doc-next-gen

Mathlib.Analysis.NormedSpace.OperatorNorm.Basic

Module docstring

{"# Operator norm on the space of continuous linear maps

Define the operator (semi)-norm on the space of continuous (semi)linear maps between (semi)-normed spaces, and prove its basic properties. In particular, show that this space is itself a semi-normed space.

Since a lot of elementary properties don't require β€–xβ€– = 0 β†’ x = 0 we start setting up the theory for SeminormedAddCommGroup. Later we will specialize to NormedAddCommGroup in the file NormedSpace.lean.

Note that most of statements that apply to semilinear maps only hold when the ring homomorphism is isometric, as expressed by the typeclass [RingHomIsometric Οƒ].

"}

norm_image_of_norm_zero theorem
[SemilinearMapClass 𝓕 σ₁₂ E F] (f : 𝓕) (hf : Continuous f) {x : E} (hx : β€–xβ€– = 0) : β€–f xβ€– = 0
Full source
/-- If `β€–xβ€– = 0` and `f` is continuous then `β€–f xβ€– = 0`. -/
theorem norm_image_of_norm_zero [SemilinearMapClass 𝓕 σ₁₂ E F] (f : 𝓕) (hf : Continuous f) {x : E}
    (hx : β€–xβ€– = 0) : β€–f xβ€– = 0 := by
  rw [← mem_closure_zero_iff_norm, ← specializes_iff_mem_closure, ← map_zero f] at *
  exact hx.map hf
Vanishing of Norm Under Continuous Semilinear Maps for Zero-Norm Elements
Informal description
Let $E$ and $F$ be seminormed additive commutative groups, and let $\sigma_{12}$ be a ring homomorphism. For any continuous $\sigma_{12}$-semilinear map $f \colon E \to F$ and any $x \in E$ with $\|x\| = 0$, we have $\|f(x)\| = 0$.
SemilinearMapClass.bound_of_shell_semi_normed theorem
[SemilinearMapClass 𝓕 σ₁₂ E F] (f : 𝓕) {Ξ΅ C : ℝ} (Ξ΅_pos : 0 < Ξ΅) {c : π•œ} (hc : 1 < β€–cβ€–) (hf : βˆ€ x, Ξ΅ / β€–cβ€– ≀ β€–xβ€– β†’ β€–xβ€– < Ξ΅ β†’ β€–f xβ€– ≀ C * β€–xβ€–) {x : E} (hx : β€–xβ€– β‰  0) : β€–f xβ€– ≀ C * β€–xβ€–
Full source
theorem SemilinearMapClass.bound_of_shell_semi_normed [SemilinearMapClass 𝓕 σ₁₂ E F] (f : 𝓕)
    {Ξ΅ C : ℝ} (Ξ΅_pos : 0 < Ξ΅) {c : π•œ} (hc : 1 < β€–cβ€–)
    (hf : βˆ€ x, Ξ΅ / β€–cβ€– ≀ β€–xβ€– β†’ β€–xβ€– < Ξ΅ β†’ β€–f xβ€– ≀ C * β€–xβ€–) {x : E} (hx : β€–xβ€–β€–xβ€– β‰  0) :
    β€–f xβ€– ≀ C * β€–xβ€– :=
  (normSeminorm π•œ E).bound_of_shell ((normSeminorm π•œβ‚‚ F).comp ⟨⟨f, map_add f⟩, map_smulβ‚›β‚— f⟩)
    Ξ΅_pos hc hf hx
Bound on Semilinear Maps via Shell Condition for Nonzero Elements
Informal description
Let $E$ and $F$ be seminormed spaces over a normed field $\mathbb{K}$, and let $\sigma_{12}$ be a ring homomorphism. Given a $\sigma_{12}$-semilinear map $f \colon E \to F$, suppose there exist positive real numbers $\varepsilon$ and $C$, and an element $c \in \mathbb{K}$ with $\|c\| > 1$, such that for all $x \in E$ satisfying $\varepsilon/\|c\| \leq \|x\| < \varepsilon$, we have $\|f(x)\| \leq C\|x\|$. Then for any nonzero $x \in E$ (i.e., $\|x\| \neq 0$), we have $\|f(x)\| \leq C\|x\|$.
SemilinearMapClass.bound_of_continuous theorem
[SemilinearMapClass 𝓕 σ₁₂ E F] (f : 𝓕) (hf : Continuous f) : βˆƒ C, 0 < C ∧ βˆ€ x : E, β€–f xβ€– ≀ C * β€–xβ€–
Full source
/-- A continuous linear map between seminormed spaces is bounded when the field is nontrivially
normed. The continuity ensures boundedness on a ball of some radius `Ξ΅`. The nontriviality of the
norm is then used to rescale any element into an element of norm in `[Ξ΅/C, Ξ΅]`, whose image has a
controlled norm. The norm control for the original element follows by rescaling. -/
theorem SemilinearMapClass.bound_of_continuous [SemilinearMapClass 𝓕 σ₁₂ E F] (f : 𝓕)
    (hf : Continuous f) : βˆƒ C, 0 < C ∧ βˆ€ x : E, β€–f xβ€– ≀ C * β€–xβ€– :=
  let Ο† : E β†’β‚›β‚—[σ₁₂] F := ⟨⟨f, map_add f⟩, map_smulβ‚›β‚— f⟩
  ((normSeminorm π•œβ‚‚ F).comp Ο†).bound_of_continuous_normedSpace (continuous_norm.comp hf)
Existence of Operator Norm Bound for Continuous Semilinear Maps
Informal description
Let $E$ and $F$ be seminormed spaces over a normed field $\mathbb{K}$, and let $\sigma_{12}$ be a ring homomorphism. For any continuous $\sigma_{12}$-semilinear map $f \colon E \to F$, there exists a constant $C > 0$ such that for all $x \in E$, the norm of $f(x)$ is bounded by $C$ times the norm of $x$, i.e., $\|f(x)\| \leq C \|x\|$.
ContinuousLinearMap.bound theorem
[RingHomIsometric σ₁₂] (f : E β†’SL[σ₁₂] F) : βˆƒ C, 0 < C ∧ βˆ€ x : E, β€–f xβ€– ≀ C * β€–xβ€–
Full source
theorem bound [RingHomIsometric σ₁₂] (f : E β†’SL[σ₁₂] F) : βˆƒ C, 0 < C ∧ βˆ€ x : E, β€–f xβ€– ≀ C * β€–xβ€– :=
  SemilinearMapClass.bound_of_continuous f f.2
Existence of Operator Norm Bound for Continuous Semilinear Maps with Isometric Homomorphism
Informal description
Let $E$ and $F$ be seminormed spaces over a normed field $\mathbb{K}$, and let $\sigma_{12}$ be an isometric ring homomorphism. For any continuous $\sigma_{12}$-semilinear map $f \colon E \to F$, there exists a constant $C > 0$ such that for all $x \in E$, the norm of $f(x)$ is bounded by $C$ times the norm of $x$, i.e., $\|f(x)\| \leq C \|x\|$.
