doc-next-gen

Mathlib.Analysis.NormedSpace.OperatorNorm.Bilinear

Module docstring

{"# Operator norm: bilinear maps

This file contains lemmas concerning operator norm as applied to bilinear maps E × F → G, interpreted as linear maps E → F → G as usual (and similarly for semilinear variants).

"}

ContinuousLinearMap.opNorm_ext theorem
[RingHomIsometric σ₁₃] (f : E →SL[σ₁₂] F) (g : E →SL[σ₁₃] G) (h : ∀ x, ‖f x‖ = ‖g x‖) : ‖f‖ = ‖g‖
Full source
theorem opNorm_ext [RingHomIsometric σ₁₃] (f : E →SL[σ₁₂] F) (g : E →SL[σ₁₃] G)
    (h : ∀ x, ‖f x‖ = ‖g x‖) : ‖f‖ = ‖g‖ :=
  opNorm_eq_of_bounds (norm_nonneg _)
    (fun x => by
      rw [h x]
      exact le_opNorm _ _)
    fun c hc h₂ =>
    opNorm_le_bound _ hc fun z => by
      rw [← h z]
      exact h₂ z
Equality of Operator Norms for Norm-Preserving Semilinear Maps
Informal description
Let $E$, $F$, and $G$ be seminormed additive commutative groups, and let $\sigma_{12}$ and $\sigma_{13}$ be ring homomorphisms with $\sigma_{13}$ being isometric. For any continuous $\sigma_{12}$-semilinear map $f \colon E \to F$ and continuous $\sigma_{13}$-semilinear map $g \colon E \to G$ such that $\|f(x)\| = \|g(x)\|$ for all $x \in E$, the operator norms of $f$ and $g$ are equal, i.e., $\|f\| = \|g\|$.
ContinuousLinearMap.opNorm_le_bound₂ theorem
(f : E →SL[σ₁₃] F →SL[σ₂₃] G) {C : ℝ} (h0 : 0 ≤ C) (hC : ∀ x y, ‖f x y‖ ≤ C * ‖x‖ * ‖y‖) : ‖f‖ ≤ C
Full source
theorem opNorm_le_bound₂ (f : E →SL[σ₁₃] F →SL[σ₂₃] G) {C : } (h0 : 0 ≤ C)
    (hC : ∀ x y, ‖f x y‖ ≤ C * ‖x‖ * ‖y‖) : ‖f‖ ≤ C :=
  f.opNorm_le_bound h0 fun x => (f x).opNorm_le_bound (mul_nonneg h0 (norm_nonneg _)) <| hC x
Operator Norm Bound for Bilinear Maps via Uniform Estimate
Informal description
Let $E$, $F$, and $G$ be seminormed additive commutative groups, and let $\sigma_{13}$ and $\sigma_{23}$ be ring homomorphisms. For any continuous bilinear map $f \colon E \times F \to G$ (interpreted as a continuous semilinear map $E \to F \to G$) and any nonnegative real number $C \geq 0$ such that $\|f(x, y)\| \leq C \cdot \|x\| \cdot \|y\|$ holds for all $x \in E$ and $y \in F$, the operator norm of $f$ satisfies $\|f\| \leq C$.
ContinuousLinearMap.le_opNorm₂ theorem
[RingHomIsometric σ₁₃] (f : E →SL[σ₁₃] F →SL[σ₂₃] G) (x : E) (y : F) : ‖f x y‖ ≤ ‖f‖ * ‖x‖ * ‖y‖
Full source
theorem le_opNorm₂ [RingHomIsometric σ₁₃] (f : E →SL[σ₁₃] F →SL[σ₂₃] G) (x : E) (y : F) :
    ‖f x y‖‖f‖ * ‖x‖ * ‖y‖ :=
  (f x).le_of_opNorm_le (f.le_opNorm x) y
Operator Norm Bound for Bilinear Maps: $\|f(x)(y)\| \leq \|f\| \cdot \|x\| \cdot \|y\|$
Informal description
For any continuous bilinear map $f \colon E \to F \to G$ between seminormed additive commutative groups, where the ring homomorphism $\sigma_{13}$ is isometric, and for any elements $x \in E$ and $y \in F$, the norm of $f(x)(y)$ is bounded by the product of the operator norm of $f$ and the norms of $x$ and $y$, i.e., \[ \|f(x)(y)\| \leq \|f\| \cdot \|x\| \cdot \|y\|. \]
ContinuousLinearMap.le_of_opNorm₂_le_of_le theorem
[RingHomIsometric σ₁₃] (f : E →SL[σ₁₃] F →SL[σ₂₃] G) {x : E} {y : F} {a b c : ℝ} (hf : ‖f‖ ≤ a) (hx : ‖x‖ ≤ b) (hy : ‖y‖ ≤ c) : ‖f x y‖ ≤ a * b * c
Full source
theorem le_of_opNorm₂_le_of_le [RingHomIsometric σ₁₃] (f : E →SL[σ₁₃] F →SL[σ₂₃] G) {x : E} {y : F}
    {a b c : } (hf : ‖f‖ ≤ a) (hx : ‖x‖ ≤ b) (hy : ‖y‖ ≤ c) :
    ‖f x y‖ ≤ a * b * c :=
  (f x).le_of_opNorm_le_of_le (f.le_of_opNorm_le_of_le hf hx) hy
Operator Norm Bound for Bilinear Map via Bounds on Norm and Inputs: $\|f(x)(y)\| \leq a \cdot b \cdot c$
Informal description
Let $E$, $F$, and $G$ be seminormed additive commutative groups, and let $f \colon E \to F \to G$ be a continuous semilinear map. For any $x \in E$, $y \in F$, and real numbers $a, b, c \geq 0$, if the operator norm of $f$ satisfies $\|f\| \leq a$, the norm of $x$ satisfies $\|x\| \leq b$, and the norm of $y$ satisfies $\|y\| \leq c$, then the norm of $f(x)(y)$ is bounded by $a \cdot b \cdot c$, i.e., $\|f(x)(y)\| \leq a \cdot b \cdot c$.
