doc-next-gen

Mathlib.Analysis.Normed.Field.Basic

Module docstring

{"# Normed division rings and fields

In this file we define normed fields, and (more generally) normed division rings. We also prove some theorems about these definitions.

Some useful results that relate the topology of the normed field to the discrete topology include: * norm_eq_one_iff_ne_zero_of_discrete

Methods for constructing a normed field instance from a given real absolute value on a field are given in: * AbsoluteValue.toNormedField ","### Induced normed structures "}

NormedDivisionRing structure
(α : Type*) extends Norm α, DivisionRing α, MetricSpace α
Full source
/-- A normed division ring is a division ring endowed with a seminorm which satisfies the equality
`‖x y‖ = ‖x‖ ‖y‖`. -/
class NormedDivisionRing (α : Type*) extends Norm α, DivisionRing α, MetricSpace α where
  /-- The distance is induced by the norm. -/
  dist_eq : ∀ x y, dist x y = norm (x - y)
  /-- The norm is multiplicative. -/
  protected norm_mul : ∀ a b, norm (a * b) = norm a * norm b
Normed division ring
Informal description
A normed division ring is a division ring $\alpha$ equipped with a norm function $\|\cdot\| \colon \alpha \to \mathbb{R}$ and a metric space structure, such that the norm satisfies the multiplicative property $\|x y\| = \|x\| \|y\|$ for all $x, y \in \alpha$.
NormedDivisionRing.toNormMulClass instance
[NormedDivisionRing α] : NormMulClass α
Full source
/-- The norm on a normed division ring is strictly multiplicative. -/
instance (priority := 100) NormedDivisionRing.toNormMulClass [NormedDivisionRing α] :
    NormMulClass α where
  norm_mul := NormedDivisionRing.norm_mul
Strict Multiplicativity of Norm in Normed Division Rings
Informal description
Every normed division ring $\alpha$ satisfies the property that the norm is strictly multiplicative, i.e., for all $x, y \in \alpha$, we have $\|x y\| = \|x\| \|y\|$.
norm_div theorem
(a b : α) : ‖a / b‖ = ‖a‖ / ‖b‖
Full source
@[simp]
theorem norm_div (a b : α) : ‖a / b‖ = ‖a‖ / ‖b‖ :=
  map_div₀ (normHom : α →*₀ ℝ) a b
Norm of Quotient Equals Quotient of Norms
Informal description
For any elements $a$ and $b$ in a normed division ring $\alpha$, the norm of the quotient $a/b$ equals the quotient of the norms, i.e., $\|a / b\| = \|a\| / \|b\|$.
nnnorm_div theorem
(a b : α) : ‖a / b‖₊ = ‖a‖₊ / ‖b‖₊
Full source
@[simp]
theorem nnnorm_div (a b : α) : ‖a / b‖₊ = ‖a‖₊ / ‖b‖₊ :=
  map_div₀ (nnnormHom : α →*₀ ℝ≥0) a b
Non-negative norm of quotient equals quotient of non-negative norms
Informal description
For any elements $a$ and $b$ in a normed division ring $\alpha$, the non-negative norm of the quotient $a/b$ equals the quotient of the non-negative norms, i.e., $\|a / b\|_{\mathbb{R}_{\geq 0}} = \|a\|_{\mathbb{R}_{\geq 0}} / \|b\|_{\mathbb{R}_{\geq 0}}$.
norm_inv theorem
(a : α) : ‖a⁻¹‖ = ‖a‖⁻¹
Full source
@[simp]
theorem norm_inv (a : α) : ‖a⁻¹‖ = ‖a‖‖a‖⁻¹ :=
  map_inv₀ (normHom : α →*₀ ℝ) a
Norm of Inverse Equals Inverse of Norm in Normed Division Rings
Informal description
For any element $a$ in a normed division ring $\alpha$, the norm of its inverse equals the inverse of its norm, i.e., $\|a^{-1}\| = \|a\|^{-1}$.
nnnorm_inv theorem
(a : α) : ‖a⁻¹‖₊ = ‖a‖₊⁻¹
Full source
@[simp]
theorem nnnorm_inv (a : α) : ‖a⁻¹‖₊ = ‖a‖₊‖a‖₊⁻¹ :=
  NNReal.eq <| by simp
Non-negative norm of inverse equals inverse of non-negative norm
Informal description
For any element $a$ in a normed division ring $\alpha$, the non-negative norm of its inverse equals the inverse of its non-negative norm, i.e., $\|a^{-1}\|_{\mathbb{R}_{\geq 0}} = \|a\|_{\mathbb{R}_{\geq 0}}^{-1}$.
enorm_inv theorem
{a : α} (ha : a ≠ 0) : ‖a⁻¹‖ₑ = ‖a‖ₑ⁻¹
Full source
@[simp]
lemma enorm_inv {a : α} (ha : a ≠ 0) : ‖a⁻¹‖ₑ = ‖a‖ₑ‖a‖ₑ⁻¹ := by simp [enorm, ENNReal.coe_inv, ha]
Extended Norm of Inverse Equals Inverse of Extended Norm
Informal description
For any nonzero element $a$ in a normed division ring $\alpha$, the extended norm of its inverse equals the inverse of its extended norm, i.e., $\|a^{-1}\|_e = \|a\|_e^{-1}$.
