doc-next-gen

Mathlib.Analysis.Seminorm

Module docstring

{"# Seminorms

This file defines seminorms.

A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and subadditive. They are closely related to convex sets, and a topological vector space is locally convex if and only if its topology is induced by a family of seminorms.

Main declarations

For a module over a normed ring: * Seminorm: A function to the reals that is positive-semidefinite, absolutely homogeneous, and subadditive. * normSeminorm π•œ E: The norm on E as a seminorm.

References

  • [H. H. Schaefer, Topological Vector Spaces][schaefer1966]

Tags

seminorm, locally convex, LCTVS ","### Seminorm ball ","### Continuity criterions for seminorms ","### The norm as a seminorm "}

Seminorm structure
(π•œ : Type*) (E : Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends AddGroupSeminorm E
Full source
/-- A seminorm on a module over a normed ring is a function to the reals that is positive
semidefinite, positive homogeneous, and subadditive. -/
structure Seminorm (π•œ : Type*) (E : Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] extends
  AddGroupSeminorm E where
  /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
  and the original seminorm. -/
  smul' : βˆ€ (a : π•œ) (x : E), toFun (a β€’ x) = β€–aβ€– * toFun x
Seminorm on a module over a normed ring
Informal description
A seminorm on a module $E$ over a normed ring $\mathbb{K}$ is a function $p \colon E \to \mathbb{R}$ that satisfies the following properties: 1. **Positive semidefiniteness**: $p(x) \geq 0$ for all $x \in E$. 2. **Absolute homogeneity**: $p(a \cdot x) = \|a\| \cdot p(x)$ for all $a \in \mathbb{K}$ and $x \in E$. 3. **Subadditivity**: $p(x + y) \leq p(x) + p(y)$ for all $x, y \in E$. This structure extends the notion of an additive group seminorm on $E$.
SeminormClass structure
(F : Type*) (π•œ E : outParam Type*) [SeminormedRing π•œ] [AddGroup E] [SMul π•œ E] [FunLike F E ℝ] : Prop extends AddGroupSeminormClass F E ℝ
Full source
/-- `SeminormClass F π•œ E` states that `F` is a type of seminorms on the `π•œ`-module `E`.