LinearMap.norm_mkContinuous₂_aux theorem
(f : E →ₛₗ[σ₁₃] F →ₛₗ[σ₂₃] G) (C : ℝ) (h : ∀ x y, ‖f x y‖ ≤ C * ‖x‖ * ‖y‖) (x : E) : ‖(f x).mkContinuous (C * ‖x‖) (h x)‖ ≤ max C 0 * ‖x‖
Full source
lemma norm_mkContinuous₂_aux (f : E →ₛₗ[σ₁₃] F →ₛₗ[σ₂₃] G) (C : )
    (h : ∀ x y, ‖f x y‖ ≤ C * ‖x‖ * ‖y‖) (x : E) :
    ‖(f x).mkContinuous (C * ‖x‖) (h x)‖max C 0 * ‖x‖ :=
  (mkContinuous_norm_le' (f x) (h x)).trans_eq <| by
    rw [max_mul_of_nonneg _ _ (norm_nonneg x), zero_mul]
Operator Norm Bound for Partially Applied Continuous Bilinear Map: $\|(f\,x).\text{mkContinuous}(C \|x\|, h\,x)\| \leq \max(C, 0) \|x\|$
Informal description
Let $E$, $F$, and $G$ be seminormed additive commutative groups, and let $f \colon E \to F \to G$ be a semilinear map. Suppose there exists a real number $C$ such that $\|f(x)(y)\| \leq C \cdot \|x\| \cdot \|y\|$ for all $x \in E$ and $y \in F$. Then for any $x \in E$, the operator norm of the continuous linear map $(f\,x).\text{mkContinuous}(C \cdot \|x\|, h\,x)$ satisfies \[ \|(f\,x).\text{mkContinuous}(C \cdot \|x\|, h\,x)\| \leq \max(C, 0) \cdot \|x\|. \]
LinearMap.mkContinuous₂_apply theorem
(f : E →ₛₗ[σ₁₃] F →ₛₗ[σ₂₃] G) {C : ℝ} (hC : ∀ x y, ‖f x y‖ ≤ C * ‖x‖ * ‖y‖) (x : E) (y : F) : f.mkContinuous₂ C hC x y = f x y
Full source
@[simp]
theorem mkContinuous₂_apply (f : E →ₛₗ[σ₁₃] F →ₛₗ[σ₂₃] G) {C : }
    (hC : ∀ x y, ‖f x y‖ ≤ C * ‖x‖ * ‖y‖) (x : E) (y : F) : f.mkContinuous₂ C hC x y = f x y :=
  rfl
Evaluation of Continuous Bilinear Map Construction: $f.\text{mkContinuous}_2(C, hC)(x, y) = f(x)(y)$
Informal description
Let $E$, $F$, and $G$ be seminormed additive commutative groups, and let $f \colon E \to F \to G$ be a semilinear map. Suppose there exists a real number $C$ such that $\|f(x)(y)\| \leq C \cdot \|x\| \cdot \|y\|$ for all $x \in E$ and $y \in F$. Then for any $x \in E$ and $y \in F$, the continuous bilinear map $f.\text{mkContinuous}_2(C, hC)$ satisfies \[ f.\text{mkContinuous}_2(C, hC)(x, y) = f(x)(y). \]
LinearMap.mkContinuous₂_norm_le' theorem
(f : E →ₛₗ[σ₁₃] F →ₛₗ[σ₂₃] G) {C : ℝ} (hC : ∀ x y, ‖f x y‖ ≤ C * ‖x‖ * ‖y‖) : ‖f.mkContinuous₂ C hC‖ ≤ max C 0
Full source
theorem mkContinuous₂_norm_le' (f : E →ₛₗ[σ₁₃] F →ₛₗ[σ₂₃] G) {C : }
    (hC : ∀ x y, ‖f x y‖ ≤ C * ‖x‖ * ‖y‖) : ‖f.mkContinuous₂ C hC‖max C 0 :=
  mkContinuous_norm_le _ (le_max_iff.2 <| Or.inr le_rfl) (norm_mkContinuous₂_aux f C hC)
Operator Norm Bound for Continuous Bilinear Map: $\|f.\text{mkContinuous₂}\ C\ hC\| \leq \max(C, 0)$
Informal description
Let $E$, $F$, and $G$ be seminormed additive commutative groups, and let $f \colon E \to F \to G$ be a semilinear map. If there exists a real number $C$ such that $\|f(x)(y)\| \leq C \cdot \|x\| \cdot \|y\|$ for all $x \in E$ and $y \in F$, then the operator norm of the continuous bilinear map $f.\text{mkContinuous₂}\ C\ hC$ satisfies \[ \|f.\text{mkContinuous₂}\ C\ hC\| \leq \max(C, 0). \]
LinearMap.mkContinuous₂_norm_le theorem
(f : E →ₛₗ[σ₁₃] F →ₛₗ[σ₂₃] G) {C : ℝ} (h0 : 0 ≤ C) (hC : ∀ x y, ‖f x y‖ ≤ C * ‖x‖ * ‖y‖) : ‖f.mkContinuous₂ C hC‖ ≤ C
Full source
theorem mkContinuous₂_norm_le (f : E →ₛₗ[σ₁₃] F →ₛₗ[σ₂₃] G) {C : } (h0 : 0 ≤ C)
    (hC : ∀ x y, ‖f x y‖ ≤ C * ‖x‖ * ‖y‖) : ‖f.mkContinuous₂ C hC‖ ≤ C :=
  (f.mkContinuous₂_norm_le' hC).trans_eq <| max_eq_left h0
