(f, C, H)\| \leq C$ when $C \geq 0$
Informal description
Let $f$ be a multilinear map from a family of normed vector spaces $(E_i)_{i \in \iota}$ to a normed vector space $G$ over a nontrivially normed field $\mathbb{K}$. If there exists a nonnegative real number $C$ such that for all $m \in \prod_i E_i$, the inequality $\|f(m)\| \leq C \cdot \prod_i \|m_i\|$ holds, then the operator norm of the continuous multilinear map $\mathrm{mkContinuous}(f, C, H)$ satisfies $\|\mathrm{mkContinuous}(f, C, H)\| \leq C$.
MultilinearMap.mkContinuous_norm_le' theorem
(f : MultilinearMap 𝕜 E G) {C : ℝ} (H : ∀ m, ‖f m‖ ≤ C * ∏ i, ‖m i‖) : ‖f.mkContinuous C H‖ ≤ max C 0
Full source
/-- If a continuous multilinear map is constructed from a multilinear map via the constructor
`mkContinuous`, then its norm is bounded by the bound given to the constructor if it is
nonnegative. -/
theorem MultilinearMap.mkContinuous_norm_le' (f : MultilinearMap 𝕜 E G) {C : }
    (H : ∀ m, ‖f m‖ ≤ C * ∏ i, ‖m i‖) : ‖f.mkContinuous C H‖max C 0 :=
  ContinuousMultilinearMap.opNorm_le_bound (le_max_right _ _) fun m ↦ (H m).trans <|
    mul_le_mul_of_nonneg_right (le_max_left _ _) <| by positivity
Operator Norm Bound for $\mathrm{mkContinuous}$ Construction: $\|\mathrm{mkContinuous}(f, C, H)\| \leq \max(C, 0)$
Informal description
Let $f$ be a multilinear map from a family of normed vector spaces $(E_i)_{i \in \iota}$ to a normed vector space $G$ over a nontrivially normed field $\mathbb{K}$. If there exists a real number $C$ such that for all $m \in \prod_i E_i$, the inequality $\|f(m)\| \leq C \cdot \prod_i \|m_i\|$ holds, then the operator norm of the continuous multilinear map $\mathrm{mkContinuous}(f, C, H)$ satisfies $\|\mathrm{mkContinuous}(f, C, H)\| \leq \max(C, 0)$.
ContinuousMultilinearMap.norm_restr theorem
{k n : ℕ} (f : G [×n]→L[𝕜] G') (s : Finset (Fin n)) (hk : #s = k) (z : G) : ‖f.restr s hk z‖ ≤ ‖f‖ * ‖z‖ ^ (n - k)
Full source
theorem norm_restr {k n : } (f : G [×n]→L[𝕜] G') (s : Finset (Fin n)) (hk : #s = k) (z : G) :
    ‖f.restr s hk z‖‖f‖ * ‖z‖ ^ (n - k) := by
  apply MultilinearMap.mkContinuous_norm_le
  exact mul_nonneg (norm_nonneg _) (pow_nonneg (norm_nonneg _) _)
Norm Bound for Restricted Continuous Multilinear Map: $\|f.\mathrm{restr}\,s\,hk\,z\| \leq \|f\| \cdot \|z\|^{n-k}$
Informal description
Let $f$ be a continuous multilinear map from $G^n$ to $G'$ over a nontrivially normed field $\mathbb{K}$. For any subset $s$ of $\mathrm{Fin}\,n$ with cardinality $k$, and any vector $z \in G$, the norm of the restricted map $f.\mathrm{restr}\,s\,hk\,z$ satisfies the inequality \[ \|f.\mathrm{restr}\,s\,hk\,z\| \leq \|f\| \cdot \|z\|^{n-k}. \]
ContinuousMultilinearMap.norm_mkPiAlgebra_le theorem
[Nonempty ι] : ‖ContinuousMultilinearMap.mkPiAlgebra 𝕜 ι A‖ ≤ 1
Full source
@[simp]
theorem norm_mkPiAlgebra_le [Nonempty ι] : ‖ContinuousMultilinearMap.mkPiAlgebra 𝕜 ι A‖ ≤ 1 := by
  refine opNorm_le_bound zero_le_one fun m => ?_
  simp only [ContinuousMultilinearMap.mkPiAlgebra_apply, one_mul]
  exact norm_prod_le' _ univ_nonempty _
Operator Norm Bound for $\mathrm{mkPiAlgebra}$ on Nonempty Index Type
Informal description
For a nonempty finite index type $\iota$ and a normed algebra $A$ over a nontrivially normed field $\mathbb{K}$, the operator norm of the continuous multilinear map $\mathrm{mkPiAlgebra}$ from $\mathbb{K}$ to $A$ indexed by $\iota$ satisfies $\|\mathrm{mkPiAlgebra}\| \leq 1$.
ContinuousMultilinearMap.norm_mkPiAlgebra_of_empty theorem
[IsEmpty ι] : ‖ContinuousMultilinearMap.mkPiAlgebra 𝕜 ι A‖ = ‖(1 : A)‖
Full source
theorem norm_mkPiAlgebra_of_empty [IsEmpty ι] :
    ‖ContinuousMultilinearMap.mkPiAlgebra 𝕜 ι A‖ = ‖(1 : A)‖ := by
  apply le_antisymm
  · apply opNorm_le_bound <;> simp
  · convert ratio_le_opNorm (ContinuousMultilinearMap.mkPiAlgebra 𝕜 ι A) fun _ => 1
    simp [eq_empty_of_isEmpty univ]
Operator Norm of $\mathrm{mkPiAlgebra}$ on Empty Index Type Equals Norm of Identity
Informal description
For an empty index type $\iota$, the operator norm of the continuous multilinear map $\mathrm{mkPiAlgebra}_{\mathbb{K}}(\iota, A)$ is equal to the norm of the multiplicative identity $1$ in the normed algebra $A$ over the nontrivially normed field $\mathbb{K}$: \[ \|\mathrm{mkPiAlgebra}_{\mathbb{K}}(\iota, A)\| = \|1\|. \]
ContinuousMultilinearMap.norm_mkPiAlgebra theorem
[NormOneClass A] : ‖ContinuousMultilinearMap.mkPiAlgebra 𝕜 ι A‖ = 1
Full source
@[simp]
theorem norm_mkPiAlgebra [NormOneClass A] : ‖ContinuousMultilinearMap.mkPiAlgebra 𝕜 ι A‖ = 1 := by
  cases isEmpty_or_nonempty ι
  · simp [norm_mkPiAlgebra_of_empty]
  · refine le_antisymm norm_mkPiAlgebra_le ?_
    convert ratio_le_opNorm (ContinuousMultilinearMap.mkPiAlgebra 𝕜 ι A) fun _ => 1
    simp
Operator Norm Identity for $\mathrm{mkPiAlgebra}$ in Norm-One Algebras
Informal description
For a normed algebra $A$ over a nontrivially normed field $\mathbb{K}$ with $\|1_A\| = 1$, and for any finite index type $\iota$, the operator norm of the continuous multilinear map $\mathrm{mkPiAlgebra}_{\mathbb{K}}(\iota, A)$ is equal to 1: \[ \|\mathrm{mkPiAlgebra}_{\mathbb{K}}(\iota, A)\| = 1. \]
ContinuousMultilinearMap.norm_mkPiAlgebraFin_succ_le theorem
: ‖ContinuousMultilinearMap.mkPiAlgebraFin 𝕜 n.succ A‖ ≤ 1
Full source
theorem norm_mkPiAlgebraFin_succ_le : ‖ContinuousMultilinearMap.mkPiAlgebraFin 𝕜 n.succ A‖ ≤ 1 := by
  refine opNorm_le_bound zero_le_one fun m => ?_
  simp only [ContinuousMultilinearMap.mkPiAlgebraFin_apply, one_mul, List.ofFn_eq_map,
    Fin.prod_univ_def, Multiset.map_coe, Multiset.prod_coe]
  refine (List.norm_prod_le' ?_).trans_eq ?_
  · rw [Ne, List.map_eq_nil_iff, List.finRange_eq_nil]
    exact Nat.succ_ne_zero _
  rw [List.map_map, Function.comp_def]
Operator Norm Bound for $(n+1)$-ary Algebra Multiplication Map
Informal description
For any nontrivially normed field $\mathbb{K}$ and any normed algebra $A$ over $\mathbb{K}$ with $\|1\| = 1$, the operator norm of the continuous multilinear map $\text{mkPiAlgebraFin}_{\mathbb{K}}(n+1, A)$ is bounded by 1, i.e., $\|\text{mkPiAlgebraFin}_{\mathbb{K}}(n+1, A)\| \leq 1$.