You should extend this class when you extend `Seminorm`. -/
class SeminormClass (F : Type*) (π•œ E : outParam Type*) [SeminormedRing π•œ] [AddGroup E]
  [SMul π•œ E] [FunLike F E ℝ] : Prop extends AddGroupSeminormClass F E ℝ where
  /-- The seminorm of a scalar multiplication is the product of the absolute value of the scalar
  and the original seminorm. -/
  map_smul_eq_mul (f : F) (a : π•œ) (x : E) : f (a β€’ x) = β€–aβ€– * f x
Seminorm Class
Informal description
The class `SeminormClass F π•œ E` indicates that `F` is a type of seminorms on the `π•œ`-module `E`. A seminorm is a function $p \colon E \to \mathbb{R}$ that satisfies: 1. **Positive semidefiniteness**: $p(x) \geq 0$ for all $x \in E$. 2. **Absolute homogeneity**: $p(a \cdot x) = \|a\| \cdot p(x)$ for all $a \in \mathbb{K}$ and $x \in E$. 3. **Subadditivity**: $p(x + y) \leq p(x) + p(y)$ for all $x, y \in E$. This class extends `AddGroupSeminormClass F E ℝ`, which provides the additive properties of seminorms.
Seminorm.of definition
[SeminormedRing π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (add_le : βˆ€ x y : E, f (x + y) ≀ f x + f y) (smul : βˆ€ (a : π•œ) (x : E), f (a β€’ x) = β€–aβ€– * f x) : Seminorm π•œ E
Full source
/-- Alternative constructor for a `Seminorm` on an `AddCommGroup E` that is a module over a
`SeminormedRing π•œ`. -/
def Seminorm.of [SeminormedRing π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ)
    (add_le : βˆ€ x y : E, f (x + y) ≀ f x + f y) (smul : βˆ€ (a : π•œ) (x : E), f (a β€’ x) = β€–aβ€– * f x) :
    Seminorm π•œ E where
  toFun := f
  map_zero' := by rw [← zero_smul π•œ (0 : E), smul, norm_zero, zero_mul]
  add_le' := add_le
  smul' := smul
  neg' x := by rw [← neg_one_smul π•œ, smul, norm_neg, ← smul, one_smul]
Construction of a seminorm from a subadditive and absolutely homogeneous function
Informal description
Given a seminormed ring $\mathbb{K}$ and an additive commutative group $E$ that is a module over $\mathbb{K}$, the function `Seminorm.of` constructs a seminorm from a function $f \colon E \to \mathbb{R}$ that satisfies: 1. **Subadditivity**: $f(x + y) \leq f(x) + f(y)$ for all $x, y \in E$. 2. **Absolute homogeneity**: $f(a \cdot x) = \|a\| \cdot f(x)$ for all $a \in \mathbb{K}$ and $x \in E$. The constructed seminorm automatically satisfies the additional properties: - **Positive semidefiniteness**: $f(0) = 0$ (derived from absolute homogeneity with $a = 0$). - **Negation invariance**: $f(-x) = f(x)$ (derived from absolute homogeneity with $a = -1$).
Seminorm.ofSMulLE definition
[NormedField π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (map_zero : f 0 = 0) (add_le : βˆ€ x y, f (x + y) ≀ f x + f y) (smul_le : βˆ€ (r : π•œ) (x), f (r β€’ x) ≀ β€–rβ€– * f x) : Seminorm π•œ E
Full source
/-- Alternative constructor for a `Seminorm` over a normed field `π•œ` that only assumes `f 0 = 0`
and an inequality for the scalar multiplication. -/
def Seminorm.ofSMulLE [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (f : E β†’ ℝ) (map_zero : f 0 = 0)
    (add_le : βˆ€ x y, f (x + y) ≀ f x + f y) (smul_le : βˆ€ (r : π•œ) (x), f (r β€’ x) ≀ β€–rβ€– * f x) :
    Seminorm π•œ E :=
  Seminorm.of f add_le fun r x => by
    refine le_antisymm (smul_le r x) ?_
    by_cases h : r = 0
    Β· simp [h, map_zero]
    rw [← mul_le_mul_left (inv_pos.mpr (norm_pos_iff.mpr h))]
    rw [inv_mul_cancel_leftβ‚€ (norm_ne_zero_iff.mpr h)]
    specialize smul_le r⁻¹ (r β€’ x)
    rw [norm_inv] at smul_le
    convert smul_le
    simp [h]
Construction of a seminorm from a subadditive and scalar-multiplicative function
Informal description
Given a normed field $\mathbb{K}$ and an additive commutative group $E$ that is a module over $\mathbb{K}$, the function `Seminorm.ofSMulLE` constructs a seminorm from a function $f \colon E \to \mathbb{R}$ that satisfies: 1. **Zero condition**: $f(0) = 0$. 2. **Subadditivity**: $f(x + y) \leq f(x) + f(y)$ for all $x, y \in E$. 3. **Scalar multiplication inequality**: $f(r \cdot x) \leq \|r\| \cdot f(x)$ for all $r \in \mathbb{K}$ and $x \in E$. The constructed seminorm automatically satisfies the additional property of absolute homogeneity: $f(r \cdot x) = \|r\| \cdot f(x)$ for all $r \in \mathbb{K}$ and $x \in E$.
Seminorm.instFunLike instance
: FunLike (Seminorm π•œ E) E ℝ
Full source
instance instFunLike : FunLike (Seminorm π•œ E) E ℝ where
  coe f := f.toFun
  coe_injective' f g h := by
    rcases f with ⟨⟨_⟩⟩
    rcases g with ⟨⟨_⟩⟩
    congr
Seminorms as Function-Like Types
Informal description
For any seminormed ring $\mathbb{K}$ and module $E$ over $\mathbb{K}$, the type of seminorms on $E$ can be treated as a function-like type, where each seminorm $p$ can be coerced to a function from $E$ to $\mathbb{R}$.
Seminorm.instSeminormClass instance
: SeminormClass (Seminorm π•œ E) π•œ E
Full source
instance instSeminormClass : SeminormClass (Seminorm π•œ E) π•œ E where
  map_zero f := f.map_zero'
  map_add_le_add f := f.add_le'
  map_neg_eq_map f := f.neg'
  map_smul_eq_mul f := f.smul'
Seminorms Form a Seminorm Class
Informal description
The type `Seminorm π•œ E` of seminorms on a module $E$ over a seminormed ring $\mathbb{K}$ forms a `SeminormClass`. This means that every seminorm $p \in \text{Seminorm}\, \mathbb{K}\, E$ satisfies the following properties: 1. **Positive semidefiniteness**: $p(x) \geq 0$ for all $x \in E$. 2. **Absolute homogeneity**: $p(a \cdot x) = \|a\| \cdot p(x)$ for all $a \in \mathbb{K}$ and $x \in E$. 3. **Subadditivity**: $p(x + y) \leq p(x) + p(y)$ for all $x, y \in E$.
Seminorm.ext theorem
{p q : Seminorm π•œ E} (h : βˆ€ x, (p : E β†’ ℝ) x = q x) : p = q
Full source
@[ext]
theorem ext {p q : Seminorm π•œ E} (h : βˆ€ x, (p : E β†’ ℝ) x = q x) : p = q :=
  DFunLike.ext p q h
Extensionality of Seminorms
Informal description
Two seminorms $p$ and $q$ on a module $E$ over a normed ring $\mathbb{K}$ are equal if they agree on all elements of $E$, i.e., if $p(x) = q(x)$ for all $x \in E$.
Seminorm.instZero instance
: Zero (Seminorm π•œ E)
Full source
instance instZero : Zero (Seminorm π•œ E) :=
  ⟨{ AddGroupSeminorm.instZeroAddGroupSeminorm.zero with
    smul' := fun _ _ => (mul_zero _).symm }⟩
The Zero Seminorm
Informal description
The zero function is a seminorm on a module $E$ over a normed ring $\mathbb{K}$. That is, the function $p(x) = 0$ for all $x \in E$ satisfies the properties of a seminorm: it is positive-semidefinite, absolutely homogeneous, and subadditive.
Seminorm.coe_zero theorem
: ⇑(0 : Seminorm π•œ E) = 0
Full source
@[simp]
theorem coe_zero : ⇑(0 : Seminorm π•œ E) = 0 :=
  rfl
Zero Seminorm is the Zero Function
Informal description
The zero seminorm on a module $E$ over a normed ring $\mathbb{K}$ is equal to the zero function, i.e., $0(x) = 0$ for all $x \in E$.
Seminorm.zero_apply theorem
(x : E) : (0 : Seminorm π•œ E) x = 0
Full source
@[simp]
theorem zero_apply (x : E) : (0 : Seminorm π•œ E) x = 0 :=
  rfl
Zero Seminorm Evaluates to Zero
Informal description
For any element $x$ in a module $E$ over a normed ring $\mathbb{K}$, the zero seminorm evaluated at $x$ is equal to $0$, i.e., $0(x) = 0$.
Seminorm.instInhabited instance
: Inhabited (Seminorm π•œ E)
Full source
instance : Inhabited (Seminorm π•œ E) :=
  ⟨0⟩
Inhabitedness of Seminorms
Informal description
For any module $E$ over a normed ring $\mathbb{K}$, the type of seminorms on $E$ is inhabited.
Seminorm.instSMul instance
[SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : SMul R (Seminorm π•œ E)
Full source
/-- Any action on `ℝ` which factors through `ℝβ‰₯0` applies to a seminorm. -/
instance instSMul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : SMul R (Seminorm π•œ E) where
  smul r p :=
    { r β€’ p.toAddGroupSeminorm with
      toFun := fun x => r β€’ p x
      smul' := fun _ _ => by
        simp only [← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def, smul_eq_mul]
        rw [map_smul_eq_mul, mul_left_comm] }
Scalar Multiplication Action on Seminorms
Informal description
For any type $R$ with scalar multiplication actions on $\mathbb{R}$ and $\mathbb{R}_{\geq 0}$ that are compatible via the inclusion $\mathbb{R}_{\geq 0} \hookrightarrow \mathbb{R}$, there is a scalar multiplication action of $R$ on the space of seminorms over a module $E$ over a normed ring $\mathbb{K}$. This means that for any scalar $r \in R$ and seminorm $p$ on $E$, the function $r \cdot p$ defined by $(r \cdot p)(x) = r \cdot (p(x))$ is also a seminorm on $E$.
Seminorm.instIsScalarTowerOfReal instance
[SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] [SMul R' ℝ] [SMul R' ℝβ‰₯0] [IsScalarTower R' ℝβ‰₯0 ℝ] [SMul R R'] [IsScalarTower R R' ℝ] : IsScalarTower R R' (Seminorm π•œ E)
Full source
instance [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] [SMul R' ℝ] [SMul R' ℝβ‰₯0]
    [IsScalarTower R' ℝβ‰₯0 ℝ] [SMul R R'] [IsScalarTower R R' ℝ] :
    IsScalarTower R R' (Seminorm π•œ E) where
  smul_assoc r a p := ext fun x => smul_assoc r a (p x)
Scalar Tower Property for Seminorms
Informal description
For any types $R$ and $R'$ with scalar multiplication actions on $\mathbb{R}$ and $\mathbb{R}_{\geq 0}$ that are compatible via the inclusion $\mathbb{R}_{\geq 0} \hookrightarrow \mathbb{R}$, and with a scalar multiplication action of $R$ on $R'$ that is compatible with their actions on $\mathbb{R}$, the scalar multiplication action on the space of seminorms over a module $E$ over a normed ring $\mathbb{K}$ satisfies the scalar tower property. That is, for any $r \in R$, $r' \in R'$, and seminorm $p$ on $E$, we have $r \cdot (r' \cdot p) = (r \cdot r') \cdot p$.
Seminorm.coe_smul theorem
[SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) : ⇑(r β€’ p) = r β€’ ⇑p
Full source
theorem coe_smul [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) :
    ⇑(r β€’ p) = r β€’ ⇑p :=
  rfl
Scalar Multiplication of Seminorm is Pointwise
Informal description
Let $R$ be a type with scalar multiplication actions on $\mathbb{R}$ and $\mathbb{R}_{\geq 0}$ that are compatible via the inclusion $\mathbb{R}_{\geq 0} \hookrightarrow \mathbb{R}$. For any scalar $r \in R$ and seminorm $p$ on a module $E$ over a normed ring $\mathbb{K}$, the function $r \cdot p$ is equal to the pointwise scalar multiplication of $r$ with $p$, i.e., $(r \cdot p)(x) = r \cdot (p(x))$ for all $x \in E$.
Seminorm.smul_apply theorem
[SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E) (x : E) : (r β€’ p) x = r β€’ p x
Full source
@[simp]
theorem smul_apply [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p : Seminorm π•œ E)
    (x : E) : (r β€’ p) x = r β€’ p x :=
  rfl
Pointwise Scalar Multiplication of Seminorms: $(r \cdot p)(x) = r \cdot p(x)$
Informal description
Let $R$ be a type with scalar multiplication actions on $\mathbb{R}$ and $\mathbb{R}_{\geq 0}$ that are compatible via the inclusion $\mathbb{R}_{\geq 0} \hookrightarrow \mathbb{R}$. For any scalar $r \in R$, seminorm $p$ on a module $E$ over a seminormed ring $\mathbb{K}$, and element $x \in E$, the seminorm $r \cdot p$ evaluated at $x$ satisfies $(r \cdot p)(x) = r \cdot p(x)$.
Seminorm.instAdd instance
: Add (Seminorm π•œ E)
Full source
instance instAdd : Add (Seminorm π•œ E) where
  add p q :=
    { p.toAddGroupSeminorm + q.toAddGroupSeminorm with
      toFun := fun x => p x + q x
      smul' := fun a x => by simp only [map_smul_eq_mul, map_smul_eq_mul, mul_add] }
Addition of Seminorms
Informal description
For any seminormed ring $\mathbb{K}$ and module $E$ over $\mathbb{K}$, the type of seminorms on $E$ has an addition operation, where the sum of two seminorms $p$ and $q$ is defined pointwise as $(p + q)(x) = p(x) + q(x)$ for all $x \in E$.
Seminorm.coe_add theorem
(p q : Seminorm π•œ E) : ⇑(p + q) = p + q
Full source
theorem coe_add (p q : Seminorm π•œ E) : ⇑(p + q) = p + q :=
  rfl
Pointwise Sum of Seminorms
Informal description
For any seminorms $p$ and $q$ on a module $E$ over a seminormed ring $\mathbb{K}$, the function corresponding to the sum seminorm $p + q$ is equal to the pointwise sum of the functions corresponding to $p$ and $q$, i.e., $(p + q)(x) = p(x) + q(x)$ for all $x \in E$.
Seminorm.add_apply theorem
(p q : Seminorm π•œ E) (x : E) : (p + q) x = p x + q x
Full source
@[simp]
theorem add_apply (p q : Seminorm π•œ E) (x : E) : (p + q) x = p x + q x :=
  rfl
Pointwise Sum of Seminorms
Informal description
For any seminorms $p$ and $q$ on a module $E$ over a seminormed ring $\mathbb{K}$, and for any element $x \in E$, the value of the sum seminorm $(p + q)$ at $x$ is equal to the sum of the values of $p$ and $q$ at $x$, i.e., $(p + q)(x) = p(x) + q(x)$.