Operator Norm Bound for Continuous Bilinear Map: $\|f.\text{mkContinuous}_2(C, hC)\| \leq C$
Informal description
Let $E$, $F$, and $G$ be seminormed additive commutative groups, and let $f \colon E \to F \to G$ be a semilinear map. If there exists a nonnegative real number $C$ such that $\|f(x)(y)\| \leq C \cdot \|x\| \cdot \|y\|$ for all $x \in E$ and $y \in F$, then the operator norm of the continuous bilinear map $f.\text{mkContinuous}_2(C, hC)$ satisfies \[ \|f.\text{mkContinuous}_2(C, hC)\| \leq C. \]
ContinuousLinearMap.flip_apply theorem
(f : E →SL[σ₁₃] F →SL[σ₂₃] G) (x : E) (y : F) : f.flip y x = f x y
Full source
@[simp]
theorem flip_apply (f : E →SL[σ₁₃] F →SL[σ₂₃] G) (x : E) (y : F) : f.flip y x = f x y :=
  rfl
Flip of Continuous Bilinear Map Evaluates as Original
Informal description
For any continuous bilinear map $f \colon E \times F \to G$ (interpreted as a continuous linear map $E \to F \to G$), and for any elements $x \in E$ and $y \in F$, the flipped map $f^{\text{flip}}$ satisfies $f^{\text{flip}}(y)(x) = f(x)(y)$.
ContinuousLinearMap.flip_flip theorem
(f : E →SL[σ₁₃] F →SL[σ₂₃] G) : f.flip.flip = f
Full source
@[simp]
theorem flip_flip (f : E →SL[σ₁₃] F →SL[σ₂₃] G) : f.flip.flip = f := by
  ext
  rfl
Double Flip of Continuous Bilinear Map is Identity
Informal description
For any continuous bilinear map $f \colon E \times F \to G$ (interpreted as a continuous linear map $E \to (F \to G)$), applying the flip operation twice returns the original map, i.e., $(f^{\text{flip}})^{\text{flip}} = f$.
ContinuousLinearMap.opNorm_flip theorem
(f : E →SL[σ₁₃] F →SL[σ₂₃] G) : ‖f.flip‖ = ‖f‖
Full source
@[simp]
theorem opNorm_flip (f : E →SL[σ₁₃] F →SL[σ₂₃] G) : ‖f.flip‖ = ‖f‖ :=
  le_antisymm (by simpa only [flip_flip] using le_norm_flip f.flip) (le_norm_flip f)
Operator Norm is Invariant Under Flip of Continuous Bilinear Maps
Informal description
For any continuous bilinear map $f \colon E \times F \to G$ (interpreted as a continuous linear map $E \to F \to G$), the operator norm of $f$ is equal to the operator norm of its flip, i.e., $\|f^{\text{flip}}\| = \|f\|$.
ContinuousLinearMap.flip_add theorem
(f g : E →SL[σ₁₃] F →SL[σ₂₃] G) : (f + g).flip = f.flip + g.flip
Full source
@[simp]
theorem flip_add (f g : E →SL[σ₁₃] F →SL[σ₂₃] G) : (f + g).flip = f.flip + g.flip :=
  rfl
Flip of Sum of Bilinear Maps Equals Sum of Flips
Informal description
For any continuous bilinear maps $f, g : E \times F \to G$ (interpreted as continuous linear maps $E \to F \to G$), the flip of their sum equals the sum of their flips, i.e., $(f + g)^\text{flip} = f^\text{flip} + g^\text{flip}$.
ContinuousLinearMap.flip_smul theorem
(c : 𝕜₃) (f : E →SL[σ₁₃] F →SL[σ₂₃] G) : (c • f).flip = c • f.flip
Full source
@[simp]
theorem flip_smul (c : 𝕜₃) (f : E →SL[σ₁₃] F →SL[σ₂₃] G) : (c • f).flip = c • f.flip :=
  rfl
Scalar Multiplication Commutes with Flip of Continuous Semilinear Maps
Informal description
For any scalar $c$ in the field $\mathbb{K}_3$ and any continuous $\sigma_{13}$-semilinear map $f$ from $E$ to the space of continuous $\sigma_{23}$-semilinear maps from $F$ to $G$, the flip of the scalar multiple $c \cdot f$ is equal to the scalar multiple $c \cdot (f\text{.flip})$.