LinearIsometry.toSpanSingleton_apply theorem
{v : E} (hv : β€–vβ€– = 1) (a : π•œ) : LinearIsometry.toSpanSingleton π•œ E hv a = a β€’ v
Full source
@[simp]
theorem _root_.LinearIsometry.toSpanSingleton_apply {v : E} (hv : β€–vβ€– = 1) (a : π•œ) :
    LinearIsometry.toSpanSingleton π•œ E hv a = a β€’ v :=
  rfl
Action of Span Singleton Isometry on Scalar Multiplication
Informal description
Let $E$ be a normed vector space over a field $\mathbb{K}$ and let $v \in E$ be a vector with $\|v\| = 1$. For any scalar $a \in \mathbb{K}$, the linear isometry `LinearIsometry.toSpanSingleton π•œ E hv` maps $a$ to the vector $a \cdot v \in E$.
LinearIsometry.coe_toSpanSingleton theorem
{v : E} (hv : β€–vβ€– = 1) : (LinearIsometry.toSpanSingleton π•œ E hv).toLinearMap = LinearMap.toSpanSingleton π•œ E v
Full source
@[simp]
theorem _root_.LinearIsometry.coe_toSpanSingleton {v : E} (hv : β€–vβ€– = 1) :
    (LinearIsometry.toSpanSingleton π•œ E hv).toLinearMap = LinearMap.toSpanSingleton π•œ E v :=
  rfl
Underlying Linear Map of Span Singleton Isometry Equals Span Singleton Linear Map
Informal description
Let $E$ be a normed vector space over a field $\mathbb{K}$ and let $v \in E$ be a vector with $\|v\| = 1$. Then the underlying linear map of the linear isometry `LinearIsometry.toSpanSingleton π•œ E hv` is equal to the linear map `LinearMap.toSpanSingleton π•œ E v`, which sends a scalar $a \in \mathbb{K}$ to the vector $a \cdot v \in E$.
ContinuousLinearMap.norm_def theorem
(f : E β†’SL[σ₁₂] F) : β€–fβ€– = sInf {c | 0 ≀ c ∧ βˆ€ x, β€–f xβ€– ≀ c * β€–xβ€–}
Full source
theorem norm_def (f : E β†’SL[σ₁₂] F) : β€–fβ€– = sInf { c | 0 ≀ c ∧ βˆ€ x, β€–f xβ€– ≀ c * β€–xβ€– } :=
  rfl
Definition of Operator Norm for Continuous Semilinear Maps
Informal description
For a continuous semilinear map $f \colon E \to F$ between seminormed additive commutative groups, the operator norm $\|f\|$ is defined as the infimum of the set of nonnegative real numbers $c$ such that $\|f(x)\| \leq c \cdot \|x\|$ for all $x \in E$.
ContinuousLinearMap.bounds_nonempty theorem
[RingHomIsometric σ₁₂] {f : E β†’SL[σ₁₂] F} : βˆƒ c, c ∈ {c | 0 ≀ c ∧ βˆ€ x, β€–f xβ€– ≀ c * β€–xβ€–}
Full source
theorem bounds_nonempty [RingHomIsometric σ₁₂] {f : E β†’SL[σ₁₂] F} :
    βˆƒ c, c ∈ { c | 0 ≀ c ∧ βˆ€ x, β€–f xβ€– ≀ c * β€–xβ€– } :=
  let ⟨M, hMp, hMb⟩ := f.bound
  ⟨M, le_of_lt hMp, hMb⟩
Existence of Bounding Constant for Continuous Semilinear Maps
Informal description
Let $E$ and $F$ be seminormed spaces over a normed field $\mathbb{K}$, and let $\sigma_{12}$ be an isometric ring homomorphism. For any continuous $\sigma_{12}$-semilinear map $f \colon E \to F$, there exists a nonnegative real number $c$ such that for all $x \in E$, the norm of $f(x)$ is bounded by $c$ times the norm of $x$, i.e., $\|f(x)\| \leq c \|x\|$.
ContinuousLinearMap.bounds_bddBelow theorem
{f : E β†’SL[σ₁₂] F} : BddBelow {c | 0 ≀ c ∧ βˆ€ x, β€–f xβ€– ≀ c * β€–xβ€–}
Full source
theorem bounds_bddBelow {f : E β†’SL[σ₁₂] F} : BddBelow { c | 0 ≀ c ∧ βˆ€ x, β€–f xβ€– ≀ c * β€–xβ€– } :=
  ⟨0, fun _ ⟨hn, _⟩ => hn⟩
Lower Bound for Operator Norm Coefficients of Continuous Semilinear Maps
Informal description
For any continuous semilinear map $f \colon E \to F$ between seminormed additive commutative groups, the set of nonnegative real numbers $c$ satisfying $\|f(x)\| \leq c \cdot \|x\|$ for all $x \in E$ is bounded below.
ContinuousLinearMap.isLeast_opNorm theorem
[RingHomIsometric σ₁₂] (f : E β†’SL[σ₁₂] F) : IsLeast {c | 0 ≀ c ∧ βˆ€ x, β€–f xβ€– ≀ c * β€–xβ€–} β€–fβ€–
Full source
theorem isLeast_opNorm [RingHomIsometric σ₁₂] (f : E β†’SL[σ₁₂] F) :
    IsLeast {c | 0 ≀ c ∧ βˆ€ x, β€–f xβ€– ≀ c * β€–xβ€–} β€–fβ€– := by
  refine IsClosed.isLeast_csInf ?_ bounds_nonempty bounds_bddBelow
  simp only [setOf_and, setOf_forall]
  refine isClosed_Ici.inter <| isClosed_iInter fun _ ↦ isClosed_le ?_ ?_ <;> continuity
Operator Norm is the Least Bounding Constant for Continuous Semilinear Maps
Informal description
Let $E$ and $F$ be seminormed additive commutative groups over a normed field $\mathbb{K}$, and let $\sigma_{12}$ be an isometric ring homomorphism. For any continuous $\sigma_{12}$-semilinear map $f \colon E \to F$, the operator norm $\|f\|$ is the least element in the set of nonnegative real numbers $c$ satisfying $\|f(x)\| \leq c \cdot \|x\|$ for all $x \in E$.