norm_zpow theorem
: ∀ (a : α) (n : ℤ), ‖a ^ n‖ = ‖a‖ ^ n
Full source
@[simp]
theorem norm_zpow : ∀ (a : α) (n : ), ‖a ^ n‖ = ‖a‖ ^ n :=
  map_zpow₀ (normHom : α →*₀ ℝ)
Norm of Integer Power Equals Power of Norm
Informal description
For any element $a$ in a normed division ring $\alpha$ and any integer $n$, the norm of $a$ raised to the power $n$ is equal to the norm of $a$ raised to the power $n$, i.e., $\|a^n\| = \|a\|^n$.
nnnorm_zpow theorem
: ∀ (a : α) (n : ℤ), ‖a ^ n‖₊ = ‖a‖₊ ^ n
Full source
@[simp]
theorem nnnorm_zpow : ∀ (a : α) (n : ), ‖a ^ n‖₊ = ‖a‖₊ ^ n :=
  map_zpow₀ (nnnormHom : α →*₀ ℝ≥0)
Power Law for Non-Negative Norm in Normed Division Rings: $\|a^n\|_{\mathbb{R}_{\geq 0}} = \|a\|_{\mathbb{R}_{\geq 0}}^n$
Informal description
For any element $a$ in a normed division ring $\alpha$ and any integer $n$, the non-negative norm of $a^n$ is equal to the non-negative norm of $a$ raised to the power $n$, i.e., $\|a^n\|_{\mathbb{R}_{\geq 0}} = \|a\|_{\mathbb{R}_{\geq 0}}^n$.
dist_inv_inv₀ theorem
{z w : α} (hz : z ≠ 0) (hw : w ≠ 0) : dist z⁻¹ w⁻¹ = dist z w / (‖z‖ * ‖w‖)
Full source
theorem dist_inv_inv₀ {z w : α} (hz : z ≠ 0) (hw : w ≠ 0) :
    dist z⁻¹ w⁻¹ = dist z w / (‖z‖ * ‖w‖) := by
  rw [dist_eq_norm, inv_sub_inv' hz hw, norm_mul, norm_mul, norm_inv, norm_inv, mul_comm ‖z‖‖z‖⁻¹,
    mul_assoc, dist_eq_norm', div_eq_mul_inv, mul_inv]
Distance Between Inverses Formula in Normed Division Rings: $\text{dist}(z^{-1}, w^{-1}) = \frac{\text{dist}(z, w)}{\|z\| \cdot \|w\|}$
Informal description
For any nonzero elements $z$ and $w$ in a normed division ring $\alpha$, the distance between their inverses is equal to the distance between $z$ and $w$ divided by the product of their norms, i.e., \[ \text{dist}(z^{-1}, w^{-1}) = \frac{\text{dist}(z, w)}{\|z\| \cdot \|w\|}. \]
nndist_inv_inv₀ theorem
{z w : α} (hz : z ≠ 0) (hw : w ≠ 0) : nndist z⁻¹ w⁻¹ = nndist z w / (‖z‖₊ * ‖w‖₊)
Full source
theorem nndist_inv_inv₀ {z w : α} (hz : z ≠ 0) (hw : w ≠ 0) :
    nndist z⁻¹ w⁻¹ = nndist z w / (‖z‖₊ * ‖w‖₊) :=
  NNReal.eq <| dist_inv_inv₀ hz hw
Non-Negative Distance Between Inverses Formula: $\text{nndist}(z^{-1}, w^{-1}) = \frac{\text{nndist}(z, w)}{\|z\|_{\mathbb{R}_{\geq 0}} \|w\|_{\mathbb{R}_{\geq 0}}}$
Informal description
For any nonzero elements $z$ and $w$ in a normed division ring $\alpha$, the non-negative distance between their inverses is equal to the non-negative distance between $z$ and $w$ divided by the product of their non-negative norms, i.e., \[ \text{nndist}(z^{-1}, w^{-1}) = \frac{\text{nndist}(z, w)}{\|z\|_{\mathbb{R}_{\geq 0}} \cdot \|w\|_{\mathbb{R}_{\geq 0}}}. \]
norm_commutator_sub_one_le theorem
(ha : a ≠ 0) (hb : b ≠ 0) : ‖a * b * a⁻¹ * b⁻¹ - 1‖ ≤ 2 * ‖a‖⁻¹ * ‖b‖⁻¹ * ‖a - 1‖ * ‖b - 1‖
Full source
lemma norm_commutator_sub_one_le (ha : a ≠ 0) (hb : b ≠ 0) :
    ‖a * b * a⁻¹ * b⁻¹ - 1‖ ≤ 2 * ‖a‖‖a‖⁻¹ * ‖b‖‖b‖⁻¹ * ‖a - 1‖ * ‖b - 1‖ := by
  simpa using norm_commutator_units_sub_one_le (.mk0 a ha) (.mk0 b hb)
Norm Inequality for Commutator of Nonzero Elements in a Normed Division Ring
Informal description