Seminorm.instAddMonoid instance
: AddMonoid (Seminorm π•œ E)
Full source
instance instAddMonoid : AddMonoid (Seminorm π•œ E) :=
  DFunLike.coe_injective.addMonoid _ rfl coe_add fun _ _ => by rfl
Additive Monoid Structure on Seminorms
Informal description
The space of seminorms on a module $E$ over a seminormed ring $\mathbb{K}$ forms an additive monoid, where the addition of seminorms is defined pointwise and the zero seminorm serves as the identity element.
Seminorm.instAddCommMonoid instance
: AddCommMonoid (Seminorm π•œ E)
Full source
instance instAddCommMonoid : AddCommMonoid (Seminorm π•œ E) :=
  DFunLike.coe_injective.addCommMonoid _ rfl coe_add fun _ _ => by rfl
Additive Commutative Monoid Structure on Seminorms
Informal description
The space of seminorms on a module $E$ over a seminormed ring $\mathbb{K}$ forms an additive commutative monoid, where the addition of seminorms is defined pointwise and the zero seminorm serves as the identity element.
Seminorm.instPartialOrder instance
: PartialOrder (Seminorm π•œ E)
Full source
instance instPartialOrder : PartialOrder (Seminorm π•œ E) :=
  PartialOrder.lift _ DFunLike.coe_injective
Partial Order on Seminorms
Informal description
The set of seminorms on a module $E$ over a seminormed ring $\mathbb{K}$ forms a partial order, where for two seminorms $p$ and $q$, we have $p \leq q$ if and only if $p(x) \leq q(x)$ for all $x \in E$.
Seminorm.instIsOrderedCancelAddMonoid instance
: IsOrderedCancelAddMonoid (Seminorm π•œ E)
Full source
instance instIsOrderedCancelAddMonoid : IsOrderedCancelAddMonoid (Seminorm π•œ E) :=
  DFunLike.coe_injective.isOrderedCancelAddMonoid _ rfl coe_add fun _ _ => rfl
Ordered Cancellative Additive Monoid Structure on Seminorms
Informal description
The space of seminorms on a module $E$ over a seminormed ring $\mathbb{K}$ forms an ordered cancellative additive monoid. This means that the addition of seminorms is cancellative (if $p + r = q + r$ for some seminorm $r$, then $p = q$) and compatible with the partial order (if $p \leq q$, then $p + r \leq q + r$ for any seminorm $r$).
Seminorm.instMulAction instance
[Monoid R] [MulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : MulAction R (Seminorm π•œ E)
Full source
instance instMulAction [Monoid R] [MulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] :
    MulAction R (Seminorm π•œ E) :=
  DFunLike.coe_injective.mulAction _ (by intros; rfl)
Multiplicative Action on Seminorms
Informal description
For any monoid $R$ with a multiplicative action on $\mathbb{R}$ and a scalar multiplication action on $\mathbb{R}_{\geq 0}$ that are compatible via the inclusion $\mathbb{R}_{\geq 0} \hookrightarrow \mathbb{R}$, there is a multiplicative action of $R$ on the space of seminorms over a module $E$ over a seminormed ring $\mathbb{K}$. This means that for any $r \in R$ and seminorm $p$ on $E$, the function $r \cdot p$ defined by $(r \cdot p)(x) = r \cdot (p(x))$ is also a seminorm on $E$.
Seminorm.coeFnAddMonoidHom definition
: AddMonoidHom (Seminorm π•œ E) (E β†’ ℝ)
Full source
/-- `coeFn` as an `AddMonoidHom`. Helper definition for showing that `Seminorm π•œ E` is a module. -/
@[simps]
def coeFnAddMonoidHom : AddMonoidHom (Seminorm π•œ E) (E β†’ ℝ) where
  toFun := (↑)
  map_zero' := coe_zero
  map_add' := coe_add
Inclusion of seminorms into functions as an additive monoid homomorphism
Informal description
The function `coeFnAddMonoidHom` is an additive monoid homomorphism from the additive monoid of seminorms on a module $E$ over a seminormed ring $\mathbb{K}$ to the additive monoid of functions from $E$ to $\mathbb{R}$. It maps a seminorm $p$ to its underlying function $p \colon E \to \mathbb{R}$, preserves the zero element (sending the zero seminorm to the zero function), and preserves addition (sending the sum of two seminorms to the pointwise sum of their underlying functions).
Seminorm.coeFnAddMonoidHom_injective theorem
: Function.Injective (coeFnAddMonoidHom π•œ E)
Full source
theorem coeFnAddMonoidHom_injective : Function.Injective (coeFnAddMonoidHom π•œ E) :=
  show @Function.Injective (Seminorm π•œ E) (E β†’ ℝ) (↑) from DFunLike.coe_injective
Injectivity of the Seminorm-to-Function Homomorphism
Informal description
The additive monoid homomorphism that maps a seminorm $p$ on a module $E$ over a seminormed ring $\mathbb{K}$ to its underlying function $p \colon E \to \mathbb{R}$ is injective. That is, if two seminorms $p$ and $q$ satisfy $p(x) = q(x)$ for all $x \in E$, then $p = q$.
Seminorm.instDistribMulAction instance
[Monoid R] [DistribMulAction R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : DistribMulAction R (Seminorm π•œ E)
Full source
instance instDistribMulAction [Monoid R] [DistribMulAction R ℝ] [SMul R ℝβ‰₯0]
    [IsScalarTower R ℝβ‰₯0 ℝ] : DistribMulAction R (Seminorm π•œ E) :=
  (coeFnAddMonoidHom_injective π•œ E).distribMulAction _ (by intros; rfl)
Distributive Multiplicative Action on Seminorms
Informal description
For any monoid $R$ with a distributive multiplicative action on $\mathbb{R}$ and a scalar multiplication action on $\mathbb{R}_{\geq 0}$ that is compatible via the inclusion $\mathbb{R}_{\geq 0} \hookrightarrow \mathbb{R}$, the space of seminorms on a module $E$ over a seminormed ring $\mathbb{K}$ inherits a distributive multiplicative action from $R$. This means that for any $r \in R$ and seminorm $p$ on $E$, the function $r \cdot p$ defined by $(r \cdot p)(x) = r \cdot (p(x))$ is also a seminorm, and this action distributes over addition of seminorms and is compatible with the monoid structure of $R$.
Seminorm.instModule instance
[Semiring R] [Module R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] : Module R (Seminorm π•œ E)
Full source
instance instModule [Semiring R] [Module R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] :
    Module R (Seminorm π•œ E) :=
  (coeFnAddMonoidHom_injective π•œ E).module R _ (by intros; rfl)
Module Structure on Seminorms
Informal description
For any semiring $R$ with a module structure over $\mathbb{R}$ and a scalar multiplication action on $\mathbb{R}_{\geq 0}$ that is compatible with the inclusion $\mathbb{R}_{\geq 0} \hookrightarrow \mathbb{R}$, the space of seminorms on a module $E$ over a seminormed ring $\mathbb{K}$ forms a module over $R$. This means that for any scalar $r \in R$ and seminorm $p$ on $E$, the function $r \cdot p$ defined by $(r \cdot p)(x) = r \cdot (p(x))$ is also a seminorm on $E$, and the usual module axioms are satisfied.
Seminorm.instSup instance
: Max (Seminorm π•œ E)
Full source
instance instSup : Max (Seminorm π•œ E) where
  max p q :=
    { p.toAddGroupSeminorm βŠ” q.toAddGroupSeminorm with
      toFun := p βŠ” q
      smul' := fun x v =>
        (congr_argβ‚‚ max (map_smul_eq_mul p x v) (map_smul_eq_mul q x v)).trans <|
          (mul_max_of_nonneg _ _ <| norm_nonneg x).symm }
Pointwise Supremum of Seminorms
Informal description
For any seminormed ring $\mathbb{K}$ and module $E$ over $\mathbb{K}$, the type of seminorms on $E$ has a supremum operation, where the supremum of two seminorms $p$ and $q$ is defined pointwise as $(p \sqcup q)(x) = \max(p(x), q(x))$ for all $x \in E$.
Seminorm.coe_sup theorem
(p q : Seminorm π•œ E) : ⇑(p βŠ” q) = (p : E β†’ ℝ) βŠ” (q : E β†’ ℝ)
Full source
@[simp]
theorem coe_sup (p q : Seminorm π•œ E) : ⇑(p βŠ” q) = (p : E β†’ ℝ) βŠ” (q : E β†’ ℝ) :=
  rfl
Supremum of Seminorms as Pointwise Maximum
Informal description
For any seminorms $p$ and $q$ on a module $E$ over a seminormed ring $\mathbb{K}$, the function corresponding to the supremum $p \sqcup q$ is equal to the pointwise supremum of the functions $p$ and $q$, i.e., $(p \sqcup q)(x) = \max(p(x), q(x))$ for all $x \in E$.
Seminorm.sup_apply theorem
(p q : Seminorm π•œ E) (x : E) : (p βŠ” q) x = p x βŠ” q x
Full source
theorem sup_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ” q) x = p x βŠ” q x :=
  rfl
Pointwise Maximum Property of Supremum Seminorm
Informal description
For any seminorms $p$ and $q$ on a module $E$ over a seminormed ring $\mathbb{K}$, and for any element $x \in E$, the value of the supremum seminorm $p \sqcup q$ at $x$ equals the maximum of $p(x)$ and $q(x)$, i.e., $(p \sqcup q)(x) = \max(p(x), q(x))$.
Seminorm.smul_sup theorem
[SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ” q) = r β€’ p βŠ” r β€’ q
Full source
theorem smul_sup [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) :
    r β€’ (p βŠ” q) = r β€’ p βŠ” r β€’ q :=
  have real.smul_max : βˆ€ x y : ℝ, r β€’ max x y = max (r β€’ x) (r β€’ y) := fun x y => by
    simpa only [← smul_eq_mul, ← NNReal.smul_def, smul_one_smul ℝβ‰₯0 r (_ : ℝ)] using
      mul_max_of_nonneg x y (r β€’ (1 : ℝβ‰₯0) : ℝβ‰₯0).coe_nonneg
  ext fun _ => real.smul_max _ _
Scalar Multiplication Distributes Over Supremum of Seminorms
Informal description
Let $R$ be a type with scalar multiplication actions on $\mathbb{R}$ and $\mathbb{R}_{\geq 0}$ that are compatible via the inclusion $\mathbb{R}_{\geq 0} \hookrightarrow \mathbb{R}$. For any scalar $r \in R$ and seminorms $p, q$ on a module $E$ over a seminormed ring $\mathbb{K}$, the scalar multiple of the supremum seminorm equals the supremum of the scalar multiples, i.e., $$ r \cdot (p \sqcup q) = (r \cdot p) \sqcup (r \cdot q). $$
Seminorm.coe_le_coe theorem
{p q : Seminorm π•œ E} : (p : E β†’ ℝ) ≀ q ↔ p ≀ q
Full source
@[simp, norm_cast]
theorem coe_le_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) ≀ q ↔ p ≀ q :=
  Iff.rfl
Pointwise Order on Seminorms Coincides with Partial Order
Informal description
For any two seminorms $p$ and $q$ on a module $E$ over a seminormed ring $\mathbb{K}$, the pointwise inequality $p(x) \leq q(x)$ holds for all $x \in E$ if and only if $p \leq q$ in the partial order of seminorms.
Seminorm.coe_lt_coe theorem
{p q : Seminorm π•œ E} : (p : E β†’ ℝ) < q ↔ p < q
Full source
@[simp, norm_cast]
theorem coe_lt_coe {p q : Seminorm π•œ E} : (p : E β†’ ℝ) < q ↔ p < q :=
  Iff.rfl
Pointwise Strict Order on Seminorms Coincides with Partial Strict Order
Informal description
For any two seminorms $p$ and $q$ on a module $E$ over a seminormed ring $\mathbb{K}$, the pointwise strict inequality $p(x) < q(x)$ holds for all $x \in E$ if and only if $p < q$ in the partial order of seminorms.
Seminorm.le_def theorem
{p q : Seminorm π•œ E} : p ≀ q ↔ βˆ€ x, p x ≀ q x
Full source
theorem le_def {p q : Seminorm π•œ E} : p ≀ q ↔ βˆ€ x, p x ≀ q x :=
  Iff.rfl
Pointwise Characterization of Seminorm Order: $p \leq q$ iff $p(x) \leq q(x)$ for all $x$
Informal description
For two seminorms $p$ and $q$ on a module $E$ over a seminormed ring $\mathbb{K}$, the inequality $p \leq q$ holds if and only if $p(x) \leq q(x)$ for all $x \in E$.
Seminorm.lt_def theorem
{p q : Seminorm π•œ E} : p < q ↔ p ≀ q ∧ βˆƒ x, p x < q x
Full source
theorem lt_def {p q : Seminorm π•œ E} : p < q ↔ p ≀ q ∧ βˆƒ x, p x < q x :=
  @Pi.lt_def _ _ _ p q
Strict Order on Seminorms: $p < q$ iff $p \leq q$ with a Strict Inequality Point
Informal description
For two seminorms $p$ and $q$ on a module $E$ over a seminormed ring $\mathbb{K}$, we have $p < q$ if and only if $p(x) \leq q(x)$ for all $x \in E$ and there exists some $x \in E$ such that $p(x) < q(x)$.
Seminorm.comp definition
(p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œ E
Full source
/-- Composition of a seminorm with a linear map is a seminorm. -/
def comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œ E :=
  { p.toAddGroupSeminorm.comp f.toAddMonoidHom with
    toFun := fun x => p (f x)
    -- Porting note: the `simp only` below used to be part of the `rw`.
    -- I'm not sure why this change was needed, and am worried by it!
    -- Note: https://github.com/leanprover-community/mathlib4/pull/8386 had to change `map_smulβ‚›β‚—` to `map_smulβ‚›β‚— _`
    smul' := fun _ _ => by simp only [map_smulβ‚›β‚— _]; rw [map_smul_eq_mul, RingHomIsometric.is_iso] }
Composition of a seminorm with a linear map
Informal description
Given a seminorm $p$ on a module $E_2$ over a normed ring $\mathbb{K}_2$ and a linear map $f \colon E \to E_2$ between modules over normed rings $\mathbb{K}$ and $\mathbb{K}_2$ (with a ring homomorphism $\sigma_{12} \colon \mathbb{K} \to \mathbb{K}_2$), the composition $p \circ f$ defines a seminorm on $E$. This seminorm satisfies: 1. $(p \circ f)(x) = p(f(x))$ for all $x \in E$. 2. $(p \circ f)(a \cdot x) = \|a\| \cdot (p \circ f)(x)$ for all $a \in \mathbb{K}$ and $x \in E$.