ContinuousMultilinearMap.norm_mkPiAlgebraFin_le_of_pos theorem
(hn : 0 < n) : ‖ContinuousMultilinearMap.mkPiAlgebraFin 𝕜 n A‖ ≤ 1
Full source
theorem norm_mkPiAlgebraFin_le_of_pos (hn : 0 < n) :
    ‖ContinuousMultilinearMap.mkPiAlgebraFin 𝕜 n A‖ ≤ 1 := by
  obtain ⟨n, rfl⟩ := Nat.exists_eq_succ_of_ne_zero hn.ne'
  exact norm_mkPiAlgebraFin_succ_le
Operator Norm Bound for Positive $n$-ary Algebra Multiplication Map
Informal description
For any nontrivially normed field $\mathbb{K}$ and any normed algebra $A$ over $\mathbb{K}$ with $\|1\| = 1$, if $n$ is a positive natural number, then the operator norm of the continuous multilinear map $\text{mkPiAlgebraFin}_{\mathbb{K}}(n, A)$ is bounded by 1, i.e., $\|\text{mkPiAlgebraFin}_{\mathbb{K}}(n, A)\| \leq 1$.
ContinuousMultilinearMap.norm_mkPiAlgebraFin_zero theorem
: ‖ContinuousMultilinearMap.mkPiAlgebraFin 𝕜 0 A‖ = ‖(1 : A)‖
Full source
theorem norm_mkPiAlgebraFin_zero : ‖ContinuousMultilinearMap.mkPiAlgebraFin 𝕜 0 A‖ = ‖(1 : A)‖ := by
  refine le_antisymm ?_ ?_
  · refine opNorm_le_bound (norm_nonneg (1 : A)) ?_
    simp
  · convert ratio_le_opNorm (ContinuousMultilinearMap.mkPiAlgebraFin 𝕜 0 A) fun _ => (1 : A)
    simp
Operator Norm of Zero-Variable Algebra Multiplication Map: $\|\text{mkPiAlgebraFin}_{\mathbb{K}}(0, A)\| = \|1\|$
Informal description
For any nontrivially normed field $\mathbb{K}$ and any normed algebra $A$ over $\mathbb{K}$, the operator norm of the zero-variable continuous multilinear map $\text{mkPiAlgebraFin}_{\mathbb{K}}(0, A)$ is equal to the norm of the multiplicative identity $1$ in $A$, i.e., \[ \|\text{mkPiAlgebraFin}_{\mathbb{K}}(0, A)\| = \|1\|. \]
ContinuousMultilinearMap.norm_mkPiAlgebraFin_le theorem
: ‖ContinuousMultilinearMap.mkPiAlgebraFin 𝕜 n A‖ ≤ max 1 ‖(1 : A)‖
Full source
theorem norm_mkPiAlgebraFin_le :
    ‖ContinuousMultilinearMap.mkPiAlgebraFin 𝕜 n A‖max 1 ‖(1 : A)‖ := by
  cases n
  · exact norm_mkPiAlgebraFin_zero.le.trans (le_max_right _ _)
  · exact (norm_mkPiAlgebraFin_le_of_pos (Nat.zero_lt_succ _)).trans (le_max_left _ _)
Operator Norm Bound for $n$-ary Algebra Multiplication Map: $\|\text{mkPiAlgebraFin}_{\mathbb{K}}(n, A)\| \leq \max(1, \|1\|)$
Informal description
For any nontrivially normed field $\mathbb{K}$ and any normed algebra $A$ over $\mathbb{K}$, the operator norm of the continuous multilinear map $\text{mkPiAlgebraFin}_{\mathbb{K}}(n, A)$ is bounded by the maximum of 1 and the norm of the multiplicative identity in $A$, i.e., \[ \|\text{mkPiAlgebraFin}_{\mathbb{K}}(n, A)\| \leq \max(1, \|1_A\|). \]
ContinuousMultilinearMap.norm_mkPiAlgebraFin theorem
[NormOneClass A] : ‖ContinuousMultilinearMap.mkPiAlgebraFin 𝕜 n A‖ = 1
Full source
@[simp]
theorem norm_mkPiAlgebraFin [NormOneClass A] :
    ‖ContinuousMultilinearMap.mkPiAlgebraFin 𝕜 n A‖ = 1 := by
  cases n
  · rw [norm_mkPiAlgebraFin_zero]
    simp
  · refine le_antisymm norm_mkPiAlgebraFin_succ_le ?_
    refine le_of_eq_of_le ?_ <|
      ratio_le_opNorm (ContinuousMultilinearMap.mkPiAlgebraFin 𝕜 (Nat.succ _) A) fun _ => 1
    simp
Operator Norm Identity for n-ary Algebra Multiplication Map: $\|\text{mkPiAlgebraFin}_{\mathbb{K}}(n, A)\| = 1$
Informal description
For any nontrivially normed field $\mathbb{K}$ and any normed algebra $A$ over $\mathbb{K}$ with $\|1\| = 1$, the operator norm of the continuous multilinear map $\text{mkPiAlgebraFin}_{\mathbb{K}}(n, A)$ is equal to 1, i.e., \[ \|\text{mkPiAlgebraFin}_{\mathbb{K}}(n, A)\| = 1. \]
ContinuousMultilinearMap.nnnorm_smulRight theorem
(f : ContinuousMultilinearMap 𝕜 E 𝕜) (z : G) : ‖f.smulRight z‖₊ = ‖f‖₊ * ‖z‖₊
Full source
@[simp]
theorem nnnorm_smulRight (f : ContinuousMultilinearMap 𝕜 E 𝕜) (z : G) :
    ‖f.smulRight z‖₊ = ‖f‖₊ * ‖z‖₊ := by
  refine le_antisymm ?_ ?_
  · refine opNNNorm_le_iff.2 fun m => (nnnorm_smul_le _ _).trans ?_
    rw [mul_right_comm]
    gcongr
    exact le_opNNNorm _ _
  · obtain hz | hz := eq_zero_or_pos ‖z‖₊
    · simp [hz]
    rw [← le_div_iff₀ hz, opNNNorm_le_iff]
    intro m
    rw [div_mul_eq_mul_div, le_div_iff₀ hz]
    refine le_trans ?_ ((f.smulRight z).le_opNNNorm m)
    rw [smulRight_apply, nnnorm_smul]
Non-negative operator norm identity for scalar multiplication of multilinear maps: $\|f.smulRight\, z\| = \|f\| \cdot \|z\|$
Informal description
For any continuous multilinear map $f$ from a family of normed vector spaces $(E_i)_{i \in \iota}$ to the base field $\mathbb{K}$, and any element $z$ in a normed vector space $G$ over $\mathbb{K}$, the non-negative operator norm of the map $f.smulRight\, z$ (which sends $m$ to $f(m) \cdot z$) satisfies: \[ \|f.smulRight\, z\|_{\mathbb{R}_{\geq 0}} = \|f\|_{\mathbb{R}_{\geq 0}} \cdot \|z\|_{\mathbb{R}_{\geq 0}}. \]
ContinuousMultilinearMap.norm_smulRight theorem
(f : ContinuousMultilinearMap 𝕜 E 𝕜) (z : G) : ‖f.smulRight z‖ = ‖f‖ * ‖z‖
Full source
@[simp]
theorem norm_smulRight (f : ContinuousMultilinearMap 𝕜 E 𝕜) (z : G) :
    ‖f.smulRight z‖ = ‖f‖ * ‖z‖ :=
  congr_arg NNReal.toReal (nnnorm_smulRight f z)
Operator Norm Identity for Scalar Multiplication of Multilinear Maps: $\|f \cdot z\| = \|f\| \cdot \|z\|$
Informal description
For any continuous multilinear map $f$ from a family of normed vector spaces $(E_i)_{i \in \iota}$ to the base field $\mathbb{K}$, and any element $z$ in a normed vector space $G$ over $\mathbb{K}$, the operator norm of the map $f \cdot z$ (which sends $m$ to $f(m) \cdot z$) satisfies: \[ \|f \cdot z\| = \|f\| \cdot \|z\|. \]
ContinuousMultilinearMap.norm_mkPiRing theorem
(z : G) : ‖ContinuousMultilinearMap.mkPiRing 𝕜 ι z‖ = ‖z‖
Full source
@[simp]
theorem norm_mkPiRing (z : G) : ‖ContinuousMultilinearMap.mkPiRing 𝕜 ι z‖ = ‖z‖ := by
  rw [ContinuousMultilinearMap.mkPiRing, norm_smulRight, norm_mkPiAlgebra, one_mul]
Operator Norm Identity for $\mathrm{mkPiRing}$: $\|\mathrm{mkPiRing}_{\mathbb{K}}(\iota, z)\| = \|z\|$