For any nonzero elements $a$ and $b$ in a normed division ring $\alpha$, the norm of the commutator $[a, b] = a b a^{-1} b^{-1}$ minus the identity satisfies the inequality \[ \| [a, b] - 1 \| \leq 2 \| a \|^{-1} \| b \|^{-1} \| a - 1 \| \| b - 1 \|. \]
nnnorm_commutator_sub_one_le theorem
(ha : a ≠ 0) (hb : b ≠ 0) : ‖a * b * a⁻¹ * b⁻¹ - 1‖₊ ≤ 2 * ‖a‖₊⁻¹ * ‖b‖₊⁻¹ * ‖a - 1‖₊ * ‖b - 1‖₊
Full source
lemma nnnorm_commutator_sub_one_le (ha : a ≠ 0) (hb : b ≠ 0) :
    ‖a * b * a⁻¹ * b⁻¹ - 1‖₊ ≤ 2 * ‖a‖₊‖a‖₊⁻¹ * ‖b‖₊‖b‖₊⁻¹ * ‖a - 1‖₊ * ‖b - 1‖₊ := by
  simpa using nnnorm_commutator_units_sub_one_le (.mk0 a ha) (.mk0 b hb)
Nonnegative Norm Inequality for Commutator of Nonzero Elements in a Normed Division Ring
Informal description
For any nonzero elements $a$ and $b$ in a normed division ring $\alpha$, the nonnegative norm of the commutator $[a, b] = a b a^{-1} b^{-1}$ minus the identity satisfies the inequality \[ \| [a, b] - 1 \|_{\mathbb{R}_{\geq 0}} \leq 2 \| a \|_{\mathbb{R}_{\geq 0}}^{-1} \| b \|_{\mathbb{R}_{\geq 0}}^{-1} \| a - 1 \|_{\mathbb{R}_{\geq 0}} \| b - 1 \|_{\mathbb{R}_{\geq 0}}. \]
NormedDivisionRing.norm_eq_one_iff_ne_zero_of_discrete theorem
{x : 𝕜} : ‖x‖ = 1 ↔ x ≠ 0
Full source
lemma norm_eq_one_iff_ne_zero_of_discrete {x : 𝕜} : ‖x‖‖x‖ = 1 ↔ x ≠ 0 := by
  constructor <;> intro hx
  · contrapose! hx
    simp [hx]
  · have : IsOpen {(0 : 𝕜)} := isOpen_discrete {0}
    simp_rw [Metric.isOpen_singleton_iff, dist_eq_norm, sub_zero] at this
    obtain ⟨ε, εpos, h'⟩ := this
    wlog h : ‖x‖ < 1 generalizing 𝕜 with H
    · push_neg at h
      rcases h.eq_or_lt with h|h
      · rw [h]
      replace h := norm_inv x ▸ inv_lt_one_of_one_lt₀ h
      rw [← inv_inj, inv_one, ← norm_inv]
      exact H (by simpa) h' h
    obtain ⟨k, hk⟩ : ∃ k : ℕ, ‖x‖ ^ k < ε := exists_pow_lt_of_lt_one εpos h
    rw [← norm_pow] at hk
    specialize h' _ hk
    simp [hx] at h'
Norm-One Characterization in Discrete Normed Division Rings: $\|x\| = 1 \leftrightarrow x \neq 0$
Informal description
In a discrete normed division ring $\mathbb{K}$, for any element $x \in \mathbb{K}$, the norm of $x$ equals $1$ if and only if $x$ is nonzero, i.e., $\|x\| = 1 \leftrightarrow x \neq 0$.
NormedDivisionRing.norm_le_one_of_discrete theorem
(x : 𝕜) : ‖x‖ ≤ 1
Full source
@[simp]
lemma norm_le_one_of_discrete
    (x : 𝕜) : ‖x‖ ≤ 1 := by
  rcases eq_or_ne x 0 with rfl|hx
  · simp
  · simp [norm_eq_one_iff_ne_zero_of_discrete.mpr hx]
Norm Bound in Discrete Normed Division Rings: $\|x\| \leq 1$ for all $x$
Informal description
In a discrete normed division ring $\mathbb{K}$, the norm of any element $x \in \mathbb{K}$ satisfies $\|x\| \leq 1$.
NormedDivisionRing.unitClosedBall_eq_univ_of_discrete theorem
: (Metric.closedBall 0 1 : Set 𝕜) = Set.univ
Full source
lemma unitClosedBall_eq_univ_of_discrete : (Metric.closedBall 0 1 : Set 𝕜) = Set.univ := by
  ext
  simp
Closed Unit Ball Equals Entire Space in Discrete Normed Division Rings
Informal description
In a discrete normed division ring $\mathbb{K}$, the closed ball of radius $1$ centered at $0$ is equal to the entire space, i.e., $\overline{B}(0, 1) = \mathbb{K}$.