ContinuousLinearMap.opNorm_le_bound theorem
(f : E β†’SL[σ₁₂] F) {M : ℝ} (hMp : 0 ≀ M) (hM : βˆ€ x, β€–f xβ€– ≀ M * β€–xβ€–) : β€–fβ€– ≀ M
Full source
/-- If one controls the norm of every `A x`, then one controls the norm of `A`. -/
theorem opNorm_le_bound (f : E β†’SL[σ₁₂] F) {M : ℝ} (hMp : 0 ≀ M) (hM : βˆ€ x, β€–f xβ€– ≀ M * β€–xβ€–) :
    β€–fβ€– ≀ M :=
  csInf_le bounds_bddBelow ⟨hMp, hM⟩
Operator Norm Bounded by Uniform Estimate
Informal description
Let $E$ and $F$ be seminormed additive commutative groups, and let $f \colon E \to F$ be a continuous semilinear map. For any nonnegative real number $M \geq 0$ such that $\|f(x)\| \leq M \cdot \|x\|$ holds for all $x \in E$, the operator norm of $f$ satisfies $\|f\| \leq M$.
ContinuousLinearMap.opNorm_le_bound' theorem
(f : E β†’SL[σ₁₂] F) {M : ℝ} (hMp : 0 ≀ M) (hM : βˆ€ x, β€–xβ€– β‰  0 β†’ β€–f xβ€– ≀ M * β€–xβ€–) : β€–fβ€– ≀ M
Full source
/-- If one controls the norm of every `A x`, `β€–xβ€– β‰  0`, then one controls the norm of `A`. -/
theorem opNorm_le_bound' (f : E β†’SL[σ₁₂] F) {M : ℝ} (hMp : 0 ≀ M)
    (hM : βˆ€ x, β€–xβ€–β€–xβ€– β‰  0 β†’ β€–f xβ€– ≀ M * β€–xβ€–) : β€–fβ€– ≀ M :=
  opNorm_le_bound f hMp fun x =>
    (ne_or_eq β€–xβ€– 0).elim (hM x) fun h => by
      simp only [h, mul_zero, norm_image_of_norm_zero f f.2 h, le_refl]
Operator Norm Bound via Nonzero Vectors: $\|f\| \leq M$
Informal description
Let $E$ and $F$ be seminormed additive commutative groups, and let $\sigma_{12}$ be a ring homomorphism. For any continuous $\sigma_{12}$-semilinear map $f \colon E \to F$ and any nonnegative real number $M \geq 0$, if $\|f(x)\| \leq M \cdot \|x\|$ holds for all $x \in E$ with $\|x\| \neq 0$, then the operator norm of $f$ satisfies $\|f\| \leq M$.
ContinuousLinearMap.opNorm_le_of_lipschitz theorem
{f : E β†’SL[σ₁₂] F} {K : ℝβ‰₯0} (hf : LipschitzWith K f) : β€–fβ€– ≀ K
Full source
theorem opNorm_le_of_lipschitz {f : E β†’SL[σ₁₂] F} {K : ℝβ‰₯0} (hf : LipschitzWith K f) : β€–fβ€– ≀ K :=
  f.opNorm_le_bound K.2 fun x => by
    simpa only [dist_zero_right, f.map_zero] using hf.dist_le_mul x 0
Operator Norm Bound via Lipschitz Constant
Informal description
Let $E$ and $F$ be seminormed additive commutative groups, and let $f \colon E \to F$ be a continuous $\sigma_{12}$-semilinear map. If $f$ is Lipschitz continuous with constant $K \geq 0$, then the operator norm of $f$ satisfies $\|f\| \leq K$.
ContinuousLinearMap.opNorm_eq_of_bounds theorem
{Ο† : E β†’SL[σ₁₂] F} {M : ℝ} (M_nonneg : 0 ≀ M) (h_above : βˆ€ x, β€–Ο† xβ€– ≀ M * β€–xβ€–) (h_below : βˆ€ N β‰₯ 0, (βˆ€ x, β€–Ο† xβ€– ≀ N * β€–xβ€–) β†’ M ≀ N) : β€–Ο†β€– = M
Full source
theorem opNorm_eq_of_bounds {Ο† : E β†’SL[σ₁₂] F} {M : ℝ} (M_nonneg : 0 ≀ M)
    (h_above : βˆ€ x, β€–Ο† xβ€– ≀ M * β€–xβ€–) (h_below : βˆ€ N β‰₯ 0, (βˆ€ x, β€–Ο† xβ€– ≀ N * β€–xβ€–) β†’ M ≀ N) :
    β€–Ο†β€– = M :=
  le_antisymm (Ο†.opNorm_le_bound M_nonneg h_above)
    ((le_csInf_iff ContinuousLinearMap.bounds_bddBelow ⟨M, M_nonneg, h_above⟩).mpr
      fun N ⟨N_nonneg, hN⟩ => h_below N N_nonneg hN)
Characterization of Operator Norm via Optimal Bounds: $\|\varphi\| = M$
Informal description
Let $E$ and $F$ be seminormed additive commutative groups, and let $\varphi \colon E \to F$ be a continuous $\sigma_{12}$-semilinear map. Given a nonnegative real number $M \geq 0$ such that: 1. $\|\varphi(x)\| \leq M \cdot \|x\|$ for all $x \in E$, and 2. For any $N \geq 0$, if $\|\varphi(x)\| \leq N \cdot \|x\|$ for all $x \in E$, then $M \leq N$, then the operator norm of $\varphi$ satisfies $\|\varphi\| = M$.
ContinuousLinearMap.opNorm_neg theorem
(f : E β†’SL[σ₁₂] F) : β€–-fβ€– = β€–fβ€–
Full source
theorem opNorm_neg (f : E β†’SL[σ₁₂] F) : β€–-fβ€– = β€–fβ€– := by simp only [norm_def, neg_apply, norm_neg]
Operator Norm of Negated Continuous Semilinear Map Equals Original Norm
Informal description
For any continuous $\sigma_{12}$-semilinear map $f$ between seminormed additive commutative groups $E$ and $F$, the operator norm of the negation of $f$ equals the operator norm of $f$, i.e., $\|{-f}\| = \|f\|$.
ContinuousLinearMap.opNorm_nonneg theorem
(f : E β†’SL[σ₁₂] F) : 0 ≀ β€–fβ€–
Full source
theorem opNorm_nonneg (f : E β†’SL[σ₁₂] F) : 0 ≀ β€–fβ€– :=
  Real.sInf_nonneg fun _ ↦ And.left
Nonnegativity of Operator Norm for Continuous Semilinear Maps
Informal description
For any continuous $\sigma_{12}$-semilinear map $f$ between seminormed additive commutative groups $E$ and $F$, the operator norm of $f$ is nonnegative, i.e., $\|f\| \geq 0$.