Informal description
For any element $z$ in a normed vector space $G$ over a nontrivially normed field $\mathbb{K}$, and for any finite index type $\iota$, the operator norm of the continuous multilinear map $\mathrm{mkPiRing}_{\mathbb{K}}(\iota, z)$ is equal to the norm of $z$: \[ \|\mathrm{mkPiRing}_{\mathbb{K}}(\iota, z)\| = \|z\|. \]
ContinuousMultilinearMap.smulRightL_apply theorem
(f : ContinuousMultilinearMap 𝕜 E 𝕜) (z : G) : smulRightL 𝕜 E G f z = f.smulRight z
Full source
@[simp] lemma smulRightL_apply (f : ContinuousMultilinearMap 𝕜 E 𝕜) (z : G) :
  smulRightL 𝕜 E G f z = f.smulRight z := rfl
Application of Scalar Multiplication Linear Map Equals Right Scalar Multiplication
Informal description
For any continuous multilinear map $f \colon \prod_{i \in \iota} E_i \to \mathbb{K}$ and any element $z \in G$, the application of the linear map $\text{smulRightL}_{\mathbb{K},E,G}$ to $f$ and $z$ equals the scalar multiplication of $f$ by $z$ on the right, i.e., \[ \text{smulRightL}_{\mathbb{K},E,G}(f)(z) = f.\text{smulRight}(z). \]
ContinuousMultilinearMap.norm_smulRightL_le theorem
: ‖smulRightL 𝕜 E G‖ ≤ 1
Full source
lemma norm_smulRightL_le : ‖smulRightL 𝕜 E G‖ ≤ 1 :=
  LinearMap.mkContinuous₂_norm_le _ zero_le_one _
Operator Norm Bound for Scalar Multiplication Linear Map: $\|\text{smulRightL}_{\mathbb{K}, E, G}\| \leq 1$
Informal description
The operator norm of the continuous linear map `smulRightL 𝕜 E G`, which sends a continuous multilinear map `f : ContinuousMultilinearMap 𝕜 E 𝕜` and an element `z : G` to the multilinear map `f.smulRight z`, is bounded above by 1. In other words, \[ \|\text{smulRightL}_{\mathbb{K}, E, G}\| \leq 1. \]
ContinuousLinearMap.norm_compContinuousMultilinearMap_le theorem
(g : G →L[𝕜] G') (f : ContinuousMultilinearMap 𝕜 E G) : ‖g.compContinuousMultilinearMap f‖ ≤ ‖g‖ * ‖f‖
Full source
theorem norm_compContinuousMultilinearMap_le (g : G →L[𝕜] G') (f : ContinuousMultilinearMap 𝕜 E G) :
    ‖g.compContinuousMultilinearMap f‖‖g‖ * ‖f‖ :=
  ContinuousMultilinearMap.opNorm_le_bound (by positivity) fun m ↦
    calc
      ‖g (f m)‖‖g‖ * (‖f‖ * ∏ i, ‖m i‖) := g.le_opNorm_of_le <| f.le_opNorm _
      _ = _ := (mul_assoc _ _ _).symm
Operator Norm Inequality for Composition of Continuous Linear and Multilinear Maps
Informal description
Let $G$ and $G'$ be normed vector spaces over a nontrivially normed field $\mathbb{K}$, and let $E$ be a family of normed vector spaces over $\mathbb{K}$. For any continuous linear map $g \colon G \to G'$ and any continuous multilinear map $f \colon \prod_{i \in \iota} E_i \to G$, the operator norm of the composition $g \circ f$ satisfies the inequality: \[ \|g \circ f\| \leq \|g\| \cdot \|f\|. \]
ContinuousLinearEquiv.continuousMultilinearMapCongrRight_symm theorem
(g : G ≃L[𝕜] G') : (g.continuousMultilinearMapCongrRight E).symm = g.symm.continuousMultilinearMapCongrRight E
Full source
@[simp]
theorem _root_.ContinuousLinearEquiv.continuousMultilinearMapCongrRight_symm (g : G ≃L[𝕜] G') :
    (g.continuousMultilinearMapCongrRight E).symm = g.symm.continuousMultilinearMapCongrRight E :=
  rfl
Inverse of Induced Isomorphism on Continuous Multilinear Maps
Informal description
Let $\mathbb{K}$ be a nontrivially normed field, $G$ and $G'$ be normed vector spaces over $\mathbb{K}$, and $E$ be a family of normed vector spaces over $\mathbb{K}$. For any continuous linear equivalence $g : G \to G'$, the inverse of the induced isomorphism $g.\text{continuousMultilinearMapCongrRight}(E)$ on the space of continuous multilinear maps is equal to the isomorphism induced by the inverse $g^{-1}$, i.e., \[ (g.\text{continuousMultilinearMapCongrRight}(E))^{-1} = g^{-1}.\text{continuousMultilinearMapCongrRight}(E). \]
ContinuousLinearEquiv.continuousMultilinearMapCongrRight_apply theorem
(g : G ≃L[𝕜] G') (f : ContinuousMultilinearMap 𝕜 E G) : g.continuousMultilinearMapCongrRight E f = (g : G →L[𝕜] G').compContinuousMultilinearMap f
Full source
@[simp]
theorem _root_.ContinuousLinearEquiv.continuousMultilinearMapCongrRight_apply (g : G ≃L[𝕜] G')
    (f : ContinuousMultilinearMap 𝕜 E G) :
    g.continuousMultilinearMapCongrRight E f = (g : G →L[𝕜] G').compContinuousMultilinearMap f :=
  rfl
Conjugation of Continuous Multilinear Map by Continuous Linear Equivalence
Informal description
Let $G$ and $G'$ be normed vector spaces over a nontrivially normed field $\mathbb{K}$, and let $E$ be a family of normed vector spaces over $\mathbb{K}$. For any continuous linear equivalence $g \colon G \to G'$ and any continuous multilinear map $f \colon \prod_{i \in \iota} E_i \to G$, the continuous multilinear map obtained by conjugating $f$ with $g$ is equal to the composition of $f$ with the underlying continuous linear map of $g$, i.e., \[ g.\text{continuousMultilinearMapCongrRight}(E)(f) = (g \colon G \to_{\mathbb{K}} G') \circ f. \]
LinearIsometry.norm_compContinuousMultilinearMap theorem
(g : G →ₗᵢ[𝕜] G') (f : ContinuousMultilinearMap 𝕜 E G) : ‖g.toContinuousLinearMap.compContinuousMultilinearMap f‖ = ‖f‖
Full source
theorem LinearIsometry.norm_compContinuousMultilinearMap (g : G →ₗᵢ[𝕜] G')
    (f : ContinuousMultilinearMap 𝕜 E G) :
    ‖g.toContinuousLinearMap.compContinuousMultilinearMap f‖ = ‖f‖ := by
  simp only [ContinuousLinearMap.compContinuousMultilinearMap_coe,
    LinearIsometry.coe_toContinuousLinearMap, LinearIsometry.norm_map,
    ContinuousMultilinearMap.norm_def, Function.comp_apply]
Norm Preservation Under Composition with Linear Isometry
Informal description
Let $G$ and $G'$ be normed vector spaces over a nontrivially normed field $\mathbb{K}$, and let $g : G \to G'$ be a linear isometry. For any continuous multilinear map $f$ from a family of normed vector spaces $E$ to $G$, the operator norm of the composition $g \circ f$ is equal to the operator norm of $f$, i.e., $\|g \circ f\| = \|f\|$.