NormedField structure
(α : Type*) extends Norm α, Field α, MetricSpace α
Full source
/-- A normed field is a field with a norm satisfying ‖x y‖ = ‖x‖ ‖y‖. -/
class NormedField (α : Type*) extends Norm α, Field α, MetricSpace α where
  /-- The distance is induced by the norm. -/
  dist_eq : ∀ x y, dist x y = norm (x - y)
  /-- The norm is multiplicative. -/
  protected norm_mul : ∀ a b, norm (a * b) = norm a * norm b
Normed field
Informal description
A normed field is a field $\alpha$ equipped with a norm function $\|\cdot\| : \alpha \to \mathbb{R}$ and a metric space structure, such that the norm satisfies the multiplicative property $\|x y\| = \|x\| \|y\|$ for all $x, y \in \alpha$.
NontriviallyNormedField structure
(α : Type*) extends NormedField α
Full source
/-- A nontrivially normed field is a normed field in which there is an element of norm different
from `0` and `1`. This makes it possible to bring any element arbitrarily close to `0` by
multiplication by the powers of any element, and thus to relate algebra and topology. -/
class NontriviallyNormedField (α : Type*) extends NormedField α where
  /-- The norm attains a value exceeding 1. -/
  non_trivial : ∃ x : α, 1 < ‖x‖
Nontrivially normed field
Informal description
A nontrivially normed field is a normed field $\alpha$ where there exists an element with norm different from both $0$ and $1$. This property ensures that for any element, it is possible to make it arbitrarily close to $0$ by multiplying it with appropriate powers of another element, thereby connecting algebraic and topological properties.
DenselyNormedField structure
(α : Type*) extends NormedField α
Full source
/-- A densely normed field is a normed field for which the image of the norm is dense in `ℝ≥0`,
which means it is also nontrivially normed. However, not all nontrivally normed fields are densely
normed; in particular, the `Padic`s exhibit this fact. -/
class DenselyNormedField (α : Type*) extends NormedField α where
  /-- The range of the norm is dense in the collection of nonnegative real numbers. -/
  lt_norm_lt : ∀ x y : , 0 ≤ x → x < y → ∃ a : α, x < ‖a‖ ∧ ‖a‖ < y
Densely normed field
Informal description
A densely normed field is a normed field $\alpha$ where the image of the norm function is dense in the non-negative real numbers $\mathbb{R}_{\geq 0}$. This implies that the field is also nontrivially normed, meaning there exists an element with norm different from both $0$ and $1$. However, not all nontrivially normed fields are densely normed; for example, the $p$-adic numbers are not densely normed.
DenselyNormedField.toNontriviallyNormedField instance
[DenselyNormedField α] : NontriviallyNormedField α
Full source
/-- A densely normed field is always a nontrivially normed field.
See note [lower instance priority]. -/
instance (priority := 100) DenselyNormedField.toNontriviallyNormedField [DenselyNormedField α] :
    NontriviallyNormedField α where
  non_trivial :=
    let ⟨a, h, _⟩ := DenselyNormedField.lt_norm_lt 1 2 zero_le_one one_lt_two
    ⟨a, h⟩
Densely Normed Fields are Nontrivially Normed
Informal description
Every densely normed field is a nontrivially normed field.
NormedField.toNormedDivisionRing instance
: NormedDivisionRing α
Full source
instance (priority := 100) NormedField.toNormedDivisionRing : NormedDivisionRing α :=
  { ‹NormedField α› with }
Normed Fields are Normed Division Rings
Informal description
Every normed field $\alpha$ is also a normed division ring.
NormedField.toNormedCommRing instance
: NormedCommRing α
Full source
instance (priority := 100) NormedField.toNormedCommRing : NormedCommRing α :=
  { ‹NormedField α› with norm_mul_le a b := (norm_mul a b).le }
Normed Fields are Normed Commutative Rings
Informal description
Every normed field $\alpha$ is also a normed commutative ring.
NormedField.exists_one_lt_norm theorem
: ∃ x : α, 1 < ‖x‖
Full source
theorem exists_one_lt_norm : ∃ x : α, 1 < ‖x‖ :=
  ‹NontriviallyNormedField α›.non_trivial
Existence of Element with Norm Greater Than One in Nontrivially Normed Field
Informal description
In a nontrivially normed field $\alpha$, there exists an element $x \in \alpha$ such that its norm satisfies $\|x\| > 1$.
NormedField.exists_one_lt_nnnorm theorem
: ∃ x : α, 1 < ‖x‖₊
Full source
theorem exists_one_lt_nnnorm : ∃ x : α, 1 < ‖x‖₊ := exists_one_lt_norm α
Existence of Element with Seminorm Greater Than One in Nontrivially Normed Field
Informal description
In a nontrivially normed field $\alpha$, there exists an element $x \in \alpha$ such that its seminorm satisfies $1 < \|x\|_+$.
NormedField.exists_one_lt_enorm theorem
: ∃ x : α, 1 < ‖x‖ₑ
Full source
theorem exists_one_lt_enorm : ∃ x : α, 1 < ‖x‖ₑ :=
  exists_one_lt_nnnorm α |>.imp fun _ => ENNReal.coe_lt_coe.mpr
Existence of Element with Extended Norm Greater Than One in Nontrivially Normed Field
Informal description
In a nontrivially normed field $\alpha$, there exists an element $x \in \alpha$ such that its extended norm satisfies $1 < \|x\|_e$.