ContinuousLinearMap.flipₗᵢ'_symm theorem
: (flipₗᵢ' E F G σ₂₃ σ₁₃).symm = flipₗᵢ' F E G σ₁₃ σ₂₃
Full source
@[simp]
theorem flipₗᵢ'_symm : (flipₗᵢ' E F G σ₂₃ σ₁₃).symm = flipₗᵢ' F E G σ₁₃ σ₂₃ :=
  rfl
Inverse of Linear Isometric Flip Map Equals Flip with Swapped Arguments and Semilinear Structures
Informal description
The inverse of the linear isometric flip map $\text{flip}_{\text{li}}'$ for spaces $E$, $F$, $G$ with semilinear structures $\sigma_{23}$ and $\sigma_{13}$ is equal to the linear isometric flip map $\text{flip}_{\text{li}}'$ for spaces $F$, $E$, $G$ with semilinear structures $\sigma_{13}$ and $\sigma_{23}$.
ContinuousLinearMap.coe_flipₗᵢ' theorem
: ⇑(flipₗᵢ' E F G σ₂₃ σ₁₃) = flip
Full source
@[simp]
theorem coe_flipₗᵢ' : ⇑(flipₗᵢ' E F G σ₂₃ σ₁₃) = flip :=
  rfl
Coercion of Semilinear Isometric Flip Equals Argument Swapping Function
Informal description
The coercion of the linear isometric flip map $\text{flip}_{\text{li}}'$ from $E \to_{SL[\sigma_{13}]} (F \to_{SL[\sigma_{23}]} G)$ to $F \to_{SL[\sigma_{23}]} (E \to_{SL[\sigma_{13}]} G)$ is equal to the function $\text{flip}$, which swaps the order of arguments in a bilinear map.
ContinuousLinearMap.flipₗᵢ_symm theorem
: (flipₗᵢ 𝕜 E Fₗ Gₗ).symm = flipₗᵢ 𝕜 Fₗ E Gₗ
Full source
@[simp]
theorem flipₗᵢ_symm : (flipₗᵢ 𝕜 E Fₗ Gₗ).symm = flipₗᵢ 𝕜 Fₗ E Gₗ :=
  rfl
Inverse of Linear Isometric Flip Map Equals Flip with Swapped Arguments
Informal description
The inverse of the linear isometric flip map $\text{flip}_{\text{li}} \mathbb{K} E F_{\text{li}} G_{\text{li}}$ is equal to the linear isometric flip map $\text{flip}_{\text{li}} \mathbb{K} F_{\text{li}} E G_{\text{li}}$.
ContinuousLinearMap.coe_flipₗᵢ theorem
: ⇑(flipₗᵢ 𝕜 E Fₗ Gₗ) = flip
Full source
@[simp]
theorem coe_flipₗᵢ : ⇑(flipₗᵢ 𝕜 E Fₗ Gₗ) = flip :=
  rfl
Coercion of Linear Isometric Flip Equals Argument Swapping Function
Informal description
The coercion of the linear isometric equivalence `flipₗᵢ` from `E →L[𝕜] Fₗ →L[𝕜] Gₗ` to `Fₗ →L[𝕜] E →L[𝕜] Gₗ` is equal to the function `flip`, which swaps the order of arguments in a bilinear map.
ContinuousLinearMap.apply_apply' theorem
(v : E) (f : E →SL[σ₁₂] F) : apply' F σ₁₂ v f = f v
Full source
@[simp]
theorem apply_apply' (v : E) (f : E →SL[σ₁₂] F) : apply' F σ₁₂ v f = f v :=
  rfl
Evaluation of Continuous Linear Map via `apply'`
Informal description
For any vector $v$ in a normed space $E$ and any continuous linear map $f \colon E \to F$ (with respect to the ring homomorphism $\sigma_{12}$), the evaluation of the linear map `apply'` at $v$ and $f$ equals $f(v)$, i.e., $\text{apply'}_F^{\sigma_{12}}(v, f) = f(v)$.
ContinuousLinearMap.apply_apply theorem
(v : E) (f : E →L[𝕜] Fₗ) : apply 𝕜 Fₗ v f = f v
Full source
@[simp]
theorem apply_apply (v : E) (f : E →L[𝕜] Fₗ) : apply 𝕜 Fₗ v f = f v :=
  rfl
Evaluation of Continuous Linear Map Application: $\text{apply}(v, f) = f(v)$
Informal description
For any vector $v$ in a normed space $E$ and any continuous linear map $f \colon E \to_{\mathbb{k}} F$, the evaluation of the application map at $v$ and $f$ equals $f(v)$, i.e., $\text{apply}_{\mathbb{k},F}(v, f) = f(v)$.