Seminorm.coe_comp theorem
(p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : ⇑(p.comp f) = p ∘ f
Full source
theorem coe_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : ⇑(p.comp f) = p ∘ f :=
  rfl
Function Representation of Composition Seminorm: $(p \circ f)(x) = p(f(x))$
Informal description
For a seminorm $p$ on a module $E_2$ over a normed ring $\mathbb{K}_2$ and a linear map $f \colon E \to E_2$ between modules over normed rings $\mathbb{K}$ and $\mathbb{K}_2$ (with a ring homomorphism $\sigma_{12} \colon \mathbb{K} \to \mathbb{K}_2$), the function representation of the composition seminorm $p \circ f$ is equal to the composition of $p$ with $f$, i.e., $(p \circ f)(x) = p(f(x))$ for all $x \in E$.
Seminorm.comp_apply theorem
(p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) : (p.comp f) x = p (f x)
Full source
@[simp]
theorem comp_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) : (p.comp f) x = p (f x) :=
  rfl
Evaluation of the Composition Seminorm: $(p \circ f)(x) = p(f(x))$
Informal description
Let $p$ be a seminorm on a module $E_2$ over a normed ring $\mathbb{K}_2$, and let $f \colon E \to E_2$ be a linear map between modules over normed rings $\mathbb{K}$ and $\mathbb{K}_2$ (with a ring homomorphism $\sigma_{12} \colon \mathbb{K} \to \mathbb{K}_2$). Then the composition seminorm $p \circ f$ evaluated at any $x \in E$ satisfies $(p \circ f)(x) = p(f(x))$.
Seminorm.comp_id theorem
(p : Seminorm π•œ E) : p.comp LinearMap.id = p
Full source
@[simp]
theorem comp_id (p : Seminorm π•œ E) : p.comp LinearMap.id = p :=
  ext fun _ => rfl
Composition of Seminorm with Identity Map Yields Original Seminorm
Informal description
For any seminorm $p$ on a module $E$ over a normed ring $\mathbb{K}$, the composition of $p$ with the identity linear map $\text{id} \colon E \to E$ is equal to $p$ itself, i.e., $p \circ \text{id} = p$.
Seminorm.comp_zero theorem
(p : Seminorm π•œβ‚‚ Eβ‚‚) : p.comp (0 : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) = 0
Full source
@[simp]
theorem comp_zero (p : Seminorm π•œβ‚‚ Eβ‚‚) : p.comp (0 : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) = 0 :=
  ext fun _ => map_zero p
Composition with Zero Linear Map Yields Zero Seminorm
Informal description
For any seminorm $p$ on a module $E_2$ over a normed ring $\mathbb{K}_2$, the composition of $p$ with the zero linear map $0 \colon E \to E_2$ (where $E$ is a module over a normed ring $\mathbb{K}$ and $\sigma_{12} \colon \mathbb{K} \to \mathbb{K}_2$ is a ring homomorphism) is equal to the zero seminorm, i.e., $p \circ 0 = 0$.
Seminorm.zero_comp theorem
(f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (0 : Seminorm π•œβ‚‚ Eβ‚‚).comp f = 0
Full source
@[simp]
theorem zero_comp (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (0 : Seminorm π•œβ‚‚ Eβ‚‚).comp f = 0 :=
  ext fun _ => rfl
Composition of Zero Seminorm with Linear Map Yields Zero Seminorm
Informal description
For any linear map $f \colon E \to E_2$ between modules over normed rings $\mathbb{K}$ and $\mathbb{K}_2$ (with a ring homomorphism $\sigma_{12} \colon \mathbb{K} \to \mathbb{K}_2$), the composition of the zero seminorm on $E_2$ with $f$ is equal to the zero seminorm on $E$. That is, $0 \circ f = 0$.
Seminorm.comp_comp theorem
[RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] (p : Seminorm π•œβ‚ƒ E₃) (g : Eβ‚‚ β†’β‚›β‚—[σ₂₃] E₃) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (g.comp f) = (p.comp g).comp f
Full source
theorem comp_comp [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] (p : Seminorm π•œβ‚ƒ E₃) (g : Eβ‚‚ β†’β‚›β‚—[σ₂₃] E₃)
    (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (g.comp f) = (p.comp g).comp f :=
  ext fun _ => rfl
Composition Property of Seminorms under Linear Maps
Informal description
Let $\mathbb{K}_1, \mathbb{K}_2, \mathbb{K}_3$ be normed rings with ring homomorphisms $\sigma_{12} \colon \mathbb{K}_1 \to \mathbb{K}_2$, $\sigma_{23} \colon \mathbb{K}_2 \to \mathbb{K}_3$, and $\sigma_{13} \colon \mathbb{K}_1 \to \mathbb{K}_3$ forming a composition triple. Given a seminorm $p$ on a module $E_3$ over $\mathbb{K}_3$, and linear maps $g \colon E_2 \to E_3$ (over $\sigma_{23}$) and $f \colon E_1 \to E_2$ (over $\sigma_{12}$), the composition of $p$ with the composed linear map $g \circ f$ equals the composition of $(p \circ g)$ with $f$. In other words, $$ p \circ (g \circ f) = (p \circ g) \circ f. $$
Seminorm.add_comp theorem
(p q : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : (p + q).comp f = p.comp f + q.comp f
Full source
theorem add_comp (p q : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) :
    (p + q).comp f = p.comp f + q.comp f :=
  ext fun _ => rfl
Additivity of Seminorm Composition with Linear Maps
Informal description
Let $p$ and $q$ be seminorms on a module $E_2$ over a normed ring $\mathbb{K}_2$, and let $f : E \to E_2$ be a linear map between modules over normed rings $\mathbb{K}$ and $\mathbb{K}_2$ (with a ring homomorphism $\sigma_{12} : \mathbb{K} \to \mathbb{K}_2$). Then the composition of the sum of seminorms with $f$ equals the sum of the compositions, i.e., $$(p + q) \circ f = (p \circ f) + (q \circ f).$$
Seminorm.comp_add_le theorem
(p : Seminorm π•œβ‚‚ Eβ‚‚) (f g : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : p.comp (f + g) ≀ p.comp f + p.comp g
Full source
theorem comp_add_le (p : Seminorm π•œβ‚‚ Eβ‚‚) (f g : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) :
    p.comp (f + g) ≀ p.comp f + p.comp g := fun _ => map_add_le_add p _ _
Subadditivity of Seminorm Composition: $p \circ (f + g) \leq p \circ f + p \circ g$
Informal description
Let $E$ and $E_2$ be modules over seminormed rings $\mathbb{K}$ and $\mathbb{K}_2$ respectively, with a ring homomorphism $\sigma_{12} \colon \mathbb{K} \to \mathbb{K}_2$. For any seminorm $p$ on $E_2$ and linear maps $f, g \colon E \to E_2$, the composition seminorm satisfies the subadditivity property: \[ p \circ (f + g) \leq (p \circ f) + (p \circ g). \] In other words, for all $x \in E$, we have $p(f(x) + g(x)) \leq p(f(x)) + p(g(x))$.
Seminorm.smul_comp theorem
(p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : R) : (c β€’ p).comp f = c β€’ p.comp f
Full source
theorem smul_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : R) :
    (c β€’ p).comp f = c β€’ p.comp f :=
  ext fun _ => rfl
Scalar Multiplication Commutes with Seminorm Composition: $(c \cdot p) \circ f = c \cdot (p \circ f)$
Informal description
Let $E$ and $E_2$ be modules over seminormed rings $\mathbb{K}$ and $\mathbb{K}_2$ respectively, with a ring homomorphism $\sigma_{12} \colon \mathbb{K} \to \mathbb{K}_2$. Given a seminorm $p$ on $E_2$, a linear map $f \colon E \to E_2$, and a scalar $c \in R$ (where $R$ has compatible scalar multiplication actions on $\mathbb{R}$ and $\mathbb{R}_{\geq 0}$), the composition of the scaled seminorm $c \cdot p$ with $f$ equals the scaled composition of $p$ with $f$, i.e., $(c \cdot p) \circ f = c \cdot (p \circ f)$.
Seminorm.comp_mono theorem
{p q : Seminorm π•œβ‚‚ Eβ‚‚} (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (hp : p ≀ q) : p.comp f ≀ q.comp f
Full source
theorem comp_mono {p q : Seminorm π•œβ‚‚ Eβ‚‚} (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (hp : p ≀ q) : p.comp f ≀ q.comp f :=
  fun _ => hp _
Monotonicity of Seminorm Composition: $p \leq q$ implies $p \circ f \leq q \circ f$
Informal description
Let $E$ and $E_2$ be modules over seminormed rings $\mathbb{K}$ and $\mathbb{K}_2$ respectively, with a ring homomorphism $\sigma_{12} \colon \mathbb{K} \to \mathbb{K}_2$. Given two seminorms $p$ and $q$ on $E_2$ such that $p \leq q$ (i.e., $p(x) \leq q(x)$ for all $x \in E_2$), and a linear map $f \colon E \to E_2$, then the composition seminorms satisfy $(p \circ f)(x) \leq (q \circ f)(x)$ for all $x \in E$.
Seminorm.pullback definition
(f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : Seminorm π•œβ‚‚ Eβ‚‚ β†’+ Seminorm π•œ E
Full source
/-- The composition as an `AddMonoidHom`. -/
@[simps]
def pullback (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) : SeminormSeminorm π•œβ‚‚ Eβ‚‚ β†’+ Seminorm π•œ E where
  toFun := fun p => p.comp f
  map_zero' := zero_comp f
  map_add' := fun p q => add_comp p q f
Pullback of seminorms along a linear map
Informal description
Given a linear map \( f \colon E \to E_2 \) between modules over seminormed rings \( \mathbb{K} \) and \( \mathbb{K}_2 \) (with a ring homomorphism \( \sigma_{12} \colon \mathbb{K} \to \mathbb{K}_2 \)), the pullback operation maps a seminorm \( p \) on \( E_2 \) to the seminorm \( p \circ f \) on \( E \). This operation is an additive monoid homomorphism from the additive monoid of seminorms on \( E_2 \) to the additive monoid of seminorms on \( E \).
Seminorm.instOrderBot instance
: OrderBot (Seminorm π•œ E)
Full source
instance instOrderBot : OrderBot (Seminorm π•œ E) where
  bot := 0
  bot_le := apply_nonneg
The Order with Bottom Element Structure on Seminorms
Informal description
The set of seminorms on a module $E$ over a seminormed ring $\mathbb{K}$ forms an order with a bottom element, where the bottom element is the zero seminorm.
Seminorm.coe_bot theorem
: ⇑(βŠ₯ : Seminorm π•œ E) = 0
Full source
@[simp]
theorem coe_bot : ⇑(βŠ₯ : Seminorm π•œ E) = 0 :=
  rfl
Bottom Seminorm is the Zero Function
Informal description
The bottom element in the partial order of seminorms on a module $E$ over a seminormed ring $\mathbb{K}$ is the zero seminorm, i.e., the evaluation of the bottom seminorm $\bot$ at any point $x \in E$ is equal to $0$.
Seminorm.bot_eq_zero theorem
: (βŠ₯ : Seminorm π•œ E) = 0
Full source
theorem bot_eq_zero : (βŠ₯ : Seminorm π•œ E) = 0 :=
  rfl
Bottom Seminorm Equals Zero
Informal description
The bottom element in the partial order of seminorms on a module $E$ over a seminormed ring $\mathbb{K}$ is equal to the zero seminorm, i.e., $\bot = 0$.
Seminorm.smul_le_smul theorem
{p q : Seminorm π•œ E} {a b : ℝβ‰₯0} (hpq : p ≀ q) (hab : a ≀ b) : a β€’ p ≀ b β€’ q
Full source
theorem smul_le_smul {p q : Seminorm π•œ E} {a b : ℝβ‰₯0} (hpq : p ≀ q) (hab : a ≀ b) :
    a β€’ p ≀ b β€’ q := by
  simp_rw [le_def]
  intro x
  exact mul_le_mul hab (hpq x) (apply_nonneg p x) (NNReal.coe_nonneg b)
Monotonicity of Scalar Multiplication on Seminorms: $a \cdot p \leq b \cdot q$ when $p \leq q$ and $a \leq b$
Informal description
Let $p$ and $q$ be seminorms on a module $E$ over a seminormed ring $\mathbb{K}$, and let $a, b \in \mathbb{R}_{\geq 0}$. If $p \leq q$ and $a \leq b$, then the scaled seminorm $a \cdot p$ is less than or equal to the scaled seminorm $b \cdot q$.
Seminorm.finset_sup_apply theorem
(p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = ↑(s.sup fun i => ⟨p i x, apply_nonneg (p i) x⟩ : ℝβ‰₯0)
Full source
theorem finset_sup_apply (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) :
    s.sup p x = ↑(s.sup fun i => ⟨p i x, apply_nonneg (p i) x⟩ : ℝβ‰₯0) := by
  induction' s using Finset.cons_induction_on with a s ha ih
  Β· rw [Finset.sup_empty, Finset.sup_empty, coe_bot, _root_.bot_eq_zero, Pi.zero_apply]
    norm_cast
  Β· rw [Finset.sup_cons, Finset.sup_cons, coe_sup, Pi.sup_apply, NNReal.coe_max, NNReal.coe_mk, ih]
Pointwise Supremum of Seminorms Evaluates to Supremum of Values
Informal description
For a family of seminorms $(p_i)_{i \in \iota}$ on a module $E$ over a seminormed ring $\mathbb{K}$ and a finite set $s \subseteq \iota$, the evaluation of the pointwise supremum seminorm $\sup_{i \in s} p_i$ at any point $x \in E$ is equal to the supremum of the nonnegative real values $(p_i(x))_{i \in s}$, i.e., \[ \left(\sup_{i \in s} p_i\right)(x) = \sup_{i \in s} p_i(x). \]
Seminorm.exists_apply_eq_finset_sup theorem
(p : ΞΉ β†’ Seminorm π•œ E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) : βˆƒ i ∈ s, s.sup p x = p i x
Full source
theorem exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) {s : Finset ΞΉ} (hs : s.Nonempty) (x : E) :
    βˆƒ i ∈ s, s.sup p x = p i x := by
  rcases Finset.exists_mem_eq_sup s hs (fun i ↦ (⟨p i x, apply_nonneg _ _⟩ : ℝβ‰₯0)) with ⟨i, hi, hix⟩
  rw [finset_sup_apply]
  exact ⟨i, hi, congr_arg _ hix⟩
Existence of Attaining Seminorm in Finite Supremum
Informal description
For any nonempty finite set $s$ of indices and any family of seminorms $(p_i)_{i \in \iota}$ on a module $E$ over a seminormed ring $\mathbb{K}$, and for any $x \in E$, there exists an index $i \in s$ such that the supremum seminorm $\sup_{i \in s} p_i$ evaluated at $x$ equals $p_i(x)$. In other words, \[ \exists i \in s, \quad \left(\sup_{i \in s} p_i\right)(x) = p_i(x). \]