MultilinearMap.mkContinuousLinear_norm_le' theorem
(f : G →ₗ[𝕜] MultilinearMap 𝕜 E G') (C : ℝ) (H : ∀ x m, ‖f x m‖ ≤ C * ‖x‖ * ∏ i, ‖m i‖) : ‖mkContinuousLinear f C H‖ ≤ max C 0
Full source
theorem mkContinuousLinear_norm_le' (f : G →ₗ[𝕜] MultilinearMap 𝕜 E G') (C : )
    (H : ∀ x m, ‖f x m‖ ≤ C * ‖x‖ * ∏ i, ‖m i‖) : ‖mkContinuousLinear f C H‖max C 0 := by
  dsimp only [mkContinuousLinear]
  exact LinearMap.mkContinuous_norm_le _ (le_max_right _ _) _
Operator Norm Bound for Continuous Linear Extension of Multilinear Map
Informal description
Let $G$ and $G'$ be normed vector spaces over a nontrivially normed field $\mathbb{K}$, and let $f \colon G \to \text{MultilinearMap}(\mathbb{K}, E, G')$ be a linear map. Given a real constant $C \in \mathbb{R}$ such that for all $x \in G$ and all $m \in \prod_i E_i$, the inequality $\|f(x)(m)\| \leq C \cdot \|x\| \cdot \prod_i \|m_i\|$ holds, then the operator norm of the continuous multilinear map constructed via `mkContinuousLinear` satisfies $\|\text{mkContinuousLinear}(f, C, H)\| \leq \max(C, 0)$.
MultilinearMap.mkContinuousLinear_norm_le theorem
(f : G →ₗ[𝕜] MultilinearMap 𝕜 E G') {C : ℝ} (hC : 0 ≤ C) (H : ∀ x m, ‖f x m‖ ≤ C * ‖x‖ * ∏ i, ‖m i‖) : ‖mkContinuousLinear f C H‖ ≤ C
Full source
theorem mkContinuousLinear_norm_le (f : G →ₗ[𝕜] MultilinearMap 𝕜 E G') {C : } (hC : 0 ≤ C)
    (H : ∀ x m, ‖f x m‖ ≤ C * ‖x‖ * ∏ i, ‖m i‖) : ‖mkContinuousLinear f C H‖ ≤ C :=
  (mkContinuousLinear_norm_le' f C H).trans_eq (max_eq_left hC)
Operator Norm Bound for Nonnegative Constant: $\|\text{mkContinuousLinear}(f, C, H)\| \leq C$
Informal description
Let $G$ and $G'$ be normed vector spaces over a nontrivially normed field $\mathbb{K}$, and let $f \colon G \to \text{MultilinearMap}(\mathbb{K}, E, G')$ be a linear map. Given a nonnegative real constant $C \geq 0$ such that for all $x \in G$ and all $m \in \prod_i E_i$, the inequality $\|f(x)(m)\| \leq C \cdot \|x\| \cdot \prod_i \|m_i\|$ holds, then the operator norm of the continuous multilinear map constructed via `mkContinuousLinear` satisfies $\|\text{mkContinuousLinear}(f, C, H)\| \leq C$.
MultilinearMap.mkContinuousMultilinear_apply theorem
(f : MultilinearMap 𝕜 E (MultilinearMap 𝕜 E' G)) {C : ℝ} (H : ∀ m₁ m₂, ‖f m₁ m₂‖ ≤ (C * ∏ i, ‖m₁ i‖) * ∏ i, ‖m₂ i‖) (m : ∀ i, E i) : ⇑(mkContinuousMultilinear f C H m) = f m
Full source
@[simp]
theorem mkContinuousMultilinear_apply (f : MultilinearMap 𝕜 E (MultilinearMap 𝕜 E' G)) {C : }
    (H : ∀ m₁ m₂, ‖f m₁ m₂‖ ≤ (C * ∏ i, ‖m₁ i‖) * ∏ i, ‖m₂ i‖) (m : ∀ i, E i) :
    ⇑(mkContinuousMultilinear f C H m) = f m :=
  rfl
Equality of Constructed Continuous Multilinear Map with Original Multilinear Map
Informal description
Let $\mathbb{K}$ be a nontrivially normed field, $E$ and $E'$ be families of normed vector spaces over $\mathbb{K}$ indexed by finite types $\iota$ and $\iota'$ respectively, and $G$ be a normed vector space over $\mathbb{K}$. Given a multilinear map $f \colon \prod_{i} E_i \to \text{MultilinearMap}(\mathbb{K}, E', G)$, a constant $C \in \mathbb{R}$, and a hypothesis $H$ stating that for all $m_1 \in \prod_{i} E_i$ and $m_2 \in \prod_{i} E'_i$, the inequality $\|f(m_1)(m_2)\| \leq (C \prod_i \|m_{1,i}\|) \prod_i \|m_{2,i}\|$ holds, then for any $m \in \prod_i E_i$, the continuous multilinear map $\text{mkContinuousMultilinear}(f, C, H)(m)$ coincides with $f(m)$.