ContinuousLinearMap.opNorm_zero theorem
: β€–(0 : E β†’SL[σ₁₂] F)β€– = 0
Full source
/-- The norm of the `0` operator is `0`. -/
theorem opNorm_zero : β€–(0 : E β†’SL[σ₁₂] F)β€– = 0 :=
  le_antisymm (opNorm_le_bound _ le_rfl fun _ ↦ by simp) (opNorm_nonneg _)
Operator Norm of Zero Map is Zero
Informal description
The operator norm of the zero continuous semilinear map between seminormed additive commutative groups $E$ and $F$ is zero, i.e., $\|0\| = 0$.
ContinuousLinearMap.norm_id_le theorem
: β€–id π•œ Eβ€– ≀ 1
Full source
/-- The norm of the identity is at most `1`. It is in fact `1`, except when the space is trivial
where it is `0`. It means that one can not do better than an inequality in general. -/
theorem norm_id_le : β€–id π•œ Eβ€– ≀ 1 :=
  opNorm_le_bound _ zero_le_one fun x => by simp
Operator Norm of Identity Map is Bounded by One
Informal description
For any normed space $E$ over the field $\mathbb{K}$, the operator norm of the identity map $\text{id} \colon E \to E$ satisfies $\|\text{id}\| \leq 1$.
ContinuousLinearMap.le_opNorm theorem
: β€–f xβ€– ≀ β€–fβ€– * β€–xβ€–
Full source
/-- The fundamental property of the operator norm: `β€–f xβ€– ≀ β€–fβ€– * β€–xβ€–`. -/
theorem le_opNorm : β€–f xβ€– ≀ β€–fβ€– * β€–xβ€– := (isLeast_opNorm f).1.2 x
Operator Norm Bound: $\|f(x)\| \leq \|f\| \cdot \|x\|$
Informal description
For any continuous semilinear map $f \colon E \to F$ between seminormed additive commutative groups and any element $x \in E$, the norm of $f(x)$ is bounded by the product of the operator norm of $f$ and the norm of $x$, i.e., $\|f(x)\| \leq \|f\| \cdot \|x\|$.
ContinuousLinearMap.dist_le_opNorm theorem
(x y : E) : dist (f x) (f y) ≀ β€–fβ€– * dist x y
Full source
theorem dist_le_opNorm (x y : E) : dist (f x) (f y) ≀ β€–fβ€– * dist x y := by
  simp_rw [dist_eq_norm, ← map_sub, f.le_opNorm]
Distance Bound via Operator Norm: $\text{dist}(f(x), f(y)) \leq \|f\| \cdot \text{dist}(x, y)$
Informal description
For any continuous semilinear map $f \colon E \to F$ between seminormed additive commutative groups and any elements $x, y \in E$, the distance between $f(x)$ and $f(y)$ is bounded by the product of the operator norm of $f$ and the distance between $x$ and $y$, i.e., $\text{dist}(f(x), f(y)) \leq \|f\| \cdot \text{dist}(x, y)$.
ContinuousLinearMap.le_of_opNorm_le_of_le theorem
{x} {a b : ℝ} (hf : β€–fβ€– ≀ a) (hx : β€–xβ€– ≀ b) : β€–f xβ€– ≀ a * b
Full source
theorem le_of_opNorm_le_of_le {x} {a b : ℝ} (hf : β€–fβ€– ≀ a) (hx : β€–xβ€– ≀ b) :
    β€–f xβ€– ≀ a * b :=
  (f.le_opNorm x).trans <| by gcongr; exact (opNorm_nonneg f).trans hf
Operator Norm Bound via Bounds on Norm and Input
Informal description
For any continuous semilinear map $f \colon E \to F$ between seminormed additive commutative groups, any element $x \in E$, and real numbers $a, b \geq 0$, if the operator norm of $f$ satisfies $\|f\| \leq a$ and the norm of $x$ satisfies $\|x\| \leq b$, then the norm of $f(x)$ is bounded by $a \cdot b$, i.e., $\|f(x)\| \leq a \cdot b$.
ContinuousLinearMap.le_opNorm_of_le theorem
{c : ℝ} {x} (h : β€–xβ€– ≀ c) : β€–f xβ€– ≀ β€–fβ€– * c
Full source
theorem le_opNorm_of_le {c : ℝ} {x} (h : β€–xβ€– ≀ c) : β€–f xβ€– ≀ β€–fβ€– * c :=
  f.le_of_opNorm_le_of_le le_rfl h
Operator norm bound: $\|f(x)\| \leq \|f\| \cdot c$ when $\|x\| \leq c$
Informal description
For any continuous semilinear map $f \colon E \to F$ between seminormed additive commutative groups and any element $x \in E$, if $\|x\| \leq c$ for some real number $c \geq 0$, then $\|f(x)\| \leq \|f\| \cdot c$.
ContinuousLinearMap.le_of_opNorm_le theorem
{c : ℝ} (h : β€–fβ€– ≀ c) (x : E) : β€–f xβ€– ≀ c * β€–xβ€–
Full source
theorem le_of_opNorm_le {c : ℝ} (h : β€–fβ€– ≀ c) (x : E) : β€–f xβ€– ≀ c * β€–xβ€– :=
  f.le_of_opNorm_le_of_le h le_rfl
Operator Norm Bound: $\|f(x)\| \leq c \cdot \|x\|$ when $\|f\| \leq c$
Informal description
For any continuous semilinear map $f \colon E \to F$ between seminormed additive commutative groups, any real number $c \geq 0$, and any element $x \in E$, if the operator norm of $f$ satisfies $\|f\| \leq c$, then the norm of $f(x)$ is bounded by $c \cdot \|x\|$, i.e., $\|f(x)\| \leq c \cdot \|x\|$.
ContinuousLinearMap.opNorm_le_iff theorem
{f : E β†’SL[σ₁₂] F} {M : ℝ} (hMp : 0 ≀ M) : β€–fβ€– ≀ M ↔ βˆ€ x, β€–f xβ€– ≀ M * β€–xβ€–
Full source
theorem opNorm_le_iff {f : E β†’SL[σ₁₂] F} {M : ℝ} (hMp : 0 ≀ M) :
    β€–fβ€–β€–fβ€– ≀ M ↔ βˆ€ x, β€–f xβ€– ≀ M * β€–xβ€– :=
  ⟨f.le_of_opNorm_le, opNorm_le_bound f hMp⟩
Operator Norm Characterization: $\|f\| \leq M \leftrightarrow \forall x, \|f(x)\| \leq M \cdot \|x\|$
Informal description
For a continuous semilinear map $f \colon E \to F$ between seminormed additive commutative groups and a nonnegative real number $M \geq 0$, the operator norm of $f$ satisfies $\|f\| \leq M$ if and only if for every $x \in E$, the norm of $f(x)$ is bounded by $M \cdot \|x\|$, i.e., $\|f(x)\| \leq M \cdot \|x\|$.