Seminorm.zero_or_exists_apply_eq_finset_sup theorem
(p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) : s.sup p x = 0 ∨ βˆƒ i ∈ s, s.sup p x = p i x
Full source
theorem zero_or_exists_apply_eq_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) :
    s.sup p x = 0 ∨ βˆƒ i ∈ s, s.sup p x = p i x := by
  rcases Finset.eq_empty_or_nonempty s with (rfl|hs)
  Β· left; rfl
  Β· right; exact exists_apply_eq_finset_sup p hs x
Zero or Attaining Seminorm in Finite Supremum
Informal description
For any family of seminorms $(p_i)_{i \in \iota}$ on a module $E$ over a seminormed ring $\mathbb{K}$, any finite set $s \subseteq \iota$, and any $x \in E$, either the supremum seminorm $\sup_{i \in s} p_i$ evaluated at $x$ is zero, or there exists an index $i \in s$ such that $\sup_{i \in s} p_i(x) = p_i(x)$. In other words, for any $x \in E$, we have: \[ \left(\sup_{i \in s} p_i\right)(x) = 0 \quad \text{or} \quad \exists i \in s, \left(\sup_{i \in s} p_i\right)(x) = p_i(x). \]
Seminorm.finset_sup_smul theorem
(p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (C : ℝβ‰₯0) : s.sup (C β€’ p) = C β€’ s.sup p
Full source
theorem finset_sup_smul (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (C : ℝβ‰₯0) :
    s.sup (C β€’ p) = C β€’ s.sup p := by
  ext x
  rw [smul_apply, finset_sup_apply, finset_sup_apply]
  symm
  exact congr_arg ((↑) : ℝβ‰₯0 β†’ ℝ) (NNReal.mul_finset_sup C s (fun i ↦ ⟨p i x, apply_nonneg _ _⟩))
Scaling Commutes with Finite Supremum of Seminorms: $\sup_{i \in s} (C \cdot p_i) = C \cdot \sup_{i \in s} p_i$
Informal description
For a family of seminorms $(p_i)_{i \in \iota}$ on a module $E$ over a seminormed ring $\mathbb{K}$, a finite set $s \subseteq \iota$, and a nonnegative real constant $C \in \mathbb{R}_{\geq 0}$, the pointwise supremum of the scaled seminorms $(C \cdot p_i)_{i \in s}$ is equal to the scaling of the pointwise supremum seminorm by $C$, i.e., \[ \sup_{i \in s} (C \cdot p_i) = C \cdot \left(\sup_{i \in s} p_i\right). \]
Seminorm.finset_sup_le_sum theorem
(p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) : s.sup p ≀ βˆ‘ i ∈ s, p i
Full source
theorem finset_sup_le_sum (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) : s.sup p ≀ βˆ‘ i ∈ s, p i := by
  classical
  refine Finset.sup_le_iff.mpr ?_
  intro i hi
  rw [Finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left]
  exact bot_le
Supremum of Seminorms Bounded by Their Sum: $\sup_{i \in s} p_i \leq \sum_{i \in s} p_i$
Informal description
For any family of seminorms $(p_i)_{i \in \iota}$ on a module $E$ over a seminormed ring $\mathbb{K}$ and any finite subset $s \subseteq \iota$, the pointwise supremum seminorm $\sup_{i \in s} p_i$ is bounded above by the sum of the seminorms $\sum_{i \in s} p_i$.
Seminorm.finset_sup_apply_le theorem
{p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 ≀ a) (h : βˆ€ i, i ∈ s β†’ p i x ≀ a) : s.sup p x ≀ a
Full source
theorem finset_sup_apply_le {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 ≀ a)
    (h : βˆ€ i, i ∈ s β†’ p i x ≀ a) : s.sup p x ≀ a := by
  lift a to ℝβ‰₯0 using ha
  rw [finset_sup_apply, NNReal.coe_le_coe]
  exact Finset.sup_le h
Supremum Bound for Seminorms: $\sup_{i \in s} p_i(x) \leq a$ under Uniform Bounds
Informal description
Let $E$ be a module over a seminormed ring $\mathbb{K}$ and let $\{p_i\}_{i \in \iota}$ be a family of seminorms on $E$. For any finite subset $s \subseteq \iota$, any $x \in E$, and any real number $a \geq 0$, if $p_i(x) \leq a$ for all $i \in s$, then the pointwise supremum seminorm satisfies $\sup_{i \in s} p_i(x) \leq a$.
Seminorm.le_finset_sup_apply theorem
{p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {i : ΞΉ} (hi : i ∈ s) : p i x ≀ s.sup p x
Full source
theorem le_finset_sup_apply {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {i : ΞΉ}
    (hi : i ∈ s) : p i x ≀ s.sup p x :=
  (Finset.le_sup hi : p i ≀ s.sup p) x
Pointwise Supremum Bounds Individual Seminorms: $p_i(x) \leq \sup_{j \in s} p_j(x)$
Informal description
Let $E$ be a module over a seminormed ring $\mathbb{K}$ and let $\{p_i\}_{i \in \iota}$ be a family of seminorms on $E$. For any finite subset $s \subseteq \iota$ and any index $i \in s$, the seminorm $p_i$ evaluated at $x \in E$ is bounded above by the pointwise supremum of the seminorms $\{p_j\}_{j \in s}$ evaluated at $x$, i.e., \[ p_i(x) \leq \sup_{j \in s} p_j(x). \]
Seminorm.finset_sup_apply_lt theorem
{p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 < a) (h : βˆ€ i, i ∈ s β†’ p i x < a) : s.sup p x < a
Full source
theorem finset_sup_apply_lt {p : ΞΉ β†’ Seminorm π•œ E} {s : Finset ΞΉ} {x : E} {a : ℝ} (ha : 0 < a)
    (h : βˆ€ i, i ∈ s β†’ p i x < a) : s.sup p x < a := by
  lift a to ℝβ‰₯0 using ha.le
  rw [finset_sup_apply, NNReal.coe_lt_coe, Finset.sup_lt_iff]
  Β· exact h
  Β· exact NNReal.coe_pos.mpr ha
Pointwise Supremum of Seminorms Preserves Strict Inequality: $\sup_{i \in s} p_i(x) < a$
Informal description
Let $E$ be a module over a seminormed ring $\mathbb{K}$ and let $\{p_i\}_{i \in \iota}$ be a family of seminorms on $E$. For any finite subset $s \subseteq \iota$, any $x \in E$, and any real number $a > 0$, if $p_i(x) < a$ for all $i \in s$, then the pointwise supremum seminorm satisfies $\sup_{i \in s} p_i(x) < a$.
Seminorm.norm_sub_map_le_sub theorem
(p : Seminorm π•œ E) (x y : E) : β€–p x - p yβ€– ≀ p (x - y)
Full source
theorem norm_sub_map_le_sub (p : Seminorm π•œ E) (x y : E) : β€–p x - p yβ€– ≀ p (x - y) :=
  abs_sub_map_le_sub p x y
Seminorm Difference Inequality: $\|p(x) - p(y)\| \leq p(x - y)$
Informal description
For any seminorm $p$ on a module $E$ over a normed ring $\mathbb{K}$ and any two elements $x, y \in E$, the absolute difference between the seminorm values of $x$ and $y$ is bounded by the seminorm of their difference, i.e., \[ \|p(x) - p(y)\| \leq p(x - y). \]
Seminorm.comp_smul theorem
(p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) : p.comp (c β€’ f) = β€–cβ€–β‚Š β€’ p.comp f
Full source
theorem comp_smul (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) :
    p.comp (c β€’ f) = β€–cβ€–β‚Š β€’ p.comp f :=
  ext fun _ => by
    rw [comp_apply, smul_apply, LinearMap.smul_apply, map_smul_eq_mul, NNReal.smul_def, coe_nnnorm,
      smul_eq_mul, comp_apply]
Composition of Seminorm with Scalar Multiple: $(p \circ (c \cdot f)) = \|c\| \cdot (p \circ f)$
Informal description
Let $p$ be a seminorm on a module $E_2$ over a normed ring $\mathbb{K}_2$, $f \colon E \to E_2$ a linear map between modules over normed rings $\mathbb{K}$ and $\mathbb{K}_2$ (with a ring homomorphism $\sigma_{12} \colon \mathbb{K} \to \mathbb{K}_2$), and $c \in \mathbb{K}_2$. Then the composition of $p$ with the scalar multiple $c \cdot f$ satisfies $(p \circ (c \cdot f)) = \|c\| \cdot (p \circ f)$, where $\|c\|$ denotes the norm of $c$ in $\mathbb{K}_2$.
Seminorm.comp_smul_apply theorem
(p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) (x : E) : p.comp (c β€’ f) x = β€–cβ€– * p (f x)
Full source
theorem comp_smul_apply (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (c : π•œβ‚‚) (x : E) :
    p.comp (c β€’ f) x = β€–cβ€– * p (f x) :=
  map_smul_eq_mul p _ _
Scalar Multiplication Property of Seminorm Composition: $p \circ (c \cdot f) = \|c\| \cdot (p \circ f)$
Informal description
Let $p$ be a seminorm on a module $E_2$ over a normed ring $\mathbb{K}_2$, $f \colon E \to E_2$ be a linear map between modules over normed rings $\mathbb{K}$ and $\mathbb{K}_2$ (with a ring homomorphism $\sigma_{12} \colon \mathbb{K} \to \mathbb{K}_2$), and $c \in \mathbb{K}_2$. Then for any $x \in E$, the composition of $p$ with the scalar multiple $c \cdot f$ satisfies: $$(p \circ (c \cdot f))(x) = \|c\| \cdot p(f(x))$$
Seminorm.bddBelow_range_add theorem
: BddBelow (range fun u => p u + q (x - u))
Full source
/-- Auxiliary lemma to show that the infimum of seminorms is well-defined. -/
theorem bddBelow_range_add : BddBelow (range fun u => p u + q (x - u)) :=
  ⟨0, by
    rintro _ ⟨x, rfl⟩
    dsimp; positivity⟩
Lower Boundedness of the Sum of Seminorms
Informal description
For any seminorms $p$ and $q$ on a module $E$ over a seminormed ring $\mathbb{K}$, and for any element $x \in E$, the range of the function $u \mapsto p(u) + q(x - u)$ is bounded below.
Seminorm.instInf instance
: Min (Seminorm π•œ E)
Full source
noncomputable instance instInf : Min (Seminorm π•œ E) where
  min p q :=
    { p.toAddGroupSeminorm βŠ“ q.toAddGroupSeminorm with
      toFun := fun x => β¨… u : E, p u + q (x - u)
      smul' := by
        intro a x
        obtain rfl | ha := eq_or_ne a 0
        Β· rw [norm_zero, zero_mul, zero_smul]
          refine
            ciInf_eq_of_forall_ge_of_forall_gt_exists_lt
              (fun i => by positivity)
              fun x hx => ⟨0, by rwa [map_zero, sub_zero, map_zero, add_zero]⟩
        simp_rw [Real.mul_iInf_of_nonneg (norm_nonneg a), mul_add, ← map_smul_eq_mul p, ←
          map_smul_eq_mul q, smul_sub]
        refine
          Function.Surjective.iInf_congr ((a⁻¹ β€’ Β·) : E β†’ E)
            (fun u => ⟨a β€’ u, inv_smul_smulβ‚€ ha u⟩) fun u => ?_
        rw [smul_inv_smulβ‚€ ha] }
Meet Operation on Seminorms
Informal description
For any seminormed ring $\mathbb{K}$ and module $E$ over $\mathbb{K}$, the set of seminorms on $E$ has a meet operation defined pointwise as the infimum of two seminorms. Specifically, for any two seminorms $p$ and $q$ on $E$, their meet $p \sqcap q$ is the seminorm given by $(p \sqcap q)(x) = \inf_{u \in E} (p(u) + q(x - u))$ for all $x \in E$.
Seminorm.inf_apply theorem
(p q : Seminorm π•œ E) (x : E) : (p βŠ“ q) x = β¨… u : E, p u + q (x - u)
Full source
@[simp]
theorem inf_apply (p q : Seminorm π•œ E) (x : E) : (p βŠ“ q) x = β¨… u : E, p u + q (x - u) :=
  rfl
Pointwise Infimum Formula for Seminorms: $(p \sqcap q)(x) = \inf_{u \in E} (p(u) + q(x - u))$
Informal description
For any seminorms $p$ and $q$ on a module $E$ over a seminormed ring $\mathbb{K}$, and for any element $x \in E$, the value of the infimum seminorm $p \sqcap q$ at $x$ is given by the infimum over all $u \in E$ of the sum $p(u) + q(x - u)$. That is, $$(p \sqcap q)(x) = \inf_{u \in E} \big(p(u) + q(x - u)\big).$$
Seminorm.instLattice instance
: Lattice (Seminorm π•œ E)
Full source
noncomputable instance instLattice : Lattice (Seminorm π•œ E) :=
  { Seminorm.instSemilatticeSup with
    inf := (Β· βŠ“ Β·)
    inf_le_left := fun p q x =>
      ciInf_le_of_le bddBelow_range_add x <| by
        simp only [sub_self, map_zero, add_zero]; rfl
    inf_le_right := fun p q x =>
      ciInf_le_of_le bddBelow_range_add 0 <| by
        simp only [sub_self, map_zero, zero_add, sub_zero]; rfl
    le_inf := fun a _ _ hab hac _ =>
      le_ciInf fun _ => (le_map_add_map_sub a _ _).trans <| add_le_add (hab _) (hac _) }
Lattice Structure on Seminorms
Informal description
The set of seminorms on a module $E$ over a seminormed ring $\mathbb{K}$ forms a lattice, where the meet and join operations are given by pointwise infimum and supremum respectively.
Seminorm.smul_inf theorem
[SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) : r β€’ (p βŠ“ q) = r β€’ p βŠ“ r β€’ q
Full source
theorem smul_inf [SMul R ℝ] [SMul R ℝβ‰₯0] [IsScalarTower R ℝβ‰₯0 ℝ] (r : R) (p q : Seminorm π•œ E) :
    r β€’ (p βŠ“ q) = r β€’ p βŠ“ r β€’ q := by
  ext
  simp_rw [smul_apply, inf_apply, smul_apply, ← smul_one_smul ℝβ‰₯0 r (_ : ℝ), NNReal.smul_def,
    smul_eq_mul, Real.mul_iInf_of_nonneg (NNReal.coe_nonneg _), mul_add]
Scalar Multiplication Distributes Over Infimum of Seminorms: $r \cdot (p \sqcap q) = (r \cdot p) \sqcap (r \cdot q)$
Informal description
Let $R$ be a type with scalar multiplication actions on $\mathbb{R}$ and $\mathbb{R}_{\geq 0}$ that are compatible via the inclusion $\mathbb{R}_{\geq 0} \hookrightarrow \mathbb{R}$. For any scalar $r \in R$ and seminorms $p, q$ on a module $E$ over a seminormed ring $\mathbb{K}$, the scalar multiple of the infimum seminorm satisfies: $$ r \cdot (p \sqcap q) = (r \cdot p) \sqcap (r \cdot q). $$
Seminorm.instSupSet instance
: SupSet (Seminorm π•œ E)
Full source
/-- We define the supremum of an arbitrary subset of `Seminorm π•œ E` as follows:
* if `s` is `BddAbove` *as a set of functions `E β†’ ℝ`* (that is, if `s` is pointwise bounded
  above), we take the pointwise supremum of all elements of `s`, and we prove that it is indeed a
  seminorm.
* otherwise, we take the zero seminorm `βŠ₯`.