MultilinearMap.mkContinuousMultilinear_norm_le' theorem
(f : MultilinearMap 𝕜 E (MultilinearMap 𝕜 E' G)) (C : ℝ) (H : ∀ m₁ m₂, ‖f m₁ m₂‖ ≤ (C * ∏ i, ‖m₁ i‖) * ∏ i, ‖m₂ i‖) : ‖mkContinuousMultilinear f C H‖ ≤ max C 0
Full source
theorem mkContinuousMultilinear_norm_le' (f : MultilinearMap 𝕜 E (MultilinearMap 𝕜 E' G)) (C : )
    (H : ∀ m₁ m₂, ‖f m₁ m₂‖ ≤ (C * ∏ i, ‖m₁ i‖) * ∏ i, ‖m₂ i‖) :
    ‖mkContinuousMultilinear f C H‖max C 0 := by
  dsimp only [mkContinuousMultilinear]
  exact mkContinuous_norm_le _ (le_max_right _ _) _
Operator Norm Bound for $\mathrm{mkContinuousMultilinear}$: $\|\mathrm{mkContinuousMultilinear}(f, C, H)\| \leq \max(C, 0)$
Informal description
Let $f$ be a multilinear map from a family of normed vector spaces $(E_i)_{i \in \iota}$ to the space of multilinear maps from another family $(E'_i)_{i \in \iota'}$ to a normed vector space $G$, all over a nontrivially normed field $\mathbb{K}$. Given a real number $C$ such that for all $m_1 \in \prod_i E_i$ and $m_2 \in \prod_i E'_i$, the inequality \[ \|f(m_1)(m_2)\| \leq \left(C \prod_i \|m_{1,i}\|\right) \prod_i \|m_{2,i}\| \] holds, then the operator norm of the continuous multilinear map $\mathrm{mkContinuousMultilinear}(f, C, H)$ satisfies \[ \|\mathrm{mkContinuousMultilinear}(f, C, H)\| \leq \max(C, 0). \]
MultilinearMap.mkContinuousMultilinear_norm_le theorem
(f : MultilinearMap 𝕜 E (MultilinearMap 𝕜 E' G)) {C : ℝ} (hC : 0 ≤ C) (H : ∀ m₁ m₂, ‖f m₁ m₂‖ ≤ (C * ∏ i, ‖m₁ i‖) * ∏ i, ‖m₂ i‖) : ‖mkContinuousMultilinear f C H‖ ≤ C
Full source
theorem mkContinuousMultilinear_norm_le (f : MultilinearMap 𝕜 E (MultilinearMap 𝕜 E' G)) {C : }
    (hC : 0 ≤ C) (H : ∀ m₁ m₂, ‖f m₁ m₂‖ ≤ (C * ∏ i, ‖m₁ i‖) * ∏ i, ‖m₂ i‖) :
    ‖mkContinuousMultilinear f C H‖ ≤ C :=
  (mkContinuousMultilinear_norm_le' f C H).trans_eq (max_eq_left hC)
Operator Norm Bound for $\text{mkContinuousMultilinear}$: $\|\text{mkContinuousMultilinear}(f, C, H)\| \leq C$ when $C \geq 0$
Informal description
Let $\mathbb{K}$ be a nontrivially normed field, $E$ and $E'$ be families of normed vector spaces over $\mathbb{K}$ indexed by finite types $\iota$ and $\iota'$ respectively, and $G$ be a normed vector space over $\mathbb{K}$. Given a multilinear map $f \colon \prod_{i} E_i \to \text{MultilinearMap}(\mathbb{K}, E', G)$, a nonnegative constant $C \geq 0$, and a hypothesis $H$ stating that for all $m_1 \in \prod_{i} E_i$ and $m_2 \in \prod_{i} E'_i$, the inequality $\|f(m_1)(m_2)\| \leq (C \prod_i \|m_{1,i}\|) \prod_i \|m_{2,i}\|$ holds, then the operator norm of the continuous multilinear map $\text{mkContinuousMultilinear}(f, C, H)$ satisfies $\|\text{mkContinuousMultilinear}(f, C, H)\| \leq C$.
ContinuousMultilinearMap.norm_compContinuousLinearMap_le theorem
(g : ContinuousMultilinearMap 𝕜 E₁ G) (f : ∀ i, E i →L[𝕜] E₁ i) : ‖g.compContinuousLinearMap f‖ ≤ ‖g‖ * ∏ i, ‖f i‖
Full source
theorem norm_compContinuousLinearMap_le (g : ContinuousMultilinearMap 𝕜 E₁ G)
    (f : ∀ i, E i →L[𝕜] E₁ i) : ‖g.compContinuousLinearMap f‖‖g‖ * ∏ i, ‖f i‖ :=
  opNorm_le_bound (by positivity) fun m =>
    calc
      ‖g fun i => f i (m i)‖‖g‖ * ∏ i, ‖f i (m i)‖ := g.le_opNorm _
      _ ≤ ‖g‖ * ∏ i, ‖f i‖ * ‖m i‖ :=
        (mul_le_mul_of_nonneg_left
          (prod_le_prod (fun _ _ => norm_nonneg _) fun i _ => (f i).le_opNorm (m i))
          (norm_nonneg g))
      _ = (‖g‖ * ∏ i, ‖f i‖) * ∏ i, ‖m i‖ := by rw [prod_mul_distrib, mul_assoc]
Operator Norm Inequality for Composition of Continuous Multilinear and Linear Maps: $\|g \circ (f_i)\| \leq \|g\| \cdot \prod_i \|f_i\|$
Informal description
Let $g$ be a continuous multilinear map from a family of normed vector spaces $(E_{1,i})_{i \in \iota}$ to a normed vector space $G$ over a nontrivially normed field $\mathbb{K}$, and let $f_i \colon E_i \to E_{1,i}$ be a family of continuous linear maps. Then the operator norm of the composition $g \circ (f_i)_{i \in \iota}$ satisfies the inequality: \[ \|g \circ (f_i)_{i \in \iota}\| \leq \|g\| \cdot \prod_{i \in \iota} \|f_i\|. \]
ContinuousMultilinearMap.norm_compContinuous_linearIsometry_le theorem
(g : ContinuousMultilinearMap 𝕜 E₁ G) (f : ∀ i, E i →ₗᵢ[𝕜] E₁ i) : ‖g.compContinuousLinearMap fun i => (f i).toContinuousLinearMap‖ ≤ ‖g‖
Full source
theorem norm_compContinuous_linearIsometry_le (g : ContinuousMultilinearMap 𝕜 E₁ G)
    (f : ∀ i, E i →ₗᵢ[𝕜] E₁ i) :
    ‖g.compContinuousLinearMap fun i => (f i).toContinuousLinearMap‖‖g‖ := by
  refine opNorm_le_bound (norm_nonneg _) fun m => ?_
  apply (g.le_opNorm _).trans _
  simp only [ContinuousLinearMap.coe_coe, LinearIsometry.coe_toContinuousLinearMap,
    LinearIsometry.norm_map, le_rfl]
Operator Norm Bound for Composition with Linear Isometries
Informal description
Let $G$ be a normed vector space over a nontrivially normed field $\mathbb{K}$, and let $(E_i)_{i \in \iota}$ and $(E'_i)_{i \in \iota}$ be families of normed vector spaces over $\mathbb{K}$. For any continuous multilinear map $g \colon \prod_{i \in \iota} E'_i \to G$ and any family of linear isometries $f_i \colon E_i \to E'_i$, the operator norm of the composition $g \circ (f_i)_{i \in \iota}$ satisfies \[ \|g \circ (f_i)_{i \in \iota}\| \leq \|g\|. \]
ContinuousMultilinearMap.norm_compContinuous_linearIsometryEquiv theorem
(g : ContinuousMultilinearMap 𝕜 E₁ G) (f : ∀ i, E i ≃ₗᵢ[𝕜] E₁ i) : ‖g.compContinuousLinearMap fun i => (f i : E i →L[𝕜] E₁ i)‖ = ‖g‖
Full source
theorem norm_compContinuous_linearIsometryEquiv (g : ContinuousMultilinearMap 𝕜 E₁ G)
    (f : ∀ i, E i ≃ₗᵢ[𝕜] E₁ i) :
    ‖g.compContinuousLinearMap fun i => (f i : E i →L[𝕜] E₁ i)‖ = ‖g‖ := by
  apply le_antisymm (g.norm_compContinuous_linearIsometry_le fun i => (f i).toLinearIsometry)
  have : g = (g.compContinuousLinearMap fun i => (f i : E i →L[𝕜] E₁ i)).compContinuousLinearMap
      fun i => ((f i).symm : E₁ i →L[𝕜] E i) := by
    ext1 m
    simp only [compContinuousLinearMap_apply, LinearIsometryEquiv.coe_coe'',