ContinuousLinearMap.ratio_le_opNorm theorem
: β€–f xβ€– / β€–xβ€– ≀ β€–fβ€–
Full source
theorem ratio_le_opNorm : β€–f xβ€– / β€–xβ€– ≀ β€–fβ€– :=
  div_le_of_le_mulβ‚€ (norm_nonneg _) f.opNorm_nonneg (le_opNorm _ _)
Ratio Bound for Operator Norm: $\frac{\|f(x)\|}{\|x\|} \leq \|f\|$
Informal description
For any continuous semilinear map $f \colon E \to F$ between seminormed additive commutative groups and any nonzero element $x \in E$, the ratio of the norm of $f(x)$ to the norm of $x$ is bounded by the operator norm of $f$, i.e., $\frac{\|f(x)\|}{\|x\|} \leq \|f\|$.
ContinuousLinearMap.unit_le_opNorm theorem
: β€–xβ€– ≀ 1 β†’ β€–f xβ€– ≀ β€–fβ€–
Full source
/-- The image of the unit ball under a continuous linear map is bounded. -/
theorem unit_le_opNorm : β€–xβ€– ≀ 1 β†’ β€–f xβ€– ≀ β€–fβ€– :=
  mul_one β€–fβ€– β–Έ f.le_opNorm_of_le
Operator Norm Bound on Unit Ball: $\|f(x)\| \leq \|f\|$ when $\|x\| \leq 1$
Informal description
For any continuous semilinear map $f \colon E \to F$ between seminormed additive commutative groups and any element $x \in E$ with $\|x\| \leq 1$, the norm of $f(x)$ is bounded by the operator norm of $f$, i.e., $\|f(x)\| \leq \|f\|$.
ContinuousLinearMap.opNorm_le_of_shell theorem
{f : E β†’SL[σ₁₂] F} {Ξ΅ C : ℝ} (Ξ΅_pos : 0 < Ξ΅) (hC : 0 ≀ C) {c : π•œ} (hc : 1 < β€–cβ€–) (hf : βˆ€ x, Ξ΅ / β€–cβ€– ≀ β€–xβ€– β†’ β€–xβ€– < Ξ΅ β†’ β€–f xβ€– ≀ C * β€–xβ€–) : β€–fβ€– ≀ C
Full source
theorem opNorm_le_of_shell {f : E β†’SL[σ₁₂] F} {Ξ΅ C : ℝ} (Ξ΅_pos : 0 < Ξ΅) (hC : 0 ≀ C) {c : π•œ}
    (hc : 1 < β€–cβ€–) (hf : βˆ€ x, Ξ΅ / β€–cβ€– ≀ β€–xβ€– β†’ β€–xβ€– < Ξ΅ β†’ β€–f xβ€– ≀ C * β€–xβ€–) : β€–fβ€– ≀ C :=
  f.opNorm_le_bound' hC fun _ hx => SemilinearMapClass.bound_of_shell_semi_normed f Ξ΅_pos hc hf hx
Operator Norm Bound via Shell Condition: $\|f\| \leq C$
Informal description
Let $E$ and $F$ be seminormed additive commutative groups over a normed field $\mathbb{K}$, and let $\sigma_{12}$ be a ring homomorphism. For any continuous $\sigma_{12}$-semilinear map $f \colon E \to F$, suppose there exist positive real numbers $\varepsilon$ and $C$ with $C \geq 0$, and an element $c \in \mathbb{K}$ with $\|c\| > 1$, such that for all $x \in E$ satisfying $\varepsilon/\|c\| \leq \|x\| < \varepsilon$, we have $\|f(x)\| \leq C\|x\|$. Then the operator norm of $f$ satisfies $\|f\| \leq C$.
ContinuousLinearMap.opNorm_le_of_ball theorem
{f : E β†’SL[σ₁₂] F} {Ξ΅ : ℝ} {C : ℝ} (Ξ΅_pos : 0 < Ξ΅) (hC : 0 ≀ C) (hf : βˆ€ x ∈ ball (0 : E) Ξ΅, β€–f xβ€– ≀ C * β€–xβ€–) : β€–fβ€– ≀ C
Full source
theorem opNorm_le_of_ball {f : E β†’SL[σ₁₂] F} {Ξ΅ : ℝ} {C : ℝ} (Ξ΅_pos : 0 < Ξ΅) (hC : 0 ≀ C)
    (hf : βˆ€ x ∈ ball (0 : E) Ξ΅, β€–f xβ€– ≀ C * β€–xβ€–) : β€–fβ€– ≀ C := by
  rcases NormedField.exists_one_lt_norm π•œ with ⟨c, hc⟩
  refine opNorm_le_of_shell Ξ΅_pos hC hc fun x _ hx => hf x ?_
  rwa [ball_zero_eq]
Operator Norm Bound via Ball Condition: $\|f\| \leq C$
Informal description
Let $E$ and $F$ be seminormed additive commutative groups over a normed field $\mathbb{K}$, and let $\sigma_{12}$ be a ring homomorphism. For any continuous $\sigma_{12}$-semilinear map $f \colon E \to F$, suppose there exist positive real numbers $\varepsilon$ and $C$ with $C \geq 0$, such that for all $x$ in the open ball of radius $\varepsilon$ centered at $0$ in $E$, we have $\|f(x)\| \leq C\|x\|$. Then the operator norm of $f$ satisfies $\|f\| \leq C$.