ContinuousLinearMap.norm_compSL_le theorem
: ‖compSL E F G σ₁₂ σ₂₃‖ ≤ 1
Full source
theorem norm_compSL_le : ‖compSL E F G σ₁₂ σ₂₃‖ ≤ 1 :=
  LinearMap.mkContinuous₂_norm_le _ zero_le_one _
Operator Norm Bound for Composition of Continuous Semilinear Maps: $\|\text{compSL}\| \leq 1$
Informal description
The operator norm of the composition operator $\text{compSL}_{E,F,G}^{\sigma_{12},\sigma_{23}}$, which maps pairs of continuous semilinear maps $(f, g)$ to their composition $f \circ g$, is bounded above by $1$.
ContinuousLinearMap.compSL_apply theorem
(f : F →SL[σ₂₃] G) (g : E →SL[σ₁₂] F) : compSL E F G σ₁₂ σ₂₃ f g = f.comp g
Full source
@[simp]
theorem compSL_apply (f : F →SL[σ₂₃] G) (g : E →SL[σ₁₂] F) : compSL E F G σ₁₂ σ₂₃ f g = f.comp g :=
  rfl
Composition of Continuous Linear Maps via `compSL`
Informal description
For continuous linear maps $f \colon F \to_{\sigma_{23}} G$ and $g \colon E \to_{\sigma_{12}} F$, the composition operator `compSL` satisfies $\text{compSL}_{E,F,G}^{\sigma_{12},\sigma_{23}}(f, g) = f \circ g$.
Continuous.const_clm_comp theorem
{X} [TopologicalSpace X] {f : X → E →SL[σ₁₂] F} (hf : Continuous f) (g : F →SL[σ₂₃] G) : Continuous (fun x => g.comp (f x) : X → E →SL[σ₁₃] G)
Full source
theorem _root_.Continuous.const_clm_comp {X} [TopologicalSpace X] {f : X → E →SL[σ₁₂] F}
    (hf : Continuous f) (g : F →SL[σ₂₃] G) :
    Continuous (fun x => g.comp (f x) : X → E →SL[σ₁₃] G) :=
  (compSL E F G σ₁₂ σ₂₃ g).continuous.comp hf
Continuity of Composition with Fixed Continuous Semilinear Map
Informal description
Let $X$ be a topological space and $f \colon X \to E \to_{SL[\sigma_{12}]} F$ be a continuous map of continuous $\sigma_{12}$-semilinear maps. For any fixed continuous $\sigma_{23}$-semilinear map $g \colon F \to_{SL[\sigma_{23}]} G$, the composition map $x \mapsto g \circ (f x) \colon X \to E \to_{SL[\sigma_{13}]} G$ is continuous.
Continuous.clm_comp_const theorem
{X} [TopologicalSpace X] {g : X → F →SL[σ₂₃] G} (hg : Continuous g) (f : E →SL[σ₁₂] F) : Continuous (fun x => (g x).comp f : X → E →SL[σ₁₃] G)
Full source
theorem _root_.Continuous.clm_comp_const {X} [TopologicalSpace X] {g : X → F →SL[σ₂₃] G}
    (hg : Continuous g) (f : E →SL[σ₁₂] F) :
    Continuous (fun x => (g x).comp f : X → E →SL[σ₁₃] G) :=
  (@ContinuousLinearMap.flip _ _ _ _ _ (E →SL[σ₁₃] G) _ _ _ _ _ _ _ _ _ _ _ _ _
    (compSL E F G σ₁₂ σ₂₃) f).continuous.comp hg
Continuity of Precomposition with a Fixed Continuous Linear Map
Informal description
Let $X$ be a topological space and $g \colon X \to F \toSL_{\sigma_{23}} G$ be a continuous map. For any continuous linear map $f \colon E \toSL_{\sigma_{12}} F$, the map $x \mapsto (g(x)) \circ f$ from $X$ to $E \toSL_{\sigma_{13}} G$ is continuous.
ContinuousLinearMap.norm_compL_le theorem
: ‖compL 𝕜 E Fₗ Gₗ‖ ≤ 1
Full source
theorem norm_compL_le : ‖compL 𝕜 E Fₗ Gₗ‖ ≤ 1 :=
  norm_compSL_le _ _ _ _ _
Operator Norm Bound for Composition Operator: $\|\mathrm{compL}_{\mathbb{K}} E F_\lambda G_\lambda\| \leq 1$
Informal description
The operator norm of the composition operator $\mathrm{compL}_{\mathbb{K}} E F_\lambda G_\lambda$ is bounded above by $1$.
ContinuousLinearMap.compL_apply theorem
(f : Fₗ →L[𝕜] Gₗ) (g : E →L[𝕜] Fₗ) : compL 𝕜 E Fₗ Gₗ f g = f.comp g
Full source
@[simp]
theorem compL_apply (f : Fₗ →L[𝕜] Gₗ) (g : E →L[𝕜] Fₗ) : compL 𝕜 E Fₗ Gₗ f g = f.comp g :=
  rfl
Composition Operator Acts as Functional Composition
Informal description
For any continuous linear maps $f \colon F_\lambda \to_{\mathbb{K}} G_\lambda$ and $g \colon E \to_{\mathbb{K}} F_\lambda$, the composition operator $\mathrm{compL}_{\mathbb{K}} E F_\lambda G_\lambda$ applied to $f$ and $g$ equals the composition $f \circ g$ of the two maps.