      LinearIsometryEquiv.apply_symm_apply]
  conv_lhs => rw [this]
  apply (g.compContinuousLinearMap fun i =>
    (f i : E i →L[𝕜] E₁ i)).norm_compContinuous_linearIsometry_le
      fun i => (f i).symm.toLinearIsometry
Operator Norm Preservation under Composition with Linear Isometric Isomorphisms: $\|g \circ (f_i)\| = \|g\|$
Informal description
Let $G$ be a normed vector space over a nontrivially normed field $\mathbb{K}$, and let $(E_i)_{i \in \iota}$ and $(E'_i)_{i \in \iota}$ be families of normed vector spaces over $\mathbb{K}$. For any continuous multilinear map $g \colon \prod_{i \in \iota} E'_i \to G$ and any family of linear isometric isomorphisms $f_i \colon E_i \to E'_i$, the operator norm of the composition $g \circ (f_i)_{i \in \iota}$ satisfies \[ \|g \circ (f_i)_{i \in \iota}\| = \|g\|. \]
ContinuousMultilinearMap.compContinuousLinearMapL_apply theorem
(g : ContinuousMultilinearMap 𝕜 E₁ G) (f : ∀ i, E i →L[𝕜] E₁ i) : compContinuousLinearMapL f g = g.compContinuousLinearMap f
Full source
@[simp]
theorem compContinuousLinearMapL_apply (g : ContinuousMultilinearMap 𝕜 E₁ G)
    (f : ∀ i, E i →L[𝕜] E₁ i) : compContinuousLinearMapL f g = g.compContinuousLinearMap f :=
  rfl
Application of Continuous Linear Map Composition Operator
Informal description
Let $\mathbb{K}$ be a nontrivially normed field, $(E_i)_{i \in \iota}$ and $(E'_i)_{i \in \iota}$ be families of normed vector spaces over $\mathbb{K}$, and $G$ be a normed vector space over $\mathbb{K}$. For any continuous multilinear map $g \colon \prod_{i \in \iota} E'_i \to G$ and any family of continuous linear maps $f_i \colon E_i \to E'_i$, the application of the continuous linear map composition operator satisfies \[ \text{compContinuousLinearMapL}(f)(g) = g \circ (f_i)_{i \in \iota}. \]
ContinuousMultilinearMap.norm_compContinuousLinearMapL_le theorem
(f : ∀ i, E i →L[𝕜] E₁ i) : ‖compContinuousLinearMapL (G := G) f‖ ≤ ∏ i, ‖f i‖
Full source
theorem norm_compContinuousLinearMapL_le (f : ∀ i, E i →L[𝕜] E₁ i) :
    ‖compContinuousLinearMapL (G := G) f‖∏ i, ‖f i‖ :=
  LinearMap.mkContinuous_norm_le _ (by positivity) _
Operator Norm Bound for Composition with Continuous Linear Maps: $\|\text{compContinuousLinearMapL}(f)\| \leq \prod \|f_i\|$
Informal description
Let $\mathbb{K}$ be a nontrivially normed field, $(E_i)_{i \in \iota}$ and $(E'_i)_{i \in \iota}$ be families of normed vector spaces over $\mathbb{K}$, and $G$ be a normed vector space over $\mathbb{K}$. For any family of continuous linear maps $f_i \colon E_i \to E'_i$, the operator norm of the composition operator $\text{compContinuousLinearMapL}(f)$ satisfies \[ \|\text{compContinuousLinearMapL}(f)\| \leq \prod_{i} \|f_i\|. \]
ContinuousMultilinearMap.compContinuousLinearMapLRight_apply theorem
(g : ContinuousMultilinearMap 𝕜 E₁ G) (f : ∀ i, E i →L[𝕜] E₁ i) : compContinuousLinearMapLRight g f = g.compContinuousLinearMap f
Full source
@[simp]
theorem compContinuousLinearMapLRight_apply (g : ContinuousMultilinearMap 𝕜 E₁ G)
    (f : ∀ i, E i →L[𝕜] E₁ i) : compContinuousLinearMapLRight g f = g.compContinuousLinearMap f :=
  rfl
Right Composition of Continuous Multilinear Map with Linear Maps: $\text{compContinuousLinearMapLRight}(g)(f) = g \circ (f_i)_i$
Informal description
Let $\mathbb{K}$ be a nontrivially normed field, $(E_i)_{i \in \iota}$ and $(E'_i)_{i \in \iota}$ be families of normed vector spaces over $\mathbb{K}$, and $G$ be a normed vector space over $\mathbb{K}$. For any continuous multilinear map $g \colon \prod_{i \in \iota} E'_i \to G$ and any family of continuous linear maps $f_i \colon E_i \to E'_i$, the application of the right continuous linear map composition operator satisfies \[ \text{compContinuousLinearMapLRight}(g)(f) = g \circ (f_i)_{i \in \iota}. \]
ContinuousMultilinearMap.norm_compContinuousLinearMapLRight_le theorem
(g : ContinuousMultilinearMap 𝕜 E₁ G) : ‖compContinuousLinearMapLRight (E := E) g‖ ≤ ‖g‖
Full source
theorem norm_compContinuousLinearMapLRight_le (g : ContinuousMultilinearMap 𝕜 E₁ G) :
    ‖compContinuousLinearMapLRight (E := E) g‖‖g‖ :=
  MultilinearMap.mkContinuous_norm_le _ (norm_nonneg _) _
Operator Norm Bound for Right Composition with Continuous Linear Maps: $\|\text{compContinuousLinearMapLRight}(g)\| \leq \|g\|$
Informal description
Let $\mathbb{K}$ be a nontrivially normed field, $(E_i)_{i \in \iota}$ and $(E'_i)_{i \in \iota}$ be families of normed vector spaces over $\mathbb{K}$, and $G$ be a normed vector space over $\mathbb{K}$. For any continuous multilinear map $g \colon \prod_i E'_i \to G$, the operator norm of the right composition operator $\text{compContinuousLinearMapLRight}(g)$ satisfies \[ \|\text{compContinuousLinearMapLRight}(g)\| \leq \|g\|. \]
ContinuousLinearEquiv.continuousMultilinearMapCongrLeft_symm theorem
(f : ∀ i, E i ≃L[𝕜] E₁ i) : (ContinuousLinearEquiv.continuousMultilinearMapCongrLeft G f).symm = .continuousMultilinearMapCongrLeft G fun i : ι => (f i).symm
Full source
@[simp]
theorem _root_.ContinuousLinearEquiv.continuousMultilinearMapCongrLeft_symm
    (f : ∀ i, E i ≃L[𝕜] E₁ i) :
    (ContinuousLinearEquiv.continuousMultilinearMapCongrLeft G f).symm =
      .continuousMultilinearMapCongrLeft G fun i : ι => (f i).symm :=
  rfl
Inverse of Continuous Multilinear Map Congruence via Linear Equivalences
Informal description
Let $E$ and $E₁$ be families of normed vector spaces over a nontrivially normed field $\mathbb{K}$, indexed by a finite type $\iota$. For any family of continuous linear equivalences $f_i : E_i \simeq_{L[\mathbb{K}]} E₁_i$ (for each $i \in \iota$), the inverse of the induced continuous linear equivalence on the space of continuous multilinear maps $\text{ContinuousMultilinearMap}(\mathbb{K}, E₁, G) \simeq_{L[\mathbb{K}]} \text{ContinuousMultilinearMap}(\mathbb{K}, E, G)$ is equal to the continuous linear equivalence induced by the family of inverses $(f_i)^{-1} : E₁_i \simeq_{L[\mathbb{K}]} E_i$.