NormedField.exists_lt_norm theorem
(r : ℝ) : ∃ x : α, r < ‖x‖
Full source
theorem exists_lt_norm (r : ) : ∃ x : α, r < ‖x‖ :=
  let ⟨w, hw⟩ := exists_one_lt_norm α
  let ⟨n, hn⟩ := pow_unbounded_of_one_lt r hw
  ⟨w ^ n, by rwa [norm_pow]⟩
Existence of Element with Norm Exceeding Any Real in Nontrivially Normed Field
Informal description
For any real number $r$ and any nontrivially normed field $\alpha$, there exists an element $x \in \alpha$ such that its norm satisfies $\|x\| > r$.
NormedField.exists_lt_nnnorm theorem
(r : ℝ≥0) : ∃ x : α, r < ‖x‖₊
Full source
theorem exists_lt_nnnorm (r : ℝ≥0) : ∃ x : α, r < ‖x‖₊ := exists_lt_norm α r
Existence of Element with Seminorm Exceeding Any Nonnegative Real in Nontrivially Normed Field
Informal description
For any nonnegative real number $r$ and any nontrivially normed field $\alpha$, there exists an element $x \in \alpha$ such that its seminorm satisfies $\|x\|_+ > r$, where $\|x\|_+$ denotes the nonnegative real seminorm of $x$.
NormedField.exists_lt_enorm theorem
{r : ℝ≥0∞} (hr : r ≠ ∞) : ∃ x : α, r < ‖x‖ₑ
Full source
theorem exists_lt_enorm {r : ℝ≥0∞} (hr : r ≠ ∞) : ∃ x : α, r < ‖x‖ₑ := by
  lift r to ℝ≥0 using hr
  exact mod_cast exists_lt_nnnorm α r
Existence of Element with Extended Norm Exceeding Any Finite Extended Nonnegative Real in Nontrivially Normed Field
Informal description
For any extended nonnegative real number $r \in \mathbb{R}_{\geq 0} \cup \{\infty\}$ with $r \neq \infty$, there exists an element $x$ in a nontrivially normed field $\alpha$ such that its extended norm satisfies $\|x\|_e > r$.
NormedField.exists_norm_lt theorem
{r : ℝ} (hr : 0 < r) : ∃ x : α, 0 < ‖x‖ ∧ ‖x‖ < r
Full source
theorem exists_norm_lt {r : } (hr : 0 < r) : ∃ x : α, 0 < ‖x‖ ∧ ‖x‖ < r :=
  let ⟨w, hw⟩ := exists_lt_norm α r⁻¹
  ⟨w⁻¹, by rwa [← Set.mem_Ioo, norm_inv, ← Set.mem_inv, Set.inv_Ioo_0_left hr]⟩
Existence of Element with Norm Between Zero and Any Positive Real in Nontrivially Normed Field
Informal description
For any positive real number $r > 0$ in a nontrivially normed field $\alpha$, there exists an element $x \in \alpha$ such that its norm satisfies $0 < \|x\| < r$.
NormedField.exists_nnnorm_lt theorem
{r : ℝ≥0} (hr : 0 < r) : ∃ x : α, 0 < ‖x‖₊ ∧ ‖x‖₊ < r
Full source
theorem exists_nnnorm_lt {r : ℝ≥0} (hr : 0 < r) : ∃ x : α, 0 < ‖x‖₊ ∧ ‖x‖₊ < r :=
  exists_norm_lt α hr
Existence of Element with Nonnegative Norm Between Zero and Any Positive Real in Nontrivially Normed Field
Informal description
For any positive real number $r > 0$ in a nontrivially normed field $\alpha$, there exists an element $x \in \alpha$ such that its nonnegative real norm satisfies $0 < \|x\| < r$.
NormedField.exists_enorm_lt theorem
{r : ℝ≥0∞} (hr : 0 < r) : ∃ x : α, 0 < ‖x‖ₑ ∧ ‖x‖ₑ < r
Full source
/-- TODO: merge with `_root_.exists_enorm_lt`. -/
theorem exists_enorm_lt {r : ℝ≥0∞} (hr : 0 < r) : ∃ x : α, 0 < ‖x‖ₑ ∧ ‖x‖ₑ < r :=
  match r with
  |  => exists_one_lt_enorm α |>.imp fun _ hx => ⟨zero_le_one.trans_lt hx, ENNReal.coe_lt_top⟩
  | (r : ℝ≥0) => exists_nnnorm_lt α (ENNReal.coe_pos.mp hr) |>.imp fun _ =>
    And.imp ENNReal.coe_pos.mpr ENNReal.coe_lt_coe.mpr
Existence of Element with Extended Norm Between Zero and Any Positive Real in Nontrivially Normed Field
Informal description
For any positive extended non-negative real number $r > 0$ in a nontrivially normed field $\alpha$, there exists an element $x \in \alpha$ such that its extended norm satisfies $0 < \|x\|_e < r$.