ContinuousLinearMap.precompL_apply theorem
(L : E →L[𝕜] Fₗ →L[𝕜] Gₗ) (u : Eₗ →L[𝕜] E) (f : Fₗ) (g : Eₗ) : precompL Eₗ L u f g = L (u g) f
Full source
@[simp] lemma precompL_apply (L : E →L[𝕜] Fₗ →L[𝕜] Gₗ) (u : Eₗ →L[𝕜] E) (f : Fₗ) (g : Eₗ) :
    precompL Eₗ L u f g = L (u g) f := rfl
Precomposition Operator Acts as Evaluation of Bilinear Map
Informal description
For any continuous bilinear map $L \colon E \to_{\mathbb{K}} F_\lambda \to_{\mathbb{K}} G_\lambda$, any continuous linear map $u \colon E_\lambda \to_{\mathbb{K}} E$, and any elements $f \in F_\lambda$, $g \in E_\lambda$, the precomposition operator $\mathrm{precompL}_{E_\lambda} L$ satisfies the equation: \[ \mathrm{precompL}_{E_\lambda} L \, u \, f \, g = L (u g) f. \]
ContinuousLinearMap.norm_precompR_le theorem
(L : E →L[𝕜] Fₗ →L[𝕜] Gₗ) : ‖precompR Eₗ L‖ ≤ ‖L‖
Full source
theorem norm_precompR_le (L : E →L[𝕜] Fₗ →L[𝕜] Gₗ) : ‖precompR Eₗ L‖‖L‖ :=
  calc
    ‖precompR Eₗ L‖‖compL 𝕜 Eₗ Fₗ Gₗ‖ * ‖L‖ := opNorm_comp_le _ _
    _ ≤ 1 * ‖L‖ := mul_le_mul_of_nonneg_right (norm_compL_le _ _ _ _) (norm_nonneg L)
    _ = ‖L‖ := by rw [one_mul]
Operator Norm Bound for Right Precomposition: $\|\mathrm{precompR}_{E_\lambda} L\| \leq \|L\|$
Informal description
For any continuous bilinear map $L \colon E \to_{\mathbb{K}} F_\lambda \to_{\mathbb{K}} G_\lambda$, the operator norm of the right precomposition operator $\mathrm{precompR}_{E_\lambda} L$ is bounded above by the operator norm of $L$, i.e., $\|\mathrm{precompR}_{E_\lambda} L\| \leq \|L\|$.
ContinuousLinearMap.norm_precompL_le theorem
(L : E →L[𝕜] Fₗ →L[𝕜] Gₗ) : ‖precompL Eₗ L‖ ≤ ‖L‖
Full source
theorem norm_precompL_le (L : E →L[𝕜] Fₗ →L[𝕜] Gₗ) : ‖precompL Eₗ L‖‖L‖ := by
  rw [precompL, opNorm_flip, ← opNorm_flip L]
  exact norm_precompR_le _ L.flip
Operator Norm Bound for Left Precomposition: $\|\mathrm{precompL}_{E_\lambda} L\| \leq \|L\|$
Informal description
For any continuous bilinear map $L \colon E \to_{\mathbb{K}} F_\lambda \to_{\mathbb{K}} G_\lambda$, the operator norm of the left precomposition operator $\mathrm{precompL}_{E_\lambda} L$ is bounded above by the operator norm of $L$, i.e., $\|\mathrm{precompL}_{E_\lambda} L\| \leq \|L\|$.
ContinuousLinearMap.bilinearComp_apply theorem
(f : E →SL[σ₁₃] F →SL[σ₂₃] G) (gE : E' →SL[σ₁'] E) (gF : F' →SL[σ₂'] F) (x : E') (y : F') : f.bilinearComp gE gF x y = f (gE x) (gF y)
Full source
@[simp]
theorem bilinearComp_apply (f : E →SL[σ₁₃] F →SL[σ₂₃] G) (gE : E' →SL[σ₁'] E) (gF : F' →SL[σ₂'] F)
    (x : E') (y : F') : f.bilinearComp gE gF x y = f (gE x) (gF y) :=
  rfl
Bilinear composition evaluation formula: $f.\text{bilinearComp}\, g_E\, g_F (x,y) = f(g_E x)(g_F y)$
Informal description
Let $E, F, G, E', F'$ be normed spaces over fields with appropriate ring homomorphisms $\sigma_{13}, \sigma_{23}, \sigma_1', \sigma_2'$. For any continuous bilinear map $f : E \to F \to G$, and continuous linear maps $g_E : E' \to E$ and $g_F : F' \to F$, the bilinear composition $f.\text{bilinearComp}\, g_E\, g_F$ evaluated at $(x,y) \in E' \times F'$ equals $f(g_E x)(g_F y)$.