There are two things worth mentioning here:
* First, it is not trivial at first that `s` being bounded above *by a function* implies
  being bounded above *as a seminorm*. We show this in `Seminorm.bddAbove_iff` by using
  that the `Sup s` as defined here is then a bounding seminorm for `s`. So it is important to make
  the case disjunction on `BddAbove ((↑) '' s : Set (E β†’ ℝ))` and not `BddAbove s`.
* Since the pointwise `Sup` already gives `0` at points where a family of functions is
  not bounded above, one could hope that just using the pointwise `Sup` would work here, without the
  need for an additional case disjunction. As discussed on Zulip, this doesn't work because this can
  give a function which does *not* satisfy the seminorm axioms (typically sub-additivity).
-/
noncomputable instance instSupSet : SupSet (Seminorm π•œ E) where
  sSup s :=
    if h : BddAbove ((↑) '' s : Set (E β†’ ℝ)) then
      { toFun := ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ)
        map_zero' := by
          rw [iSup_apply, ← @Real.iSup_const_zero s]
          congr!
          rename_i _ _ _ i
          exact map_zero i.1
        add_le' := fun x y => by
          rcases h with ⟨q, hq⟩
          obtain rfl | h := s.eq_empty_or_nonempty
          Β· simp [Real.iSup_of_isEmpty]
          haveI : Nonempty ↑s := h.coe_sort
          simp only [iSup_apply]
          refine ciSup_le fun i =>
            ((i : Seminorm π•œ E).add_le' x y).trans <| add_le_add
              -- Porting note: `f` is provided to force `Subtype.val` to appear.
              -- A type ascription on `_` would have also worked, but would have been more verbose.
              (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun x) ⟨q x, ?_⟩ i)
              (le_ciSup (f := fun i => (Subtype.val i : Seminorm π•œ E).toFun y) ⟨q y, ?_⟩ i)
          <;> rw [mem_upperBounds, forall_mem_range]
          <;> exact fun j => hq (mem_image_of_mem _ j.2) _
        neg' := fun x => by
          simp only [iSup_apply]
          congr! 2
          rename_i _ _ _ i
          exact i.1.neg' _
        smul' := fun a x => by
          simp only [iSup_apply]
          rw [← smul_eq_mul,
            Real.smul_iSup_of_nonneg (norm_nonneg a) fun i : s => (i : Seminorm π•œ E) x]
          congr!
          rename_i _ _ _ i
          exact i.1.smul' a x }
    else βŠ₯
Supremum Operation on Seminorms
Informal description
The set of seminorms on a module $E$ over a seminormed ring $\mathbb{K}$ has a supremum operation defined as follows: for any subset $s$ of seminorms, if $s$ is pointwise bounded above (i.e., for every $x \in E$, the set $\{p(x) \mid p \in s\}$ is bounded above in $\mathbb{R}$), then the supremum $\bigvee s$ is the pointwise supremum of the seminorms in $s$; otherwise, the supremum is the zero seminorm. This construction ensures that the supremum operation preserves the seminorm properties (positive semidefiniteness, absolute homogeneity, and subadditivity) when the set is bounded above, and defaults to a valid seminorm otherwise.
Seminorm.coe_sSup_eq' theorem
{s : Set <| Seminorm π•œ E} (hs : BddAbove ((↑) '' s : Set (E β†’ ℝ))) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ)
Full source
protected theorem coe_sSup_eq' {s : Set <| Seminorm π•œ E}
    (hs : BddAbove ((↑) '' s : Set (E β†’ ℝ))) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) :=
  congr_arg _ (dif_pos hs)
Supremum Seminorm as Pointwise Supremum
Informal description
Let $E$ be a module over a seminormed ring $\mathbb{K}$ and let $s$ be a set of seminorms on $E$. If the set $\{p(x) \mid p \in s\}$ is bounded above for every $x \in E$, then the supremum seminorm $\bigvee s$ satisfies \[ \bigvee s (x) = \sup_{p \in s} p(x) \] for all $x \in E$.
Seminorm.bddAbove_iff theorem
{s : Set <| Seminorm π•œ E} : BddAbove s ↔ BddAbove ((↑) '' s : Set (E β†’ ℝ))
Full source
protected theorem bddAbove_iff {s : Set <| Seminorm π•œ E} :
    BddAboveBddAbove s ↔ BddAbove ((↑) '' s : Set (E β†’ ℝ)) :=
  ⟨fun ⟨q, hq⟩ => ⟨q, forall_mem_image.2 fun _ hp => hq hp⟩, fun H =>
    ⟨sSup s, fun p hp x => by
      dsimp
      rw [Seminorm.coe_sSup_eq' H, iSup_apply]
      rcases H with ⟨q, hq⟩
      exact
        le_ciSup ⟨q x, forall_mem_range.mpr fun i : s => hq (mem_image_of_mem _ i.2) x⟩ ⟨p, hp⟩⟩⟩
Boundedness of Seminorms is Equivalent to Pointwise Boundedness
Informal description
Let $E$ be a module over a seminormed ring $\mathbb{K}$ and let $s$ be a set of seminorms on $E$. Then $s$ is bounded above (in the partial order of seminorms) if and only if for every $x \in E$, the set $\{p(x) \mid p \in s\}$ is bounded above in $\mathbb{R}$.
Seminorm.bddAbove_range_iff theorem
{ΞΉ : Sort*} {p : ΞΉ β†’ Seminorm π•œ E} : BddAbove (range p) ↔ βˆ€ x, BddAbove (range fun i ↦ p i x)
Full source
protected theorem bddAbove_range_iff {ΞΉ : Sort*} {p : ΞΉ β†’ Seminorm π•œ E} :
    BddAboveBddAbove (range p) ↔ βˆ€ x, BddAbove (range fun i ↦ p i x) := by
  rw [Seminorm.bddAbove_iff, ← range_comp, bddAbove_range_pi]; rfl
Boundedness of a Family of Seminorms is Equivalent to Pointwise Boundedness
Informal description
Let $E$ be a module over a seminormed ring $\mathbb{K}$ and let $\{p_i\}_{i \in I}$ be a family of seminorms on $E$. The family $\{p_i\}_{i \in I}$ is bounded above (in the partial order of seminorms) if and only if for every $x \in E$, the set $\{p_i(x) \mid i \in I\}$ is bounded above in $\mathbb{R}$.
Seminorm.coe_sSup_eq theorem
{s : Set <| Seminorm π•œ E} (hs : BddAbove s) : ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ)
Full source
protected theorem coe_sSup_eq {s : Set <| Seminorm π•œ E} (hs : BddAbove s) :
    ↑(sSup s) = ⨆ p : s, ((p : Seminorm π•œ E) : E β†’ ℝ) :=
  Seminorm.coe_sSup_eq' (Seminorm.bddAbove_iff.mp hs)
Supremum Seminorm as Pointwise Supremum
Informal description
Let $E$ be a module over a seminormed ring $\mathbb{K}$ and let $s$ be a set of seminorms on $E$ that is bounded above. Then the supremum seminorm $\bigvee s$ satisfies \[ \bigvee s (x) = \sup_{p \in s} p(x) \] for all $x \in E$.
Seminorm.coe_iSup_eq theorem
{ΞΉ : Sort*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) : ↑(⨆ i, p i) = ⨆ i, ((p i : Seminorm π•œ E) : E β†’ ℝ)
Full source
protected theorem coe_iSup_eq {ΞΉ : Sort*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) :
    ↑(⨆ i, p i) = ⨆ i, ((p i : Seminorm π•œ E) : E β†’ ℝ) := by
  rw [← sSup_range, Seminorm.coe_sSup_eq hp]
  exact iSup_range' (fun p : Seminorm π•œ E => (p : E β†’ ℝ)) p
Pointwise Supremum Characterization of Supremum Seminorm
Informal description
Let $E$ be a module over a seminormed ring $\mathbb{K}$ and let $\{p_i\}_{i \in \iota}$ be a family of seminorms on $E$ that is bounded above. Then the supremum seminorm $\bigvee_{i} p_i$ satisfies \[ \bigvee_{i} p_i (x) = \sup_{i} p_i(x) \] for all $x \in E$.
Seminorm.sSup_apply theorem
{s : Set (Seminorm π•œ E)} (hp : BddAbove s) {x : E} : (sSup s) x = ⨆ p : s, (p : E β†’ ℝ) x
Full source
protected theorem sSup_apply {s : Set (Seminorm π•œ E)} (hp : BddAbove s) {x : E} :
    (sSup s) x = ⨆ p : s, (p : E β†’ ℝ) x := by
  rw [Seminorm.coe_sSup_eq hp, iSup_apply]
Pointwise Supremum Formula for Seminorms
Informal description
Let $E$ be a module over a seminormed ring $\mathbb{K}$ and let $s$ be a set of seminorms on $E$ that is bounded above. Then for any $x \in E$, the value of the supremum seminorm $\bigvee s$ at $x$ is given by the supremum of the values of the seminorms in $s$ at $x$, i.e., \[ \left(\bigvee s\right)(x) = \sup_{p \in s} p(x). \]
Seminorm.iSup_apply theorem
{ΞΉ : Sort*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) {x : E} : (⨆ i, p i) x = ⨆ i, p i x
Full source
protected theorem iSup_apply {ΞΉ : Sort*} {p : ΞΉ β†’ Seminorm π•œ E}
    (hp : BddAbove (range p)) {x : E} : (⨆ i, p i) x = ⨆ i, p i x := by
  rw [Seminorm.coe_iSup_eq hp, iSup_apply]
Pointwise Supremum Formula for Family of Seminorms
Informal description
Let $\mathbb{K}$ be a seminormed ring and $E$ a module over $\mathbb{K}$. Given a family of seminorms $\{p_i\}_{i \in \iota}$ on $E$ that is bounded above, the value of the supremum seminorm $\bigvee_i p_i$ at any point $x \in E$ equals the supremum of the values $p_i(x)$ over all $i \in \iota$, i.e., \[ \left(\bigvee_i p_i\right)(x) = \sup_i p_i(x). \]
Seminorm.sSup_empty theorem
: sSup (βˆ… : Set (Seminorm π•œ E)) = βŠ₯
Full source
protected theorem sSup_empty : sSup (βˆ… : Set (Seminorm π•œ E)) = βŠ₯ := by
  ext
  rw [Seminorm.sSup_apply bddAbove_empty, Real.iSup_of_isEmpty]
  rfl
Supremum of Empty Set of Seminorms is Zero Seminorm
Informal description
The supremum of the empty set of seminorms on a module $E$ over a seminormed ring $\mathbb{K}$ is equal to the bottom element (the zero seminorm).
Seminorm.instConditionallyCompleteLattice instance
: ConditionallyCompleteLattice (Seminorm π•œ E)
Full source
/-- `Seminorm π•œ E` is a conditionally complete lattice.