NormedField.exists_norm_lt_one theorem
: ∃ x : α, 0 < ‖x‖ ∧ ‖x‖ < 1
Full source
theorem exists_norm_lt_one : ∃ x : α, 0 < ‖x‖ ∧ ‖x‖ < 1 :=
  exists_norm_lt α one_pos
Existence of Element with Norm Between 0 and 1 in Nontrivially Normed Field
Informal description
In a nontrivially normed field $\alpha$, there exists an element $x \in \alpha$ such that its norm satisfies $0 < \|x\| < 1$.
NormedField.exists_nnnorm_lt_one theorem
: ∃ x : α, 0 < ‖x‖₊ ∧ ‖x‖₊ < 1
Full source
theorem exists_nnnorm_lt_one : ∃ x : α, 0 < ‖x‖₊ ∧ ‖x‖₊ < 1 := exists_norm_lt_one _
Existence of Element with Nonnegative Norm Between 0 and 1 in Nontrivially Normed Field
Informal description
In a nontrivially normed field $\alpha$, there exists an element $x \in \alpha$ such that its nonnegative norm satisfies $0 < \|x\|_{\mathbb{R}_{\geq 0}} < 1$.
NormedField.exists_enorm_lt_one theorem
: ∃ x : α, 0 < ‖x‖ₑ ∧ ‖x‖ₑ < 1
Full source
theorem exists_enorm_lt_one : ∃ x : α, 0 < ‖x‖ₑ ∧ ‖x‖ₑ < 1 := exists_enorm_lt _ one_pos
Existence of Element with Extended Norm Between 0 and 1 in Nontrivially Normed Field
Informal description
In a nontrivially normed field $\alpha$, there exists an element $x \in \alpha$ such that its extended norm satisfies $0 < \|x\|_e < 1$.
NormedField.nhdsNE_neBot theorem
(x : α) : NeBot (𝓝[≠] x)
Full source
@[instance]
theorem nhdsNE_neBot (x : α) : NeBot (𝓝[≠] x) := by
  rw [← mem_closure_iff_nhdsWithin_neBot, Metric.mem_closure_iff]
  rintro ε ε0
  rcases exists_norm_lt α ε0 with ⟨b, hb0, hbε⟩
  refine ⟨x + b, mt (Set.mem_singleton_iff.trans add_eq_left).1 <| norm_pos_iff.1 hb0, ?_⟩
  rwa [dist_comm, dist_eq_norm, add_sub_cancel_left]
Punctured Neighborhoods in Nontrivially Normed Fields are Non-Trivial
Informal description
For any element $x$ in a nontrivially normed field $\alpha$, the punctured neighborhood filter at $x$ (excluding $x$ itself) is nonempty and does not contain the bottom element of the filter lattice. In other words, there are always points arbitrarily close to $x$ but not equal to $x$.
NormedField.nhdsWithin_isUnit_neBot theorem
: NeBot (𝓝[{x : α | IsUnit x}] 0)
Full source
@[instance]
theorem nhdsWithin_isUnit_neBot : NeBot (𝓝[{ x : α | IsUnit x }] 0) := by
  simpa only [isUnit_iff_ne_zero] using nhdsNE_neBot (0 : α)
Units Near Zero in Nontrivially Normed Fields are Non-Trivial
Informal description
In a nontrivially normed field $\alpha$, the neighborhood filter around $0$ restricted to the set of units is nonempty and does not contain the bottom element of the filter lattice. That is, there are always units arbitrarily close to $0$.
NormedField.exists_lt_norm_lt theorem
{r₁ r₂ : ℝ} (h₀ : 0 ≤ r₁) (h : r₁ < r₂) : ∃ x : α, r₁ < ‖x‖ ∧ ‖x‖ < r₂
Full source
theorem exists_lt_norm_lt {r₁ r₂ : } (h₀ : 0 ≤ r₁) (h : r₁ < r₂) : ∃ x : α, r₁ < ‖x‖ ∧ ‖x‖ < r₂ :=
  DenselyNormedField.lt_norm_lt r₁ r₂ h₀ h
Existence of Elements with Norm in Open Interval $(r_1, r_2)$ in a Normed Field
Informal description
For any real numbers $r_1$ and $r_2$ such that $0 \leq r_1 < r_2$, there exists an element $x$ in the normed field $\alpha$ with $\|x\|$ strictly between $r_1$ and $r_2$, i.e., $r_1 < \|x\| < r_2$.
NormedField.exists_lt_nnnorm_lt theorem
{r₁ r₂ : ℝ≥0} (h : r₁ < r₂) : ∃ x : α, r₁ < ‖x‖₊ ∧ ‖x‖₊ < r₂
Full source
theorem exists_lt_nnnorm_lt {r₁ r₂ : ℝ≥0} (h : r₁ < r₂) : ∃ x : α, r₁ < ‖x‖₊ ∧ ‖x‖₊ < r₂ :=
  mod_cast exists_lt_norm_lt α r₁.prop h
Existence of Elements with Non-Negative Norm in Open Interval $(r_1, r_2)$ in a Normed Field
Informal description
For any non-negative real numbers $r_1$ and $r_2$ in $\mathbb{R}_{\geq 0}$ such that $r_1 < r_2$, there exists an element $x$ in the normed field $\alpha$ whose non-negative norm $\|x\|_{\mathbb{R}_{\geq 0}}$ satisfies $r_1 < \|x\|_{\mathbb{R}_{\geq 0}} < r_2$.