ContinuousLinearMap.coe_deriv₂ theorem
(f : E →L[𝕜] Fₗ →L[𝕜] Gₗ) (p : E × Fₗ) : ⇑(f.deriv₂ p) = fun q : E × Fₗ => f p.1 q.2 + f q.1 p.2
Full source
@[simp]
theorem coe_deriv₂ (f : E →L[𝕜] Fₗ →L[𝕜] Gₗ) (p : E × Fₗ) :
    ⇑(f.deriv₂ p) = fun q : E × Fₗ => f p.1 q.2 + f q.1 p.2 :=
  rfl
Derivative of Bilinear Map: $(\text{deriv}_2\, f\, p)(q) = f(x, y') + f(x', y)$
Informal description
For any continuous bilinear map $f \colon E \times F \to G$ between normed spaces over a field $\mathbb{K}$, and any point $p = (x,y) \in E \times F$, the derivative $\text{deriv}_2\, f\, p$ evaluated at $q = (x', y') \in E \times F$ is given by: \[ (\text{deriv}_2\, f\, p)(q) = f(x, y') + f(x', y). \]
ContinuousLinearMap.map_add_add theorem
(f : E →L[𝕜] Fₗ →L[𝕜] Gₗ) (x x' : E) (y y' : Fₗ) : f (x + x') (y + y') = f x y + f.deriv₂ (x, y) (x', y') + f x' y'
Full source
theorem map_add_add (f : E →L[𝕜] Fₗ →L[𝕜] Gₗ) (x x' : E) (y y' : Fₗ) :
    f (x + x') (y + y') = f x y + f.deriv₂ (x, y) (x', y') + f x' y' := by
  simp only [map_add, add_apply, coe_deriv₂, add_assoc]
  abel
Additivity Formula for Continuous Bilinear Maps: $f(x + x', y + y') = f(x, y) + f.deriv₂ (x, y) (x', y') + f(x', y')$
Informal description
Let $E$, $Fₗ$, and $Gₗ$ be normed spaces over a field $\mathbb{K}$. For any continuous bilinear map $f \colon E \to Fₗ \to Gₗ$ and any elements $x, x' \in E$, $y, y' \in Fₗ$, the following identity holds: \[ f(x + x')(y + y') = f(x)(y) + f.deriv₂ (x, y) (x', y') + f(x')(y'). \] Here, $f.deriv₂$ denotes the derivative of $f$ at the point $(x, y)$ evaluated at $(x', y')$.
ContinuousLinearMap.norm_smulRight_apply theorem
(c : E →L[𝕜] 𝕜) (f : Fₗ) : ‖smulRight c f‖ = ‖c‖ * ‖f‖
Full source
/-- The norm of the tensor product of a scalar linear map and of an element of a normed space
is the product of the norms. -/
@[simp]
theorem norm_smulRight_apply (c : E →L[𝕜] 𝕜) (f : Fₗ) : ‖smulRight c f‖ = ‖c‖ * ‖f‖ := by
  refine le_antisymm ?_ ?_
  · refine opNorm_le_bound _ (mul_nonneg (norm_nonneg _) (norm_nonneg _)) fun x => ?_
    calc
      ‖c x • f‖ = ‖c x‖ * ‖f‖ := norm_smul _ _
      _ ≤ ‖c‖ * ‖x‖ * ‖f‖ := mul_le_mul_of_nonneg_right (le_opNorm _ _) (norm_nonneg _)
      _ = ‖c‖ * ‖f‖ * ‖x‖ := by ring
  · obtain hf | hf := (norm_nonneg f).eq_or_gt
    · simp [hf]
    · rw [← le_div_iff₀ hf]
      refine opNorm_le_bound _ (div_nonneg (norm_nonneg _) (norm_nonneg f)) fun x => ?_
      rw [div_mul_eq_mul_div, le_div_iff₀ hf]
      calc
        ‖c x‖ * ‖f‖ = ‖c x • f‖ := (norm_smul _ _).symm
        _ = ‖smulRight c f x‖ := rfl
        _ ≤ ‖smulRight c f‖ * ‖x‖ := le_opNorm _ _
Norm of Tensor Product Equals Product of Norms: $\|\text{smulRight}\ c\ f\| = \|c\| \cdot \|f\|$
Informal description
For any continuous linear functional $c \colon E \to \mathbb{K}$ and any element $f \in F$, the operator norm of the tensor product `smulRight c f` is equal to the product of the norms of $c$ and $f$, i.e., $\|\text{smulRight}\ c\ f\| = \|c\| \cdot \|f\|$.
ContinuousLinearMap.nnnorm_smulRight_apply theorem
(c : E →L[𝕜] 𝕜) (f : Fₗ) : ‖smulRight c f‖₊ = ‖c‖₊ * ‖f‖₊
Full source
/-- The non-negative norm of the tensor product of a scalar linear map and of an element of a normed
space is the product of the non-negative norms. -/
@[simp]
theorem nnnorm_smulRight_apply (c : E →L[𝕜] 𝕜) (f : Fₗ) : ‖smulRight c f‖₊ = ‖c‖₊ * ‖f‖₊ :=
  NNReal.eq <| c.norm_smulRight_apply f
Non-Negative Norm Identity for Tensor Product: $\|\text{smulRight}\ c\ f\|_+ = \|c\|_+ \cdot \|f\|_+$
Informal description
For any continuous linear functional $c \colon E \to \mathbb{K}$ and any element $f \in F$, the non-negative operator norm of the tensor product $\text{smulRight}\ c\ f$ is equal to the product of the non-negative norms of $c$ and $f$, i.e., $\|\text{smulRight}\ c\ f\|_+ = \|c\|_+ \cdot \|f\|_+$.