ContinuousLinearMap.opNorm_le_of_nhds_zero theorem
{f : E β†’SL[σ₁₂] F} {C : ℝ} (hC : 0 ≀ C) (hf : βˆ€αΆ  x in 𝓝 (0 : E), β€–f xβ€– ≀ C * β€–xβ€–) : β€–fβ€– ≀ C
Full source
theorem opNorm_le_of_nhds_zero {f : E β†’SL[σ₁₂] F} {C : ℝ} (hC : 0 ≀ C)
    (hf : βˆ€αΆ  x in 𝓝 (0 : E), β€–f xβ€– ≀ C * β€–xβ€–) : β€–fβ€– ≀ C :=
  let ⟨_, Ρ0, hΡ⟩ := Metric.eventually_nhds_iff_ball.1 hf
  opNorm_le_of_ball Ξ΅0 hC hΞ΅
Operator Norm Bound via Neighborhood Condition: $\|f\| \leq C$
Informal description
Let $E$ and $F$ be seminormed additive commutative groups over a normed field $\mathbb{K}$, and let $\sigma_{12}$ be a ring homomorphism. For any continuous $\sigma_{12}$-semilinear map $f \colon E \to F$, suppose there exists a nonnegative real number $C \geq 0$ such that for all $x$ in a neighborhood of $0$ in $E$, we have $\|f(x)\| \leq C\|x\|$. Then the operator norm of $f$ satisfies $\|f\| \leq C$.
ContinuousLinearMap.opNorm_le_of_shell' theorem
{f : E β†’SL[σ₁₂] F} {Ξ΅ C : ℝ} (Ξ΅_pos : 0 < Ξ΅) (hC : 0 ≀ C) {c : π•œ} (hc : β€–cβ€– < 1) (hf : βˆ€ x, Ξ΅ * β€–cβ€– ≀ β€–xβ€– β†’ β€–xβ€– < Ξ΅ β†’ β€–f xβ€– ≀ C * β€–xβ€–) : β€–fβ€– ≀ C
Full source
theorem opNorm_le_of_shell' {f : E β†’SL[σ₁₂] F} {Ξ΅ C : ℝ} (Ξ΅_pos : 0 < Ξ΅) (hC : 0 ≀ C) {c : π•œ}
    (hc : β€–cβ€– < 1) (hf : βˆ€ x, Ξ΅ * β€–cβ€– ≀ β€–xβ€– β†’ β€–xβ€– < Ξ΅ β†’ β€–f xβ€– ≀ C * β€–xβ€–) : β€–fβ€– ≀ C := by
  by_cases h0 : c = 0
  Β· refine opNorm_le_of_ball Ξ΅_pos hC fun x hx => hf x ?_ ?_
    Β· simp [h0]
    Β· rwa [ball_zero_eq] at hx
  Β· rw [← inv_inv c, norm_inv, inv_lt_oneβ‚€ (norm_pos_iff.2 <| inv_ne_zero h0)] at hc
    refine opNorm_le_of_shell Ξ΅_pos hC hc ?_
    rwa [norm_inv, div_eq_mul_inv, inv_inv]
Operator Norm Bound via Shell Condition with $\|c\| < 1$: $\|f\| \leq C$
Informal description
Let $E$ and $F$ be seminormed additive commutative groups over a normed field $\mathbb{K}$, and let $\sigma_{12}$ be a ring homomorphism. For any continuous $\sigma_{12}$-semilinear map $f \colon E \to F$, suppose there exist positive real numbers $\varepsilon$ and $C$ with $C \geq 0$, and an element $c \in \mathbb{K}$ with $\|c\| < 1$, such that for all $x \in E$ satisfying $\varepsilon \|c\| \leq \|x\| < \varepsilon$, we have $\|f(x)\| \leq C\|x\|$. Then the operator norm of $f$ satisfies $\|f\| \leq C$.
ContinuousLinearMap.opNorm_le_of_unit_norm theorem
[NormedSpace ℝ E] [NormedSpace ℝ F] {f : E β†’L[ℝ] F} {C : ℝ} (hC : 0 ≀ C) (hf : βˆ€ x, β€–xβ€– = 1 β†’ β€–f xβ€– ≀ C) : β€–fβ€– ≀ C
Full source
/-- For a continuous real linear map `f`, if one controls the norm of every `f x`, `β€–xβ€– = 1`, then
one controls the norm of `f`. -/
theorem opNorm_le_of_unit_norm [NormedSpace ℝ E] [NormedSpace ℝ F] {f : E β†’L[ℝ] F} {C : ℝ}
    (hC : 0 ≀ C) (hf : βˆ€ x, β€–xβ€– = 1 β†’ β€–f xβ€– ≀ C) : β€–fβ€– ≀ C := by
  refine opNorm_le_bound' f hC fun x hx => ?_
  have H₁ : β€–β€–x‖⁻¹ β€’ xβ€– = 1 := by rw [norm_smul, norm_inv, norm_norm, inv_mul_cancelβ‚€ hx]
  have Hβ‚‚ := hf _ H₁
  rwa [map_smul, norm_smul, norm_inv, norm_norm, ← div_eq_inv_mul, div_le_iffβ‚€] at Hβ‚‚
  exact (norm_nonneg x).lt_of_ne' hx
Operator Norm Bound via Unit Vectors: $\|f\| \leq C$
Informal description
Let $E$ and $F$ be real normed spaces, and let $f \colon E \to F$ be a continuous linear map. If there exists a nonnegative real number $C \geq 0$ such that $\|f(x)\| \leq C$ for all $x \in E$ with $\|x\| = 1$, then the operator norm of $f$ satisfies $\|f\| \leq C$.
ContinuousLinearMap.opNorm_add_le theorem
: β€–f + gβ€– ≀ β€–fβ€– + β€–gβ€–
Full source
/-- The operator norm satisfies the triangle inequality. -/
theorem opNorm_add_le : β€–f + gβ€– ≀ β€–fβ€– + β€–gβ€– :=
  (f + g).opNorm_le_bound (add_nonneg f.opNorm_nonneg g.opNorm_nonneg) fun x =>
    (norm_add_le_of_le (f.le_opNorm x) (g.le_opNorm x)).trans_eq (add_mul _ _ _).symm
Triangle Inequality for Operator Norm: $\|f + g\| \leq \|f\| + \|g\|$
Informal description
For any two continuous semilinear maps $f$ and $g$ between seminormed additive commutative groups, the operator norm of their sum satisfies the triangle inequality $\|f + g\| \leq \|f\| + \|g\|$.
ContinuousLinearMap.norm_id_of_nontrivial_seminorm theorem
(h : βˆƒ x : E, β€–xβ€– β‰  0) : β€–id π•œ Eβ€– = 1
Full source
/-- If there is an element with norm different from `0`, then the norm of the identity equals `1`.
(Since we are working with seminorms supposing that the space is non-trivial is not enough.) -/
theorem norm_id_of_nontrivial_seminorm (h : βˆƒ x : E, β€–xβ€– β‰  0) : β€–id π•œ Eβ€– = 1 :=
  le_antisymm norm_id_le <| by
    let ⟨x, hx⟩ := h
    have := (id π•œ E).ratio_le_opNorm x
    rwa [id_apply, div_self hx] at this
Operator Norm of Identity Map is One in Nontrivial Seminormed Space
Informal description
For a seminormed space $E$ over a field $\mathbb{K}$, if there exists an element $x \in E$ with $\|x\| \neq 0$, then the operator norm of the identity map $\text{id} \colon E \to E$ is equal to $1$, i.e., $\|\text{id}\| = 1$.