NormedField.denselyOrdered_range_norm instance
: DenselyOrdered (Set.range (norm : α → ℝ))
Full source
instance denselyOrdered_range_norm : DenselyOrdered (Set.range (norm : α → )) where
  dense := by
    rintro ⟨-, x, rfl⟩ ⟨-, y, rfl⟩ hxy
    let ⟨z, h⟩ := exists_lt_norm_lt α (norm_nonneg _) hxy
    exact ⟨⟨‖z‖, z, rfl⟩, h⟩
Dense Ordering of Norm Values in a Normed Field
Informal description
For any normed field $\alpha$, the range of the norm function $\|\cdot\| : \alpha \to \mathbb{R}$ is densely ordered. That is, for any two real numbers $r_1, r_2$ in the range of the norm with $r_1 < r_2$, there exists an element $x \in \alpha$ such that $r_1 < \|x\| < r_2$.
NormedField.denselyOrdered_range_nnnorm instance
: DenselyOrdered (Set.range (nnnorm : α → ℝ≥0))
Full source
instance denselyOrdered_range_nnnorm : DenselyOrdered (Set.range (nnnorm : α → ℝ≥0)) where
  dense := by
    rintro ⟨-, x, rfl⟩ ⟨-, y, rfl⟩ hxy
    let ⟨z, h⟩ := exists_lt_nnnorm_lt α hxy
    exact ⟨⟨‖z‖₊, z, rfl⟩, h⟩
Dense Ordering of Non-Negative Norm Values in a Normed Field
Informal description
For any normed field $\alpha$, the range of the non-negative norm function $\|\cdot\|_{\mathbb{R}_{\geq 0}} : \alpha \to \mathbb{R}_{\geq 0}$ is densely ordered. That is, for any two non-negative real numbers $r_1, r_2$ in the range of the non-negative norm with $r_1 < r_2$, there exists an element $x \in \alpha$ such that $r_1 < \|x\|_{\mathbb{R}_{\geq 0}} < r_2$.
NontriviallyNormedField.ofNormNeOne definition
{𝕜 : Type*} [h' : NormedField 𝕜] (h : ∃ x : 𝕜, x ≠ 0 ∧ ‖x‖ ≠ 1) : NontriviallyNormedField 𝕜
Full source
/-- A normed field is nontrivially normed
provided that the norm of some nonzero element is not one. -/
def NontriviallyNormedField.ofNormNeOne {𝕜 : Type*} [h' : NormedField 𝕜]
    (h : ∃ x : 𝕜, x ≠ 0 ∧ ‖x‖ ≠ 1) : NontriviallyNormedField 𝕜 where
  toNormedField := h'
  non_trivial := by
    rcases h with ⟨x, hx, hx1⟩
    rcases hx1.lt_or_lt with hlt | hlt
    · use x⁻¹
      rw [norm_inv]
      exact (one_lt_inv₀ (norm_pos_iff.2 hx)).2 hlt
    · exact ⟨x, hlt⟩
Nontrivially normed field induced by a norm not equal to one
Informal description
Given a normed field $\mathbb{K}$ and an element $x \in \mathbb{K}$ such that $x \neq 0$ and $\|x\| \neq 1$, the field $\mathbb{K}$ can be endowed with the structure of a nontrivially normed field. This ensures that the norm is not trivial, meaning there exists an element whose norm is different from both $0$ and $1$.
Real.normedField instance
: NormedField ℝ
Full source
noncomputable instance Real.normedField : NormedField  :=
  { Real.normedAddCommGroup, Real.field with
    norm_mul := abs_mul }
The Normed Field Structure on Real Numbers
Informal description
The real numbers $\mathbb{R}$ form a normed field, where the norm is given by the absolute value function and satisfies $\|xy\| = \|x\|\|y\|$ for all $x, y \in \mathbb{R}$.
Real.denselyNormedField instance
: DenselyNormedField ℝ
Full source
noncomputable instance Real.denselyNormedField : DenselyNormedField  where
  lt_norm_lt _ _ h₀ hr :=
    let ⟨x, h⟩ := exists_between hr
    ⟨x, by rwa [Real.norm_eq_abs, abs_of_nonneg (h₀.trans h.1.le)]⟩
The Densely Normed Field Structure on Real Numbers
Informal description
The real numbers $\mathbb{R}$ form a densely normed field, where the norm is given by the absolute value function and the image of the norm is dense in the non-negative real numbers $\mathbb{R}_{\geq 0}$.