ContinuousLinearEquiv.continuousMultilinearMapCongrLeft_apply theorem
(g : ContinuousMultilinearMap 𝕜 E₁ G) (f : ∀ i, E i ≃L[𝕜] E₁ i) : ContinuousLinearEquiv.continuousMultilinearMapCongrLeft G f g = g.compContinuousLinearMap fun i => (f i : E i →L[𝕜] E₁ i)
Full source
@[simp]
theorem _root_.ContinuousLinearEquiv.continuousMultilinearMapCongrLeft_apply
    (g : ContinuousMultilinearMap 𝕜 E₁ G) (f : ∀ i, E i ≃L[𝕜] E₁ i) :
    ContinuousLinearEquiv.continuousMultilinearMapCongrLeft G f g =
      g.compContinuousLinearMap fun i => (f i : E i →L[𝕜] E₁ i) :=
  rfl
Action of Linear Isomorphisms on Continuous Multilinear Maps via Congruence
Informal description
Let $G$ be a normed vector space over a nontrivially normed field $\mathbb{K}$, and let $E_i$ and $E'_i$ be families of normed vector spaces over $\mathbb{K}$ indexed by a finite set $I$. For any continuous multilinear map $g \colon \prod_{i \in I} E'_i \to G$ and any family of continuous linear isomorphisms $f_i \colon E_i \to E'_i$ for each $i \in I$, the map $\text{continuousMultilinearMapCongrLeft}_G(f)(g)$ is equal to the composition of $g$ with the family of continuous linear maps $(f_i)_{i \in I}$.
ContinuousMultilinearMap.iteratedFDerivComponent_apply theorem
{α : Type*} [Fintype α] (f : ContinuousMultilinearMap 𝕜 E₁ G) {s : Set ι} (e : α ≃ s) [DecidablePred (· ∈ s)] (v : ∀ i : { a : ι // a ∉ s }, E₁ i) (w : α → (∀ i, E₁ i)) : f.iteratedFDerivComponent e v w = f (fun j ↦ if h : j ∈ s then w (e.symm ⟨j, h⟩) j else v ⟨j, h⟩)
Full source
@[simp] lemma iteratedFDerivComponent_apply {α : Type*} [Fintype α]
    (f : ContinuousMultilinearMap 𝕜 E₁ G) {s : Set ι} (e : α ≃ s) [DecidablePred (· ∈ s)]
    (v : ∀ i : {a : ι // a ∉ s}, E₁ i) (w : α → (∀ i, E₁ i)) :
    f.iteratedFDerivComponent e v w =
      f (fun j ↦ if h : j ∈ s then w (e.symm ⟨j, h⟩) j else v ⟨j, h⟩) := by
  simp [iteratedFDerivComponent, MultilinearMap.iteratedFDerivComponent,
    MultilinearMap.domDomRestrictₗ]
Expression for Iterated Fréchet Derivative Component of a Continuous Multilinear Map
Informal description
Let $E₁$ be a family of normed vector spaces over a nontrivially normed field $\mathbb{K}$, indexed by a finite set $\iota$, and let $G$ be another normed vector space over $\mathbb{K}$. Given a continuous multilinear map $f \colon \prod_{i \in \iota} E₁_i \to G$, a subset $s \subset \iota$, a bijection $e \colon \alpha \simeq s$ where $\alpha$ is a finite type, and vectors $v \colon \prod_{i \notin s} E₁_i$ and $w \colon \alpha \to \prod_{i \in \iota} E₁_i$, the iterated Fréchet derivative component of $f$ satisfies \[ f_{\text{iteratedFDerivComponent}}(e, v, w) = f\left(\lambda j \mapsto \begin{cases} w(e^{-1}(j))_j & \text{if } j \in s, \\ v_j & \text{if } j \notin s. \end{cases}\right). \]
ContinuousMultilinearMap.norm_iteratedFDerivComponent_le theorem
{α : Type*} [Fintype α] (f : ContinuousMultilinearMap 𝕜 E₁ G) {s : Set ι} (e : α ≃ s) [DecidablePred (· ∈ s)] (x : (i : ι) → E₁ i) : ‖f.iteratedFDerivComponent e (x ·)‖ ≤ ‖f‖ * ‖x‖ ^ (Fintype.card ι - Fintype.card α)
Full source
lemma norm_iteratedFDerivComponent_le {α : Type*} [Fintype α]
    (f : ContinuousMultilinearMap 𝕜 E₁ G) {s : Set ι} (e : α ≃ s) [DecidablePred (· ∈ s)]
    (x : (i : ι) → E₁ i) :
    ‖f.iteratedFDerivComponent e (x ·)‖‖f‖ * ‖x‖ ^ (Fintype.card ι - Fintype.card α) := calc
  ‖f.iteratedFDerivComponent e (fun i ↦ x i)‖‖f.iteratedFDerivComponent e‖ * ∏ i : {a : ι // a ∉ s}, ‖x i‖ :=
      ContinuousMultilinearMap.le_opNorm _ _
  _ ≤ ‖f‖ * ∏ _i : {a : ι // a ∉ s}, ‖x‖ := by
      gcongr
      · exact MultilinearMap.mkContinuousMultilinear_norm_le _ (norm_nonneg _) _
      · exact norm_le_pi_norm _ _
  _ = ‖f‖ * ‖x‖ ^ (Fintype.card {a : ι // a ∉ s}) := by rw [prod_const, card_univ]
  _ = ‖f‖ * ‖x‖ ^ (Fintype.card ι - Fintype.card α) := by simp [Fintype.card_congr e]
Norm Bound for Iterated Fréchet Derivative Component: $\|f_{\text{iteratedFDerivComponent}}(e, x)\| \leq \|f\| \cdot \|x\|^{|\iota| - |\alpha|}$
Informal description
Let $\mathbb{K}$ be a nontrivially normed field, $E₁$ a family of normed vector spaces over $\mathbb{K}$ indexed by a finite set $\iota$, and $G$ a normed vector space over $\mathbb{K}$. For any continuous multilinear map $f \colon \prod_{i \in \iota} E₁_i \to G$, finite type $\alpha$, subset $s \subset \iota$ with a bijection $e \colon \alpha \simeq s$, and vector $x \in \prod_{i \in \iota} E₁_i$, the norm of the iterated Fréchet derivative component satisfies \[ \|f_{\text{iteratedFDerivComponent}}(e, x)\| \leq \|f\| \cdot \|x\|^{|\iota| - |\alpha|}, \] where $|\iota|$ and $|\alpha|$ denote the cardinalities of $\iota$ and $\alpha$ respectively.