Note that, while `inf`, `sup` and `sSup` have good definitional properties (corresponding to
the instances given here for `Inf`, `Sup` and `SupSet` respectively), `sInf s` is just
defined as the supremum of the lower bounds of `s`, which is not really useful in practice. If you
need to use `sInf` on seminorms, then you should probably provide a more workable definition first,
but this is unlikely to happen so we keep the "bad" definition for now. -/
noncomputable instance instConditionallyCompleteLattice :
    ConditionallyCompleteLattice (Seminorm π•œ E) :=
  conditionallyCompleteLatticeOfLatticeOfsSup (Seminorm π•œ E) Seminorm.isLUB_sSup
Conditionally Complete Lattice Structure on Seminorms
Informal description
The set of seminorms on a module $E$ over a seminormed ring $\mathbb{K}$ forms a conditionally complete lattice, where the supremum and infimum operations are defined pointwise for nonempty bounded sets of seminorms.
Seminorm.ball definition
(x : E) (r : ℝ)
Full source
/-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with
`p (y - x) < r`. -/
def ball (x : E) (r : ℝ) :=
  { y : E | p (y - x) < r }
Open ball with respect to a seminorm
Informal description
For a seminorm $p$ on a module $E$ over a normed ring $\mathbb{K}$, the open ball of radius $r$ centered at $x \in E$ is the set of all elements $y \in E$ such that $p(y - x) < r$.
Seminorm.closedBall definition
(x : E) (r : ℝ)
Full source
/-- The closed ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y`
with `p (y - x) ≀ r`. -/
def closedBall (x : E) (r : ℝ) :=
  { y : E | p (y - x) ≀ r }
Closed ball with respect to a seminorm
Informal description
For a seminorm $p$ on a module $E$ over a normed ring $\mathbb{K}$, the closed ball of radius $r$ centered at $x \in E$ is the set of all elements $y \in E$ such that $p(y - x) \leq r$.
Seminorm.mem_ball theorem
: y ∈ ball p x r ↔ p (y - x) < r
Full source
@[simp]
theorem mem_ball : y ∈ ball p x ry ∈ ball p x r ↔ p (y - x) < r :=
  Iff.rfl
Characterization of Open Ball in Seminormed Space: $y \in B_p(x,r) \Leftrightarrow p(y-x) < r$
Informal description
For a seminorm $p$ on a module $E$ over a normed ring $\mathbb{K}$, an element $y \in E$ belongs to the open ball centered at $x \in E$ with radius $r \in \mathbb{R}$ if and only if $p(y - x) < r$.
Seminorm.mem_closedBall theorem
: y ∈ closedBall p x r ↔ p (y - x) ≀ r
Full source
@[simp]
theorem mem_closedBall : y ∈ closedBall p x ry ∈ closedBall p x r ↔ p (y - x) ≀ r :=
  Iff.rfl
Characterization of Closed Ball in Seminormed Space: $y \in \overline{B}_p(x,r) \Leftrightarrow p(y-x) \leq r$
Informal description
For a seminorm $p$ on a module $E$ over a normed ring $\mathbb{K}$, an element $y \in E$ belongs to the closed ball centered at $x \in E$ with radius $r \in \mathbb{R}$ if and only if $p(y - x) \leq r$.
Seminorm.mem_ball_self theorem
(hr : 0 < r) : x ∈ ball p x r
Full source
theorem mem_ball_self (hr : 0 < r) : x ∈ ball p x r := by simp [hr]
Self-Membership in Open Seminorm Ball: $x \in B_p(x,r)$ for $r > 0$
Informal description
For any seminorm $p$ on a module $E$ over a normed ring $\mathbb{K}$, any element $x \in E$, and any positive real number $r > 0$, the element $x$ belongs to the open ball centered at $x$ with radius $r$, i.e., $x \in B_p(x, r)$.
Seminorm.mem_closedBall_self theorem
(hr : 0 ≀ r) : x ∈ closedBall p x r
Full source
theorem mem_closedBall_self (hr : 0 ≀ r) : x ∈ closedBall p x r := by simp [hr]
Self-Membership in Closed Seminorm Ball
Informal description
For any seminorm $p$ on a module $E$ over a normed ring $\mathbb{K}$, any element $x \in E$, and any non-negative real number $r \geq 0$, the element $x$ belongs to its own closed ball of radius $r$, i.e., $x \in \overline{B}_p(x, r)$.
Seminorm.mem_ball_zero theorem
: y ∈ ball p 0 r ↔ p y < r
Full source
theorem mem_ball_zero : y ∈ ball p 0 ry ∈ ball p 0 r ↔ p y < r := by rw [mem_ball, sub_zero]
Characterization of Open Ball at Zero in Seminormed Space: $y \in B_p(0,r) \Leftrightarrow p(y) < r$
Informal description
For a seminorm $p$ on a module $E$ over a normed ring $\mathbb{K}$, an element $y \in E$ belongs to the open ball centered at $0$ with radius $r \in \mathbb{R}$ if and only if $p(y) < r$.
Seminorm.mem_closedBall_zero theorem
: y ∈ closedBall p 0 r ↔ p y ≀ r
Full source
theorem mem_closedBall_zero : y ∈ closedBall p 0 ry ∈ closedBall p 0 r ↔ p y ≀ r := by rw [mem_closedBall, sub_zero]
Characterization of Closed Ball Centered at Zero in Seminormed Space: $y \in \overline{B}_p(0,r) \Leftrightarrow p(y) \leq r$
Informal description
For a seminorm $p$ on a module $E$ over a normed ring $\mathbb{K}$, an element $y \in E$ belongs to the closed ball centered at $0$ with radius $r \in \mathbb{R}$ if and only if $p(y) \leq r$.
Seminorm.ball_zero_eq theorem
: ball p 0 r = {y : E | p y < r}
Full source
theorem ball_zero_eq : ball p 0 r = { y : E | p y < r } :=
  Set.ext fun _ => p.mem_ball_zero
Open Ball at Zero Characterization for Seminorms
Informal description
For a seminorm $p$ on a module $E$ over a normed ring $\mathbb{K}$ and a radius $r \in \mathbb{R}$, the open ball centered at $0$ with radius $r$ is equal to the set of all elements $y \in E$ such that $p(y) < r$. In other words: $$ B_p(0, r) = \{ y \in E \mid p(y) < r \}. $$
Seminorm.closedBall_zero_eq theorem
: closedBall p 0 r = {y : E | p y ≀ r}
Full source
theorem closedBall_zero_eq : closedBall p 0 r = { y : E | p y ≀ r } :=
  Set.ext fun _ => p.mem_closedBall_zero
Closed Ball Centered at Zero in Seminormed Space as Sublevel Set
Informal description
For a seminorm $p$ on a module $E$ over a normed ring $\mathbb{K}$, the closed ball centered at $0$ with radius $r$ is equal to the set of all elements $y \in E$ such that $p(y) \leq r$. That is, \[ \overline{B}_p(0, r) = \{ y \in E \mid p(y) \leq r \}. \]
Seminorm.ball_subset_closedBall theorem
(x r) : ball p x r βŠ† closedBall p x r
Full source
theorem ball_subset_closedBall (x r) : ballball p x r βŠ† closedBall p x r := fun _ h =>
  (mem_closedBall _).mpr ((mem_ball _).mp h).le
Open Ball is Subset of Closed Ball for Seminorms
Informal description
For any seminorm $p$ on a module $E$ over a normed ring $\mathbb{K}$, any point $x \in E$, and any radius $r \in \mathbb{R}$, the open ball $\{y \in E \mid p(y - x) < r\}$ is a subset of the closed ball $\{y \in E \mid p(y - x) \leq r\}$.
Seminorm.closedBall_eq_biInter_ball theorem
(x r) : closedBall p x r = β‹‚ ρ > r, ball p x ρ
Full source
theorem closedBall_eq_biInter_ball (x r) : closedBall p x r = β‹‚ ρ > r, ball p x ρ := by
  ext y; simp_rw [mem_closedBall, mem_iInterβ‚‚, mem_ball, ← forall_lt_iff_le']
Closed Ball as Intersection of Open Balls for Seminorms
Informal description
For any seminorm $p$ on a module $E$ over a normed ring $\mathbb{K}$, the closed ball of radius $r$ centered at $x \in E$ is equal to the intersection of all open balls centered at $x$ with radius $\rho > r$. That is, \[ \text{closedBall}_p(x, r) = \bigcap_{\rho > r} \text{ball}_p(x, \rho). \]
Seminorm.ball_zero' theorem
(x : E) (hr : 0 < r) : ball (0 : Seminorm π•œ E) x r = Set.univ
Full source
@[simp]
theorem ball_zero' (x : E) (hr : 0 < r) : ball (0 : Seminorm π•œ E) x r = Set.univ := by
  rw [Set.eq_univ_iff_forall, ball]
  simp [hr]
Open Ball with Zero Seminorm is Entire Space
Informal description
For any seminorm $p$ on a module $E$ over a normed ring $\mathbb{K}$, if $p$ is the zero seminorm (i.e., $p(x) = 0$ for all $x \in E$), then for any $x \in E$ and any positive real number $r > 0$, the open ball of radius $r$ centered at $x$ with respect to $p$ is the entire space $E$.
Seminorm.closedBall_zero' theorem
(x : E) (hr : 0 < r) : closedBall (0 : Seminorm π•œ E) x r = Set.univ
Full source
@[simp]
theorem closedBall_zero' (x : E) (hr : 0 < r) : closedBall (0 : Seminorm π•œ E) x r = Set.univ :=
  eq_univ_of_subset (ball_subset_closedBall _ _ _) (ball_zero' x hr)
Closed Ball with Zero Seminorm is Entire Space
Informal description
For any module $E$ over a normed ring $\mathbb{K}$, the closed ball of radius $r > 0$ centered at any point $x \in E$ with respect to the zero seminorm is equal to the entire space $E$. That is, \[ \{y \in E \mid 0 \leq r\} = E. \]
Seminorm.ball_smul theorem
(p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).ball x r = p.ball x (r / c)
Full source
theorem ball_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) :
    (c β€’ p).ball x r = p.ball x (r / c) := by
  ext
  rw [mem_ball, mem_ball, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
    lt_div_iffβ‚€ (NNReal.coe_pos.mpr hc)]
Scaling Property of Open Balls under Seminorm Multiplication: $B_{c \cdot p}(x, r) = B_p(x, r/c)$ for $c > 0$
Informal description
Let $p$ be a seminorm on a module $E$ over a normed ring $\mathbb{K}$. For any positive real number $c > 0$ and any radius $r \in \mathbb{R}$, the open ball of radius $r$ centered at $x \in E$ with respect to the seminorm $c \cdot p$ is equal to the open ball of radius $r/c$ centered at $x$ with respect to the seminorm $p$. That is, \[ B_{c \cdot p}(x, r) = B_p(x, r/c). \]
Seminorm.closedBall_smul theorem
(p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) : (c β€’ p).closedBall x r = p.closedBall x (r / c)
Full source
theorem closedBall_smul (p : Seminorm π•œ E) {c : NNReal} (hc : 0 < c) (r : ℝ) (x : E) :
    (c β€’ p).closedBall x r = p.closedBall x (r / c) := by
  ext
  rw [mem_closedBall, mem_closedBall, smul_apply, NNReal.smul_def, smul_eq_mul, mul_comm,
    le_div_iffβ‚€ (NNReal.coe_pos.mpr hc)]
Closed Ball Scaling under Seminorm Scalar Multiplication: $\overline{B}_{c \cdot p}(x, r) = \overline{B}_p(x, r/c)$
Informal description
For any seminorm $p$ on a module $E$ over a normed ring $\mathbb{K}$, any positive real number $c > 0$, and any real number $r$, the closed ball of radius $r$ centered at $x \in E$ with respect to the seminorm $c \cdot p$ is equal to the closed ball of radius $r / c$ centered at $x$ with respect to the seminorm $p$. That is, \[ \overline{B}_{c \cdot p}(x, r) = \overline{B}_p\left(x, \frac{r}{c}\right). \]
Seminorm.ball_sup theorem
(p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : ball (p βŠ” q) e r = ball p e r ∩ ball q e r
Full source
theorem ball_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) :
    ball (p βŠ” q) e r = ballball p e r ∩ ball q e r := by
  simp_rw [ball, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_lt_iff]
Open Ball of Supremum Seminorm is Intersection of Individual Balls
Informal description
For any seminorms $p$ and $q$ on a module $E$ over a normed ring $\mathbb{K}$, the open ball of radius $r$ centered at $e \in E$ with respect to the pointwise supremum seminorm $p \sqcup q$ is equal to the intersection of the open balls of radius $r$ centered at $e$ with respect to $p$ and $q$ individually. That is: \[ B_{p \sqcup q}(e, r) = B_p(e, r) \cap B_q(e, r). \]
Seminorm.closedBall_sup theorem
(p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) : closedBall (p βŠ” q) e r = closedBall p e r ∩ closedBall q e r
Full source
theorem closedBall_sup (p : Seminorm π•œ E) (q : Seminorm π•œ E) (e : E) (r : ℝ) :
    closedBall (p βŠ” q) e r = closedBallclosedBall p e r ∩ closedBall q e r := by
  simp_rw [closedBall, ← Set.setOf_and, coe_sup, Pi.sup_apply, sup_le_iff]
Closed Ball of Supremum Seminorm is Intersection of Individual Closed Balls
Informal description
For any seminorms $p$ and $q$ on a module $E$ over a normed ring $\mathbb{K}$, the closed ball of radius $r$ centered at $e \in E$ with respect to the pointwise supremum seminorm $p \sqcup q$ is equal to the intersection of the closed balls of radius $r$ centered at $e$ with respect to $p$ and $q$ individually. That is: \[ \overline{B}_{p \sqcup q}(e, r) = \overline{B}_p(e, r) \cap \overline{B}_q(e, r). \]
Seminorm.ball_finset_sup' theorem
(p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r
Full source
theorem ball_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) :
    ball (s.sup' H p) e r = s.inf' H fun i => ball (p i) e r := by
  induction H using Finset.Nonempty.cons_induction with
  | singleton => simp
  | cons _ _ _ hs ih =>
    rw [Finset.sup'_cons hs, Finset.inf'_cons hs, ball_sup]
    -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
    simp only [inf_eq_inter, ih]
Open Ball of Finite Supremum Seminorm is Intersection of Individual Balls
Informal description
Let $E$ be a module over a normed ring $\mathbb{K}$, and let $(p_i)_{i \in \iota}$ be a family of seminorms on $E$. For any nonempty finite subset $s \subseteq \iota$, any point $e \in E$, and any radius $r \in \mathbb{R}$, the open ball of radius $r$ centered at $e$ with respect to the pointwise supremum seminorm $\sup_{i \in s} p_i$ is equal to the intersection of the open balls of radius $r$ centered at $e$ with respect to each $p_i$ for $i \in s$. That is: \[ B_{\sup_{i \in s} p_i}(e, r) = \bigcap_{i \in s} B_{p_i}(e, r). \]
Seminorm.closedBall_finset_sup' theorem
(p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E) (r : ℝ) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r
Full source
theorem closedBall_finset_sup' (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (H : s.Nonempty) (e : E)
    (r : ℝ) : closedBall (s.sup' H p) e r = s.inf' H fun i => closedBall (p i) e r := by
  induction H using Finset.Nonempty.cons_induction with
  | singleton => simp
  | cons _ _ _ hs ih =>
    rw [Finset.sup'_cons hs, Finset.inf'_cons hs, closedBall_sup]
    -- Porting note: `rw` can't use `inf_eq_inter` here, but `simp` can?
    simp only [inf_eq_inter, ih]
Closed Ball of Finite Supremum Seminorm is Intersection of Individual Closed Balls
Informal description
For a nonempty finite set $s$ of indices and a family of seminorms $(p_i)_{i \in s}$ on a module $E$ over a normed ring $\mathbb{K}$, the closed ball of radius $r$ centered at $e \in E$ with respect to the pointwise supremum seminorm $\sup_{i \in s} p_i$ is equal to the intersection of the closed balls of radius $r$ centered at $e$ with respect to each $p_i$. That is: \[ \overline{B}_{\sup_{i \in s} p_i}(e, r) = \bigcap_{i \in s} \overline{B}_{p_i}(e, r). \]
Seminorm.ball_mono theorem
{p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.ball x r₁ βŠ† p.ball x rβ‚‚
Full source
theorem ball_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.ball x r₁ βŠ† p.ball x rβ‚‚ :=
  fun _ (hx : _ < _) => hx.trans_le h
Monotonicity of Seminorm Balls with Respect to Radius
Informal description
For any seminorm $p$ on a module $E$ over a normed ring $\mathbb{K}$ and any real numbers $r_1 \leq r_2$, the open ball of radius $r_1$ centered at $x \in E$ with respect to $p$ is contained in the open ball of radius $r_2$ centered at the same point, i.e., $B_p(x, r_1) \subseteq B_p(x, r_2)$.
Seminorm.closedBall_mono theorem
{p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.closedBall x r₁ βŠ† p.closedBall x rβ‚‚
Full source
theorem closedBall_mono {p : Seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) :
    p.closedBall x r₁ βŠ† p.closedBall x rβ‚‚ := fun _ (hx : _ ≀ _) => hx.trans h
Monotonicity of Closed Balls with Respect to Radius in Seminormed Spaces
Informal description
For any seminorm $p$ on a module $E$ over a normed ring $\mathbb{K}$ and any real numbers $r_1 \leq r_2$, the closed ball of radius $r_1$ centered at $x \in E$ with respect to $p$ is contained in the closed ball of radius $r_2$ centered at the same point, i.e., $\overline{B}_p(x, r_1) \subseteq \overline{B}_p(x, r_2)$.
Seminorm.ball_antitone theorem
{p q : Seminorm π•œ E} (h : q ≀ p) : p.ball x r βŠ† q.ball x r
Full source
theorem ball_antitone {p q : Seminorm π•œ E} (h : q ≀ p) : p.ball x r βŠ† q.ball x r := fun _ =>
  (h _).trans_lt
Monotonicity of Seminorm Balls: Larger Seminorms Have Smaller Balls
Informal description
For any seminorms $p$ and $q$ on a module $E$ over a normed ring $\mathbb{K}$, if $q \leq p$ (i.e., $q(x) \leq p(x)$ for all $x \in E$), then the open ball of radius $r$ centered at $x$ with respect to $p$ is contained in the open ball of the same radius and center with respect to $q$. In other words, $B_p(x, r) \subseteq B_q(x, r)$.
Seminorm.closedBall_antitone theorem
{p q : Seminorm π•œ E} (h : q ≀ p) : p.closedBall x r βŠ† q.closedBall x r
Full source
theorem closedBall_antitone {p q : Seminorm π•œ E} (h : q ≀ p) :
    p.closedBall x r βŠ† q.closedBall x r := fun _ => (h _).trans
Antitone Property of Closed Balls with Respect to Seminorm Ordering
Informal description
For any seminorms $p$ and $q$ on a module $E$ over a normed ring $\mathbb{K}$, if $q \leq p$ (i.e., $q(x) \leq p(x)$ for all $x \in E$), then the closed ball of radius $r$ centered at $x$ with respect to $p$ is contained in the closed ball of the same radius and center with respect to $q$. In other words, $\overline{B}_p(x, r) \subseteq \overline{B}_q(x, r)$.
Seminorm.ball_add_ball_subset theorem