ContinuousLinearMap.opNorm_smul_le theorem
{π•œ' : Type*} [NormedField π•œ'] [NormedSpace π•œ' F] [SMulCommClass π•œβ‚‚ π•œ' F] (c : π•œ') (f : E β†’SL[σ₁₂] F) : β€–c β€’ fβ€– ≀ β€–cβ€– * β€–fβ€–
Full source
theorem opNorm_smul_le {π•œ' : Type*} [NormedField π•œ'] [NormedSpace π•œ' F] [SMulCommClass π•œβ‚‚ π•œ' F]
    (c : π•œ') (f : E β†’SL[σ₁₂] F) : β€–c β€’ fβ€– ≀ β€–cβ€– * β€–fβ€– :=
  (c β€’ f).opNorm_le_bound (mul_nonneg (norm_nonneg _) (opNorm_nonneg _)) fun _ => by
    rw [smul_apply, norm_smul, mul_assoc]
    exact mul_le_mul_of_nonneg_left (le_opNorm _ _) (norm_nonneg _)
Operator Norm Submultiplicativity under Scalar Multiplication: $\|c \cdot f\| \leq \|c\| \cdot \|f\|$
Informal description
Let $E$ and $F$ be seminormed spaces over normed fields $\mathbb{K}$ and $\mathbb{K}_2$ respectively, with a compatible scalar multiplication action $\sigma_{12} \colon \mathbb{K} \to \mathbb{K}_2$. Let $\mathbb{K}'$ be another normed field equipped with a normed space structure over $F$ such that the scalar multiplications of $\mathbb{K}_2$ and $\mathbb{K}'$ commute. For any scalar $c \in \mathbb{K}'$ and any continuous $\sigma_{12}$-semilinear map $f \colon E \to F$, the operator norm of the scalar multiple $c \cdot f$ satisfies $\|c \cdot f\| \leq \|c\| \cdot \|f\|$.
ContinuousLinearMap.opNorm_comp_le theorem
(f : E β†’SL[σ₁₂] F) : β€–h.comp fβ€– ≀ β€–hβ€– * β€–fβ€–
Full source
/-- The operator norm is submultiplicative. -/
theorem opNorm_comp_le (f : E β†’SL[σ₁₂] F) : β€–h.comp fβ€– ≀ β€–hβ€– * β€–fβ€– :=
  csInf_le bounds_bddBelow
    ⟨mul_nonneg (opNorm_nonneg _) (opNorm_nonneg _), fun x => by
      rw [mul_assoc]
      exact h.le_opNorm_of_le (f.le_opNorm x)⟩
Submultiplicativity of Operator Norm under Composition: $\|h \circ f\| \leq \|h\| \cdot \|f\|$
Informal description
Let $E$, $F$, and $G$ be seminormed additive commutative groups, and let $f \colon E \to F$ and $h \colon F \to G$ be continuous semilinear maps. The operator norm of the composition $h \circ f$ satisfies $\|h \circ f\| \leq \|h\| \cdot \|f\|$.
ContinuousLinearMap.opNorm_subsingleton theorem
[Subsingleton E] : β€–fβ€– = 0
Full source
@[simp, nontriviality]
theorem opNorm_subsingleton [Subsingleton E] : β€–fβ€– = 0 := by
  refine le_antisymm ?_ (norm_nonneg _)
  apply opNorm_le_bound _ rfl.ge
  intro x
  simp [Subsingleton.elim x 0]
Operator Norm Vanishes on Subsingleton Domain: $\|f\| = 0$ when $E$ is a subsingleton
Informal description
Let $E$ be a seminormed additive commutative group that is a subsingleton (i.e., has at most one element), and let $f \colon E \to F$ be a continuous semilinear map. Then the operator norm of $f$ is zero, i.e., $\|f\| = 0$.
ContinuousLinearMap.norm_restrictScalars theorem
(f : E β†’L[π•œ] Fβ‚—) : β€–f.restrictScalars π•œ'β€– = β€–fβ€–
Full source
@[simp]
theorem norm_restrictScalars (f : E β†’L[π•œ] Fβ‚—) : β€–f.restrictScalars π•œ'β€– = β€–fβ€– :=
  le_antisymm (opNorm_le_bound _ (norm_nonneg _) fun x => f.le_opNorm x)
    (opNorm_le_bound _ (norm_nonneg _) fun x => f.le_opNorm x)
Invariance of Operator Norm under Scalar Restriction: $\|f\|_{\mathbb{K}'} = \|f\|_{\mathbb{K}}$
Informal description
Let $E$ and $F$ be normed spaces over a field $\mathbb{K}$, and let $f \colon E \to F$ be a continuous linear map. For any field extension $\mathbb{K}'$ of $\mathbb{K}$, the operator norm of $f$ remains unchanged when restricting the scalar multiplication to $\mathbb{K}'$, i.e., $\|f\|_{\mathbb{K}'} = \|f\|_{\mathbb{K}}$.
ContinuousLinearMap.coe_restrictScalarsIsometry theorem
: ⇑(restrictScalarsIsometry π•œ E Fβ‚— π•œ' π•œ'') = restrictScalars π•œ'
Full source
@[simp]
theorem coe_restrictScalarsIsometry :
    ⇑(restrictScalarsIsometry π•œ E Fβ‚— π•œ' π•œ'') = restrictScalars π•œ' :=
  rfl
Underlying Function of Scalar Restriction Isometry Equals Scalar Restriction Operation
Informal description
The underlying function of the isometry `restrictScalarsIsometry` (with parameters `π•œ`, `E`, `Fβ‚—`, `π•œ'`, `π•œ''`) equals the scalar restriction operation `restrictScalars π•œ'`.
ContinuousLinearMap.restrictScalarsIsometry_toLinearMap theorem
: (restrictScalarsIsometry π•œ E Fβ‚— π•œ' π•œ'').toLinearMap = restrictScalarsβ‚— π•œ E Fβ‚— π•œ' π•œ''
Full source
@[simp]
theorem restrictScalarsIsometry_toLinearMap :
    (restrictScalarsIsometry π•œ E Fβ‚— π•œ' π•œ'').toLinearMap = restrictScalarsβ‚— π•œ E Fβ‚— π•œ' π•œ'' :=
  rfl
Underlying Linear Map of Scalar Restriction Isometry Equals Scalar Restriction Linear Map
Informal description
The underlying linear map of the isometry `restrictScalarsIsometry` obtained by restricting the scalar multiplication from `π•œ''` to `π•œ'` is equal to the linear map `restrictScalarsβ‚—` that performs the same scalar restriction.