ContinuousMultilinearMap.norm_iteratedFDeriv_le' theorem
(f : ContinuousMultilinearMap 𝕜 E₁ G) (k : ℕ) (x : (i : ι) → E₁ i) : ‖f.iteratedFDeriv k x‖ ≤ Nat.descFactorial (Fintype.card ι) k * ‖f‖ * ‖x‖ ^ (Fintype.card ι - k)
Full source
/-- Controlling the norm of `f.iteratedFDeriv` when `f` is continuous multilinear. For the same
bound on the iterated derivative of `f` in the calculus sense,
see `ContinuousMultilinearMap.norm_iteratedFDeriv_le`. -/
lemma norm_iteratedFDeriv_le' (f : ContinuousMultilinearMap 𝕜 E₁ G) (k : ) (x : (i : ι) → E₁ i) :
    ‖f.iteratedFDeriv k x‖Nat.descFactorial (Fintype.card ι) k * ‖f‖ * ‖x‖ ^ (Fintype.card ι - k) := by
  classical
  calc ‖f.iteratedFDeriv k x‖
  _ ≤ ∑ e : Fin k ↪ ι, ‖iteratedFDerivComponent f e.toEquivRange (fun i ↦ x i)‖ := norm_sum_le _ _
  _ ≤ ∑ _ : Fin k ↪ ι, ‖f‖ * ‖x‖ ^ (Fintype.card ι - k) := by
    gcongr with e _
    simpa using norm_iteratedFDerivComponent_le f e.toEquivRange x
  _ = Nat.descFactorial (Fintype.card ι) k * ‖f‖ * ‖x‖ ^ (Fintype.card ι - k) := by
    simp [card_univ, mul_assoc]
Norm Bound for Iterated Fréchet Derivative: $\|f^{(k)}(x)\| \leq \binom{|\iota|}{k} k! \cdot \|f\| \cdot \|x\|^{|\iota| - k}$
Informal description
Let $\mathbb{K}$ be a nontrivially normed field, $E₁$ a family of normed vector spaces over $\mathbb{K}$ indexed by a finite set $\iota$, and $G$ a normed vector space over $\mathbb{K}$. For any continuous multilinear map $f \colon \prod_{i \in \iota} E₁_i \to G$, natural number $k$, and vector $x \in \prod_{i \in \iota} E₁_i$, the norm of the $k$-th iterated Fréchet derivative of $f$ at $x$ satisfies \[ \|f^{(k)}(x)\| \leq \binom{|\iota|}{k} k! \cdot \|f\| \cdot \|x\|^{|\iota| - k}, \] where $|\iota|$ denotes the cardinality of $\iota$ and $\binom{|\iota|}{k} k!$ is the descending factorial of $|\iota|$ and $k$.
ContinuousMultilinearMap.opNorm_zero_iff theorem
{f : ContinuousMultilinearMap 𝕜 E G} : ‖f‖ = 0 ↔ f = 0
Full source
/-- A continuous linear map is zero iff its norm vanishes. -/
theorem opNorm_zero_iff {f : ContinuousMultilinearMap 𝕜 E G} : ‖f‖‖f‖ = 0 ↔ f = 0 := by
  simp [← (opNorm_nonneg f).le_iff_eq, opNorm_le_iff le_rfl, ContinuousMultilinearMap.ext_iff]
Vanishing Operator Norm Characterizes Zero Continuous Multilinear Maps
Informal description
For a continuous multilinear map $f$ from a family of normed vector spaces $(E_i)_{i \in \iota}$ to a normed vector space $G$ over a nontrivially normed field $\mathbb{K}$, the operator norm $\|f\|$ is zero if and only if $f$ is identically zero.
ContinuousMultilinearMap.norm_ofSubsingleton_id theorem
[Subsingleton ι] [Nontrivial G] (i : ι) : ‖ofSubsingleton 𝕜 G G i (.id _ _)‖ = 1
Full source
theorem norm_ofSubsingleton_id [Subsingleton ι] [Nontrivial G] (i : ι) :
    ‖ofSubsingleton 𝕜 G G i (.id _ _)‖ = 1 := by
  simp
Operator Norm of Identity via Subsingleton Construction is 1
Informal description
Let $\iota$ be a finite index type with decidable equality that is a subsingleton (i.e., all elements are equal), and let $G$ be a nontrivial normed vector space over a nontrivially normed field $\mathbb{K}$. For any $i \in \iota$, the operator norm of the continuous multilinear map constructed from the identity map $\text{id}_{\mathbb{K} G}$ via `ofSubsingleton` equals $1$, i.e., $$\|\text{ofSubsingleton}_{\mathbb{K},G,G}(i, \text{id}_{\mathbb{K} G})\| = 1.$$
ContinuousMultilinearMap.nnnorm_ofSubsingleton_id theorem
[Subsingleton ι] [Nontrivial G] (i : ι) : ‖ofSubsingleton 𝕜 G G i (.id _ _)‖₊ = 1
Full source
theorem nnnorm_ofSubsingleton_id [Subsingleton ι] [Nontrivial G] (i : ι) :
    ‖ofSubsingleton 𝕜 G G i (.id _ _)‖₊ = 1 :=
  NNReal.eq <| norm_ofSubsingleton_id ..
Operator Seminorm of Identity via Subsingleton Construction is 1
Informal description
Let $\iota$ be a finite index type with decidable equality that is a subsingleton (i.e., all elements are equal), and let $G$ be a nontrivial normed vector space over a nontrivially normed field $\mathbb{K}$. For any $i \in \iota$, the operator seminorm (nonnegative norm) of the continuous multilinear map constructed from the identity map $\text{id}_{\mathbb{K} G}$ via `ofSubsingleton` equals $1$, i.e., $$\|\text{ofSubsingleton}_{\mathbb{K},G,G}(i, \text{id}_{\mathbb{K} G})\|_+ = 1.$$
MultilinearMap.bound_of_shell theorem
(f : MultilinearMap 𝕜 E G) {ε : ι → ℝ} {C : ℝ} {c : ι → 𝕜} (hε : ∀ i, 0 < ε i) (hc : ∀ i, 1 < ‖c i‖) (hf : ∀ m : ∀ i, E i, (∀ i, ε i / ‖c i‖ ≤ ‖m i‖) → (∀ i, ‖m i‖ < ε i) → ‖f m‖ ≤ C * ∏ i, ‖m i‖) (m : ∀ i, E i) : ‖f m‖ ≤ C * ∏ i, ‖m i‖
Full source
/-- If a multilinear map in finitely many variables on normed spaces satisfies the inequality
`‖f m‖ ≤ C * ∏ i, ‖m i‖` on a shell `ε i / ‖c i‖ < ‖m i‖ < ε i` for some positive numbers `ε i`
and elements `c i : 𝕜`, `1 < ‖c i‖`, then it satisfies this inequality for all `m`. -/
theorem bound_of_shell (f : MultilinearMap 𝕜 E G) {ε : ι → } {C : } {c : ι → 𝕜}
    (hε : ∀ i, 0 < ε i) (hc : ∀ i, 1 < ‖c i‖)
    (hf : ∀ m : ∀ i, E i, (∀ i, ε i / ‖c i‖‖m i‖) → (∀ i, ‖m i‖ < ε i) → ‖f m‖ ≤ C * ∏ i, ‖m i‖)
    (m : ∀ i, E i) : ‖f m‖ ≤ C * ∏ i, ‖m i‖ :=
  bound_of_shell_of_norm_map_coord_zero f
    (fun h ↦ by rw [map_coord_zero f _ (norm_eq_zero.1 h), norm_zero]) hε hc hf m
Shell Condition Implies Global Bound for Multilinear Maps
Informal description
Let $f$ be a multilinear map on a family of normed vector spaces $(E_i)_{i \in \iota}$ over a nontrivially normed field $\mathbb{K}$. Suppose there exist positive numbers $\varepsilon_i > 0$ and elements $c_i \in \mathbb{K}$ with $\|c_i\| > 1$ for each $i \in \iota$, such that for all $m \in \prod_{i \in \iota} E_i$ satisfying $\varepsilon_i / \|c_i\| \leq \|m_i\| < \varepsilon_i$ for each $i$, the inequality $\|f(m)\| \leq C \prod_{i} \|m_i\|$ holds. Then for all $m \in \prod_{i \in \iota} E_i$, the inequality $\|f(m)\| \leq C \prod_{i} \|m_i\|$ holds.