Real.toNNReal_mul_nnnorm theorem
{x : ℝ} (y : ℝ) (hx : 0 ≤ x) : x.toNNReal * ‖y‖₊ = ‖x * y‖₊
Full source
theorem toNNReal_mul_nnnorm {x : } (y : ) (hx : 0 ≤ x) : x.toNNReal * ‖y‖₊ = ‖x * y‖₊ := by
  ext
  simp only [NNReal.coe_mul, nnnorm_mul, coe_nnnorm, Real.toNNReal_of_nonneg, norm_of_nonneg, hx,
    NNReal.coe_mk]
Nonnegative Norm Multiplicativity for Nonnegative Real Numbers: $x_{\text{nn}} \cdot \|y\|_+ = \|x \cdot y\|_+$
Informal description
For any real numbers $x$ and $y$ with $x \geq 0$, the product of the nonnegative real part of $x$ (denoted $x_{\text{nn}}$) and the nonnegative norm of $y$ equals the nonnegative norm of the product $x \cdot y$, i.e., $x_{\text{nn}} \cdot \|y\|_+ = \|x \cdot y\|_+$.
Real.nnnorm_mul_toNNReal theorem
(x : ℝ) {y : ℝ} (hy : 0 ≤ y) : ‖x‖₊ * y.toNNReal = ‖x * y‖₊
Full source
theorem nnnorm_mul_toNNReal (x : ) {y : } (hy : 0 ≤ y) : ‖x‖₊ * y.toNNReal = ‖x * y‖₊ := by
  rw [mul_comm, mul_comm x, toNNReal_mul_nnnorm x hy]
Nonnegative Norm Multiplicativity for Nonnegative Real Numbers: $\|x\|_+ \cdot y_{\text{nn}} = \|x \cdot y\|_+$
Informal description
For any real numbers $x$ and $y$ with $y \geq 0$, the product of the nonnegative norm of $x$ (denoted $\|x\|_+$) and the nonnegative real part of $y$ (denoted $y_{\text{nn}}$) equals the nonnegative norm of the product $x \cdot y$, i.e., $\|x\|_+ \cdot y_{\text{nn}} = \|x \cdot y\|_+$.
NormedDivisionRing.induced abbrev
[DivisionRing R] [NormedDivisionRing S] [NonUnitalRingHomClass F R S] (f : F) (hf : Function.Injective f) : NormedDivisionRing R
Full source
/-- An injective non-unital ring homomorphism from a `DivisionRing` to a `NormedRing` induces a
`NormedDivisionRing` structure on the domain.

See note [reducible non-instances] -/
abbrev NormedDivisionRing.induced [DivisionRing R] [NormedDivisionRing S]
    [NonUnitalRingHomClass F R S] (f : F) (hf : Function.Injective f) : NormedDivisionRing R :=
  { NormedAddCommGroup.induced R S f hf, ‹DivisionRing R› with
    norm_mul x y := show ‖f _‖ = _ from (map_mul f x y).symmnorm_mul (f x) (f y) }
Induced Normed Division Ring Structure via Injective Homomorphism
Informal description
Let $R$ be a division ring and $S$ a normed division ring. Given an injective non-unital ring homomorphism $f \colon R \to S$, the ring $R$ can be equipped with a normed division ring structure induced by $f$.
NormedField.induced abbrev
[Field R] [NormedField S] [NonUnitalRingHomClass F R S] (f : F) (hf : Function.Injective f) : NormedField R
Full source
/-- An injective non-unital ring homomorphism from a `Field` to a `NormedRing` induces a
`NormedField` structure on the domain.

See note [reducible non-instances] -/
abbrev NormedField.induced [Field R] [NormedField S] [NonUnitalRingHomClass F R S] (f : F)
    (hf : Function.Injective f) : NormedField R :=
  { NormedDivisionRing.induced R S f hf with
    mul_comm := mul_comm }
Induced Normed Field Structure via Injective Homomorphism
Informal description
Let $R$ be a field and $S$ a normed field. Given an injective non-unital ring homomorphism $f \colon R \to S$, the field $R$ can be equipped with a normed field structure induced by $f$.
SubfieldClass.toNormedField instance
[NormedField F] [SubfieldClass S F] (s : S) : NormedField s
Full source
/--
If `s` is a subfield of a normed field `F`, then `s` is equipped with an induced normed
field structure.
-/
instance toNormedField [NormedField F] [SubfieldClass S F] (s : S) : NormedField s :=
  NormedField.induced s F (SubringClass.subtype s) Subtype.val_injective
Normed Field Structure on Subfields
Informal description
For any normed field $F$ and any subfield $s$ of $F$ (where $s$ is represented by a term of type $S$ with `SubfieldClass S F`), the subfield $s$ inherits a normed field structure from $F$.
AbsoluteValue.toNormedField definition
{K : Type*} [Field K] (v : AbsoluteValue K ℝ) : NormedField K
Full source
/-- A real absolute value on a field determines a `NormedField` structure. -/
noncomputable def toNormedField {K : Type*} [Field K] (v : AbsoluteValue K ) : NormedField K where
  toField := inferInstanceAs (Field K)
  __ := v.toNormedRing
  norm_mul := v.map_mul
Normed field structure induced by an absolute value
Informal description
Given a field $K$ and a real absolute value $v$ on $K$, this definition constructs a normed field structure on $K$ where: - The norm is given by $v$, - The distance between two elements $x$ and $y$ is defined as $v(x - y)$, - The distance satisfies the triangle inequality, symmetry, and identity of indiscernibles properties, - The norm satisfies the multiplicative property $\|x y\| = \|x\| \|y\|$ for all $x, y \in K$.