ContinuousLinearMap.norm_pi_le_of_le theorem
{ΞΉ : Type*} [Fintype ΞΉ] {M : ΞΉ β†’ Type*} [βˆ€ i, SeminormedAddCommGroup (M i)] [βˆ€ i, NormedSpace π•œ (M i)] {C : ℝ} {L : (i : ΞΉ) β†’ (E β†’L[π•œ] M i)} (hL : βˆ€ i, β€–L iβ€– ≀ C) (hC : 0 ≀ C) : β€–pi Lβ€– ≀ C
Full source
lemma norm_pi_le_of_le {ΞΉ : Type*} [Fintype ΞΉ]
    {M : ΞΉ β†’ Type*} [βˆ€ i, SeminormedAddCommGroup (M i)] [βˆ€ i, NormedSpace π•œ (M i)] {C : ℝ}
    {L : (i : ΞΉ) β†’ (E β†’L[π•œ] M i)} (hL : βˆ€ i, β€–L iβ€– ≀ C) (hC : 0 ≀ C) :
    β€–pi Lβ€– ≀ C := by
  refine opNorm_le_bound _ hC (fun x ↦ ?_)
  refine (pi_norm_le_iff_of_nonneg (by positivity)).mpr (fun i ↦ ?_)
  exact (L i).le_of_opNorm_le (hL i) _
Operator Norm Bound for Combined Continuous Linear Maps: $\|\operatorname{pi} L\| \leq C$
Informal description
Let $\{M_i\}_{i \in \iota}$ be a finite family of seminormed additive commutative groups, each equipped with a normed space structure over the field $\mathbb{K}$. Let $L_i \colon E \to M_i$ be a family of continuous linear maps indexed by $\iota$, and let $C \geq 0$ be a nonnegative real number such that $\|L_i\| \leq C$ for all $i \in \iota$. Then the operator norm of the combined map $\operatorname{pi} L \colon E \to \prod_{i \in \iota} M_i$ satisfies $\|\operatorname{pi} L\| \leq C$.
LinearMap.mkContinuous_norm_le theorem
(f : E β†’β‚›β‚—[σ₁₂] F) {C : ℝ} (hC : 0 ≀ C) (h : βˆ€ x, β€–f xβ€– ≀ C * β€–xβ€–) : β€–f.mkContinuous C hβ€– ≀ C
Full source
/-- If a continuous linear map is constructed from a linear map via the constructor `mkContinuous`,
then its norm is bounded by the bound given to the constructor if it is nonnegative. -/
theorem mkContinuous_norm_le (f : E β†’β‚›β‚—[σ₁₂] F) {C : ℝ} (hC : 0 ≀ C) (h : βˆ€ x, β€–f xβ€– ≀ C * β€–xβ€–) :
    β€–f.mkContinuous C hβ€– ≀ C :=
  ContinuousLinearMap.opNorm_le_bound _ hC h
Operator Norm Bound for Continuous Extension of Semilinear Map
Informal description
Let $E$ and $F$ be seminormed additive commutative groups, and let $f \colon E \to F$ be a semilinear map. Given a nonnegative real number $C \geq 0$ such that $\|f(x)\| \leq C \cdot \|x\|$ holds for all $x \in E$, the operator norm of the continuous linear map obtained by applying `mkContinuous` to $f$ with bound $C$ satisfies $\|f.mkContinuous\ C\ h\| \leq C$.
LinearMap.mkContinuous_norm_le' theorem
(f : E β†’β‚›β‚—[σ₁₂] F) {C : ℝ} (h : βˆ€ x, β€–f xβ€– ≀ C * β€–xβ€–) : β€–f.mkContinuous C hβ€– ≀ max C 0
Full source
/-- If a continuous linear map is constructed from a linear map via the constructor `mkContinuous`,
then its norm is bounded by the bound or zero if bound is negative. -/
theorem mkContinuous_norm_le' (f : E β†’β‚›β‚—[σ₁₂] F) {C : ℝ} (h : βˆ€ x, β€–f xβ€– ≀ C * β€–xβ€–) :
    β€–f.mkContinuous C hβ€– ≀ max C 0 :=
  ContinuousLinearMap.opNorm_le_bound _ (le_max_right _ _) fun x =>
    (h x).trans <| mul_le_mul_of_nonneg_right (le_max_left _ _) (norm_nonneg x)
Operator Norm Bound for Constructed Continuous Linear Map: $\|f.mkContinuous C h\| \leq \max(C, 0)$
Informal description
Let $E$ and $F$ be seminormed additive commutative groups, and let $f \colon E \to F$ be a semilinear map. If there exists a real number $C$ such that $\|f(x)\| \leq C \cdot \|x\|$ for all $x \in E$, then the operator norm of the continuous linear map constructed from $f$ via `mkContinuous` satisfies $\|f.mkContinuous C h\| \leq \max(C, 0)$.
LinearIsometry.norm_toContinuousLinearMap_le theorem
(f : E β†’β‚›β‚—α΅’[σ₁₂] F) : β€–f.toContinuousLinearMapβ€– ≀ 1
Full source
theorem norm_toContinuousLinearMap_le (f : E β†’β‚›β‚—α΅’[σ₁₂] F) : β€–f.toContinuousLinearMapβ€– ≀ 1 :=
  f.toContinuousLinearMap.opNorm_le_bound zero_le_one fun x => by simp
Operator Norm of Linear Isometry is Bounded by One
Informal description
For any linear isometry $f \colon E \to F$ between seminormed additive commutative groups, the operator norm of the associated continuous linear map satisfies $\|f\| \leq 1$.
Submodule.norm_subtypeL_le theorem
(K : Submodule π•œ E) : β€–K.subtypeLβ€– ≀ 1
Full source
theorem norm_subtypeL_le (K : Submodule π•œ E) : β€–K.subtypeLβ€– ≀ 1 :=
  K.subtypeβ‚—α΅’.norm_toContinuousLinearMap_le
Operator Norm Bound for Submodule Inclusion: $\|\text{subtypeL}\| \leq 1$
Informal description
For any submodule $K$ of a seminormed space $E$ over a field $\mathbb{k}$, the operator norm of the continuous linear inclusion map $\text{subtypeL} \colon K \to E$ is bounded by $1$, i.e., $\|\text{subtypeL}\| \leq 1$.