ContinuousLinearMap.norm_smulRightL_apply theorem
(c : E →L[𝕜] 𝕜) (f : Fₗ) : ‖smulRightL 𝕜 E Fₗ c f‖ = ‖c‖ * ‖f‖
Full source
@[simp]
theorem norm_smulRightL_apply (c : E →L[𝕜] 𝕜) (f : Fₗ) : ‖smulRightL 𝕜 E Fₗ c f‖ = ‖c‖ * ‖f‖ :=
  norm_smulRight_apply c f
Operator Norm Identity for Scalar Multiplication Linear Map: $\|\text{smulRightL}\ c\ f\| = \|c\| \cdot \|f\|$
Informal description
For any continuous linear functional $c \colon E \to \mathbb{K}$ and any element $f \in F$, the operator norm of the linear map $\text{smulRightL}_{\mathbb{K}}^E F\ c\ f$ is equal to the product of the norms of $c$ and $f$, i.e., $\|\text{smulRightL}_{\mathbb{K}}^E F\ c\ f\| = \|c\| \cdot \|f\|$.
ContinuousLinearMap.bilinearRestrictScalars_eq_restrictScalarsL_comp_restrictScalars theorem
: B.bilinearRestrictScalars 𝕜 = (restrictScalarsL 𝕜' F G 𝕜 𝕜).comp (B.restrictScalars 𝕜)
Full source
theorem bilinearRestrictScalars_eq_restrictScalarsL_comp_restrictScalars :
    B.bilinearRestrictScalars 𝕜 = (restrictScalarsL 𝕜' F G 𝕜 𝕜).comp (B.restrictScalars 𝕜) := rfl
Decomposition of Bilinear Restriction of Scalars as Composition of Linear Restrictions
Informal description
Let $B$ be a continuous bilinear map from $E \times F$ to $G$ over field extensions $\mathbb{K}'/\mathbb{K}$. Then the bilinear restriction of scalars of $B$ to $\mathbb{K}$ equals the composition of the linear restriction of scalars map (from $F$ to $G$ over $\mathbb{K}'$ to $\mathbb{K}$) with the restriction of scalars of $B$ to $\mathbb{K}$. In symbols: $$ B_{\text{bilinearRestrictScalars}}^{\mathbb{K}} = (\text{restrictScalarsL}_{\mathbb{K}'}^{F,G,\mathbb{K},\mathbb{K}}) \circ (B_{\text{restrictScalars}}^{\mathbb{K}}) $$
ContinuousLinearMap.bilinearRestrictScalars_eq_restrictScalars_restrictScalarsL_comp theorem
: B.bilinearRestrictScalars 𝕜 = restrictScalars 𝕜 ((restrictScalarsL 𝕜' F G 𝕜 𝕜').comp B)
Full source
theorem bilinearRestrictScalars_eq_restrictScalars_restrictScalarsL_comp :
    B.bilinearRestrictScalars 𝕜 = restrictScalars 𝕜 ((restrictScalarsL 𝕜' F G 𝕜 𝕜').comp B) := rfl
Decomposition of Bilinear Restriction of Scalars as Composition with Linear Restriction
Informal description
Let $\mathbb{K}'/\mathbb{K}$ be a field extension, $E$, $F$, $G$ be normed spaces over $\mathbb{K}'$, and $B : E × F → G$ be a continuous bilinear map. Then the bilinear restriction of scalars of $B$ to $\mathbb{K}$ equals the restriction of scalars of the composition of the linear restriction of scalars map (from $F$ to $G$ over $\mathbb{K}'/\mathbb{K}$) with $B$. In symbols: $$ B_{\text{bilinearRestrictScalars}}^{\mathbb{K}} = \text{restrictScalars}_{\mathbb{K}} \left( (\text{restrictScalarsL}_{\mathbb{K}'}^{F,G,\mathbb{K},\mathbb{K}'}) \circ B \right) $$
ContinuousLinearMap.bilinearRestrictScalars_apply_apply theorem
: (B.bilinearRestrictScalars 𝕜) x y = B x y
Full source
@[simp]
theorem bilinearRestrictScalars_apply_apply : (B.bilinearRestrictScalars 𝕜) x y = B x y := rfl
Bilinear Restriction of Scalars Preserves Evaluation
Informal description
For any continuous bilinear map $B \colon E \times F \to G$ and any elements $x \in E$, $y \in F$, the bilinear restriction of scalars of $B$ to $\mathbb{K}$ evaluated at $(x, y)$ equals $B(x, y)$. In symbols: $$ B_{\text{bilinearRestrictScalars}}^{\mathbb{K}}(x, y) = B(x, y) $$
ContinuousLinearMap.norm_bilinearRestrictScalars theorem
: ‖B.bilinearRestrictScalars 𝕜‖ = ‖B‖
Full source
@[simp]
theorem norm_bilinearRestrictScalars : ‖B.bilinearRestrictScalars 𝕜‖ = ‖B‖ := rfl
Operator Norm Preservation under Bilinear Restriction of Scalars
Informal description
For any continuous bilinear map $B \colon E \times F \to G$, the operator norm of the bilinear restriction of scalars of $B$ to $\mathbb{K}$ is equal to the operator norm of $B$ itself. In symbols: $$\| B_{\text{bilinearRestrictScalars}}^{\mathbb{K}} \| = \| B \|$$