(p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.ball (x₁ : E) r₁ + p.ball (xβ‚‚ : E) rβ‚‚ βŠ† p.ball (x₁ + xβ‚‚) (r₁ + rβ‚‚)
Full source
theorem ball_add_ball_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) :
    p.ball (x₁ : E) r₁ + p.ball (xβ‚‚ : E) rβ‚‚ βŠ† p.ball (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by
  rintro x ⟨y₁, hy₁, yβ‚‚, hyβ‚‚, rfl⟩
  rw [mem_ball, add_sub_add_comm]
  exact (map_add_le_add p _ _).trans_lt (add_lt_add hy₁ hyβ‚‚)
Minkowski Sum of Seminorm Balls is Contained in Larger Ball
Informal description
For any seminorm $p$ on a module $E$ over a normed ring $\mathbb{K}$, and for any real numbers $r_1, r_2 > 0$ and elements $x_1, x_2 \in E$, the Minkowski sum of the open balls $B_p(x_1, r_1)$ and $B_p(x_2, r_2)$ is contained in the open ball $B_p(x_1 + x_2, r_1 + r_2)$. In other words: $$ B_p(x_1, r_1) + B_p(x_2, r_2) \subseteq B_p(x_1 + x_2, r_1 + r_2). $$
Seminorm.closedBall_add_closedBall_subset theorem
(p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) : p.closedBall (x₁ : E) r₁ + p.closedBall (xβ‚‚ : E) rβ‚‚ βŠ† p.closedBall (x₁ + xβ‚‚) (r₁ + rβ‚‚)
Full source
theorem closedBall_add_closedBall_subset (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E) :
    p.closedBall (x₁ : E) r₁ + p.closedBall (xβ‚‚ : E) rβ‚‚ βŠ† p.closedBall (x₁ + xβ‚‚) (r₁ + rβ‚‚) := by
  rintro x ⟨y₁, hy₁, yβ‚‚, hyβ‚‚, rfl⟩
  rw [mem_closedBall, add_sub_add_comm]
  exact (map_add_le_add p _ _).trans (add_le_add hy₁ hyβ‚‚)
Minkowski Sum of Closed Seminorm Balls is Contained in Larger Ball
Informal description
For any seminorm $p$ on a module $E$ over a normed ring $\mathbb{K}$, and for any radii $r_1, r_2 \in \mathbb{R}$ and points $x_1, x_2 \in E$, the Minkowski sum of the closed balls $\overline{B}_p(x_1, r_1)$ and $\overline{B}_p(x_2, r_2)$ is contained in the closed ball $\overline{B}_p(x_1 + x_2, r_1 + r_2)$. In other words, if $y_1 \in \overline{B}_p(x_1, r_1)$ and $y_2 \in \overline{B}_p(x_2, r_2)$, then $y_1 + y_2 \in \overline{B}_p(x_1 + x_2, r_1 + r_2)$.
Seminorm.sub_mem_ball theorem
(p : Seminorm π•œ E) (x₁ xβ‚‚ y : E) (r : ℝ) : x₁ - xβ‚‚ ∈ p.ball y r ↔ x₁ ∈ p.ball (xβ‚‚ + y) r
Full source
theorem sub_mem_ball (p : Seminorm π•œ E) (x₁ xβ‚‚ y : E) (r : ℝ) :
    x₁ - xβ‚‚ ∈ p.ball y rx₁ - xβ‚‚ ∈ p.ball y r ↔ x₁ ∈ p.ball (xβ‚‚ + y) r := by simp_rw [mem_ball, sub_sub]
Translation Invariance of Open Balls under Seminorms
Informal description
For a seminorm $p$ on a module $E$ over a normed ring $\mathbb{K}$, and for any elements $x_1, x_2, y \in E$ and radius $r \in \mathbb{R}$, the difference $x_1 - x_2$ lies in the open ball of radius $r$ centered at $y$ if and only if $x_1$ lies in the open ball of radius $r$ centered at $x_2 + y$. In other words: $$ x_1 - x_2 \in \{ z \in E \mid p(z - y) < r \} \leftrightarrow x_1 \in \{ z \in E \mid p(z - (x_2 + y)) < r \}. $$
Seminorm.sub_mem_closedBall theorem
(p : Seminorm π•œ E) (x₁ xβ‚‚ y : E) (r : ℝ) : x₁ - xβ‚‚ ∈ p.closedBall y r ↔ x₁ ∈ p.closedBall (xβ‚‚ + y) r
Full source
theorem sub_mem_closedBall (p : Seminorm π•œ E) (x₁ xβ‚‚ y : E) (r : ℝ) :
    x₁ - xβ‚‚ ∈ p.closedBall y rx₁ - xβ‚‚ ∈ p.closedBall y r ↔ x₁ ∈ p.closedBall (xβ‚‚ + y) r := by
  simp_rw [mem_closedBall, sub_sub]
Translation Invariance of Closed Balls under Seminorms
Informal description
For a seminorm $p$ on a module $E$ over a normed ring $\mathbb{K}$, and for any elements $x_1, x_2, y \in E$ and radius $r \in \mathbb{R}$, the difference $x_1 - x_2$ lies in the closed ball of radius $r$ centered at $y$ if and only if $x_1$ lies in the closed ball of radius $r$ centered at $x_2 + y$. In other words: $$ x_1 - x_2 \in \{ z \in E \mid p(z - y) \leq r \} \leftrightarrow x_1 \in \{ z \in E \mid p(z - (x_2 + y)) \leq r \}. $$
Seminorm.vadd_ball theorem
(p : Seminorm π•œ E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r
Full source
/-- The image of a ball under addition with a singleton is another ball. -/
theorem vadd_ball (p : Seminorm π•œ E) : x +α΅₯ p.ball y r = p.ball (x +α΅₯ y) r :=
  letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
  Metric.vadd_ball x y r
Translation Invariance of Open Balls under Seminorms
Informal description
For a seminorm $p$ on a module $E$ over a normed ring $\mathbb{K}$, the translation of the open ball $p.ball(y, r)$ by a vector $x \in E$ is equal to the open ball centered at $x + y$ with the same radius $r$. In other words: $$ x + \{ z \in E \mid p(z - y) < r \} = \{ z \in E \mid p(z - (x + y)) < r \}. $$
Seminorm.vadd_closedBall theorem
(p : Seminorm π•œ E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r
Full source
/-- The image of a closed ball under addition with a singleton is another closed ball. -/
theorem vadd_closedBall (p : Seminorm π•œ E) : x +α΅₯ p.closedBall y r = p.closedBall (x +α΅₯ y) r :=
  letI := AddGroupSeminorm.toSeminormedAddCommGroup p.toAddGroupSeminorm
  Metric.vadd_closedBall x y r
Translation Invariance of Closed Seminorm Balls
Informal description
For a seminorm $p$ on a module $E$ over a normed ring $\mathbb{K}$, the translation of the closed ball $\{ z \in E \mid p(z - y) \leq r \}$ by a vector $x \in E$ is equal to the closed ball centered at $x + y$ with the same radius $r$. That is, $$ x + \{ z \in E \mid p(z - y) \leq r \} = \{ z \in E \mid p(z - (x + y)) \leq r \}. $$
Seminorm.ball_comp theorem
(p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).ball x r = f ⁻¹' p.ball (f x) r
Full source
theorem ball_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) :
    (p.comp f).ball x r = f ⁻¹' p.ball (f x) r := by
  ext
  simp_rw [ball, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
Preimage of Open Seminorm Ball under Linear Map
Informal description
Let $p$ be a seminorm on a module $E_2$ over a normed ring $\mathbb{K}_2$, and let $f \colon E \to E_2$ be a linear map between modules over normed rings $\mathbb{K}$ and $\mathbb{K}_2$ (with a ring homomorphism $\sigma_{12} \colon \mathbb{K} \to \mathbb{K}_2$). For any $x \in E$ and $r > 0$, the open ball of radius $r$ centered at $x$ with respect to the seminorm $p \circ f$ is equal to the preimage under $f$ of the open ball of radius $r$ centered at $f(x)$ with respect to $p$. That is, $$ B_{p \circ f}(x, r) = f^{-1}\left(B_p(f(x), r)\right), $$ where $B_p(y, r) = \{z \in E_2 \mid p(z - y) < r\}$ denotes the open ball of radius $r$ centered at $y$ with respect to $p$.
Seminorm.closedBall_comp theorem
(p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) : (p.comp f).closedBall x r = f ⁻¹' p.closedBall (f x) r
Full source
theorem closedBall_comp (p : Seminorm π•œβ‚‚ Eβ‚‚) (f : E β†’β‚›β‚—[σ₁₂] Eβ‚‚) (x : E) (r : ℝ) :
    (p.comp f).closedBall x r = f ⁻¹' p.closedBall (f x) r := by
  ext
  simp_rw [closedBall, mem_preimage, comp_apply, Set.mem_setOf_eq, map_sub]
Preimage of Closed Seminorm Ball under Linear Map
Informal description
Let $p$ be a seminorm on a module $E_2$ over a normed ring $\mathbb{K}_2$, and let $f \colon E \to E_2$ be a linear map between modules over normed rings $\mathbb{K}$ and $\mathbb{K}_2$ (with a ring homomorphism $\sigma_{12} \colon \mathbb{K} \to \mathbb{K}_2$). For any $x \in E$ and $r \in \mathbb{R}$, the closed ball of radius $r$ centered at $x$ with respect to the seminorm $p \circ f$ is equal to the preimage under $f$ of the closed ball of radius $r$ centered at $f(x)$ with respect to $p$. That is, $$(p \circ f)^{-1}(\overline{B}(x, r)) = f^{-1}\left(\overline{B}(f(x), r)\right),$$ where $\overline{B}(x, r) = \{y \in E \mid p(y - x) \leq r\}$ denotes the closed ball of radius $r$ centered at $x$ with respect to $p$.
Seminorm.preimage_metric_ball theorem
{r : ℝ} : p ⁻¹' Metric.ball 0 r = {x | p x < r}
Full source
theorem preimage_metric_ball {r : ℝ} : p ⁻¹' Metric.ball 0 r = { x | p x < r } := by
  ext x
  simp only [mem_setOf, mem_preimage, mem_ball_zero_iff, Real.norm_of_nonneg (apply_nonneg p _)]
Preimage of Open Ball under Seminorm Equals Seminorm Sublevel Set
Informal description
For any seminorm $p$ on a module $E$ and any real number $r > 0$, the preimage of the open ball of radius $r$ centered at $0$ under $p$ is equal to the set of all $x \in E$ for which $p(x) < r$. In other words, $$ p^{-1}(B(0, r)) = \{x \in E \mid p(x) < r\}, $$ where $B(0, r) = \{y \in \mathbb{R} \mid |y| < r\}$ denotes the open ball of radius $r$ centered at $0$ in $\mathbb{R}$.
Seminorm.preimage_metric_closedBall theorem
{r : ℝ} : p ⁻¹' Metric.closedBall 0 r = {x | p x ≀ r}
Full source
theorem preimage_metric_closedBall {r : ℝ} : p ⁻¹' Metric.closedBall 0 r = { x | p x ≀ r } := by
  ext x
  simp only [mem_setOf, mem_preimage, mem_closedBall_zero_iff,
    Real.norm_of_nonneg (apply_nonneg p _)]
Preimage of Closed Metric Ball Under Seminorm Equals Seminorm Closed Ball
Informal description
For any seminorm $p$ on a module $E$ and any real number $r \geq 0$, the preimage of the closed metric ball $\overline{B}(0, r) \subseteq \mathbb{R}$ under $p$ is equal to the set of all $x \in E$ satisfying $p(x) \leq r$. That is, $$ p^{-1}(\overline{B}(0, r)) = \{x \in E \mid p(x) \leq r\}. $$
Seminorm.ball_zero_eq_preimage_ball theorem
{r : ℝ} : p.ball 0 r = p ⁻¹' Metric.ball 0 r
Full source
theorem ball_zero_eq_preimage_ball {r : ℝ} : p.ball 0 r = p ⁻¹' Metric.ball 0 r := by
  rw [ball_zero_eq, preimage_metric_ball]
Open Ball at Zero Equals Preimage of Metric Ball for Seminorms
Informal description
For any seminorm $p$ on a module $E$ and any real number $r$, the open ball centered at $0$ with radius $r$ with respect to $p$ is equal to the preimage under $p$ of the open ball centered at $0$ with radius $r$ in $\mathbb{R}$. In other words: $$ B_p(0, r) = p^{-1}(B(0, r)) $$ where $B_p(0, r) = \{x \in E \mid p(x) < r\}$ and $B(0, r) = \{y \in \mathbb{R} \mid |y| < r\}$.
Seminorm.closedBall_zero_eq_preimage_closedBall theorem
{r : ℝ} : p.closedBall 0 r = p ⁻¹' Metric.closedBall 0 r
Full source
theorem closedBall_zero_eq_preimage_closedBall {r : ℝ} :
    p.closedBall 0 r = p ⁻¹' Metric.closedBall 0 r := by
  rw [closedBall_zero_eq, preimage_metric_closedBall]
Closed Ball at Zero as Preimage of Metric Closed Ball under Seminorm
Informal description
For any seminorm $p$ on a module $E$ and any real number $r \geq 0$, the closed ball centered at $0$ with radius $r$ with respect to $p$ is equal to the preimage under $p$ of the closed metric ball $\overline{B}(0, r) \subseteq \mathbb{R}$. That is, \[ \overline{B}_p(0, r) = p^{-1}(\overline{B}(0, r)). \]
Seminorm.ball_bot theorem
{r : ℝ} (x : E) (hr : 0 < r) : ball (βŠ₯ : Seminorm π•œ E) x r = Set.univ
Full source
@[simp]
theorem ball_bot {r : ℝ} (x : E) (hr : 0 < r) : ball (βŠ₯ : Seminorm π•œ E) x r = Set.univ :=
  ball_zero' x hr
Open Ball with Zero Seminorm is Entire Space
Informal description
For any module $E$ over a seminormed ring $\mathbb{K}$, any $x \in E$, and any positive real number $r > 0$, the open ball of radius $r$ centered at $x$ with respect to the bottom seminorm $\bot$ (the zero seminorm) is equal to the entire space $E$.
Seminorm.closedBall_bot theorem
{r : ℝ} (x : E) (hr : 0 < r) : closedBall (βŠ₯ : Seminorm π•œ E) x r = Set.univ
Full source
@[simp]
theorem closedBall_bot {r : ℝ} (x : E) (hr : 0 < r) :
    closedBall (βŠ₯ : Seminorm π•œ E) x r = Set.univ :=
  closedBall_zero' x hr
Closed Ball with Zero Seminorm is Entire Space
Informal description
For any module $E$ over a normed ring $\mathbb{K}$, any $x \in E$, and any positive real number $r > 0$, the closed ball of radius $r$ centered at $x$ with respect to the zero seminorm is equal to the entire space $E$. That is, \[ \{y \in E \mid 0 \leq r\} = E. \]
Seminorm.balanced_ball_zero theorem
(r : ℝ) : Balanced π•œ (ball p 0 r)
Full source
/-- Seminorm-balls at the origin are balanced. -/
theorem balanced_ball_zero (r : ℝ) : Balanced π•œ (ball p 0 r) := by
  rintro a ha x ⟨y, hy, hx⟩
  rw [mem_ball_zero, ← hx, map_smul_eq_mul]
  calc
    _ ≀ p y := mul_le_of_le_one_left (apply_nonneg p _) ha
    _ < r := by rwa [mem_ball_zero] at hy
Balancedness of Seminorm Balls at Zero: $B_p(0,r)$ is balanced for all $r \geq 0$
Informal description
For any seminorm $p$ on a module $E$ over a normed ring $\mathbb{K}$ and any real number $r \geq 0$, the open ball $\{y \in E \mid p(y) < r\}$ centered at $0$ is a balanced set. That is, for every scalar $a \in \mathbb{K}$ with $\|a\| \leq 1$, the scaled set $a \cdot \{y \in E \mid p(y) < r\}$ is contained in $\{y \in E \mid p(y) < r\}$.
Seminorm.balanced_closedBall_zero theorem
(r : ℝ) : Balanced π•œ (closedBall p 0 r)
Full source
/-- Closed seminorm-balls at the origin are balanced. -/
theorem balanced_closedBall_zero (r : ℝ) : Balanced π•œ (closedBall p 0 r) := by
  rintro a ha x ⟨y, hy, hx⟩
  rw [mem_closedBall_zero, ← hx, map_smul_eq_mul]
  calc
    _ ≀ p y := mul_le_of_le_one_left (apply_nonneg p _) ha
    _ ≀ r := by rwa [mem_closedBall_zero] at hy
Closed Seminorm Balls at Zero are Balanced
Informal description
For any seminorm $p$ on a module $E$ over a normed ring $\mathbb{K}$ and any real number $r \geq 0$, the closed ball $\{x \in E \mid p(x) \leq r\}$ centered at $0$ is a balanced set. That is, for every scalar $a \in \mathbb{K}$ with $\|a\| \leq 1$, the scaled set $a \cdot \{x \in E \mid p(x) \leq r\}$ is contained in $\{x \in E \mid p(x) \leq r\}$.
Seminorm.ball_finset_sup_eq_iInter theorem
(p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = β‹‚ i ∈ s, ball (p i) x r
Full source
theorem ball_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ}
    (hr : 0 < r) : ball (s.sup p) x r = β‹‚ i ∈ s, ball (p i) x r := by
  lift r to NNReal using hr.le
  simp_rw [ball, iInter_setOf, finset_sup_apply, NNReal.coe_lt_coe,
    Finset.sup_lt_iff (show βŠ₯ < r from hr), ← NNReal.coe_lt_coe, NNReal.coe_mk]
Open Ball under Supremum Seminorm Equals Intersection of Open Balls
Informal description
Let $\mathbb{K}$ be a normed ring and $E$ be a module over $\mathbb{K}$. Given a family of seminorms $(p_i)_{i \in \iota}$ on $E$, a finite set $s \subseteq \iota$, a point $x \in E$, and a positive real number $r > 0$, the open ball of radius $r$ centered at $x$ with respect to the seminorm $\sup_{i \in s} p_i$ is equal to the intersection of the open balls of radius $r$ centered at $x$ with respect to each seminorm $p_i$ for $i \in s$. That is, \[ B_{\sup_{i \in s} p_i}(x, r) = \bigcap_{i \in s} B_{p_i}(x, r). \]
Seminorm.closedBall_finset_sup_eq_iInter theorem
(p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = β‹‚ i ∈ s, closedBall (p i) x r
Full source
theorem closedBall_finset_sup_eq_iInter (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ}
    (hr : 0 ≀ r) : closedBall (s.sup p) x r = β‹‚ i ∈ s, closedBall (p i) x r := by
  lift r to NNReal using hr
  simp_rw [closedBall, iInter_setOf, finset_sup_apply, NNReal.coe_le_coe, Finset.sup_le_iff, ←
    NNReal.coe_le_coe, NNReal.coe_mk]
Closed Ball of Supremum Seminorm Equals Intersection of Closed Balls
Informal description
Let $\mathbb{K}$ be a seminormed ring and $E$ a module over $\mathbb{K}$. Given a family of seminorms $(p_i)_{i \in \iota}$ on $E$, a finite subset $s \subseteq \iota$, a point $x \in E$, and a nonnegative real number $r \geq 0$, the closed ball of radius $r$ centered at $x$ with respect to the seminorm $\sup_{i \in s} p_i$ is equal to the intersection of the closed balls of radius $r$ centered at $x$ with respect to each seminorm $p_i$ for $i \in s$. That is, \[ \{ y \in E \mid \sup_{i \in s} p_i(y - x) \leq r \} = \bigcap_{i \in s} \{ y \in E \mid p_i(y - x) \leq r \}. \]
Seminorm.ball_finset_sup theorem
(p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) : ball (s.sup p) x r = s.inf fun i => ball (p i) x r
Full source
theorem ball_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) :
    ball (s.sup p) x r = s.inf fun i => ball (p i) x r := by
  rw [Finset.inf_eq_iInf]
  exact ball_finset_sup_eq_iInter _ _ _ hr
Open Ball under Supremum Seminorm Equals Infimum of Open Balls
Informal description
Let $\mathbb{K}$ be a normed ring and $E$ a module over $\mathbb{K}$. Given a family of seminorms $(p_i)_{i \in \iota}$ on $E$, a finite subset $s \subseteq \iota$, a point $x \in E$, and a positive real number $r > 0$, the open ball of radius $r$ centered at $x$ with respect to the seminorm $\sup_{i \in s} p_i$ is equal to the infimum (as sets) of the open balls of radius $r$ centered at $x$ with respect to each seminorm $p_i$ for $i \in s$. That is, \[ B_{\sup_{i \in s} p_i}(x, r) = \bigsqcap_{i \in s} B_{p_i}(x, r). \]
Seminorm.closedBall_finset_sup theorem
(p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) : closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r
Full source
theorem closedBall_finset_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (x : E) {r : ℝ} (hr : 0 ≀ r) :
    closedBall (s.sup p) x r = s.inf fun i => closedBall (p i) x r := by
  rw [Finset.inf_eq_iInf]
  exact closedBall_finset_sup_eq_iInter _ _ _ hr
Closed Ball of Supremum Seminorm Equals Infimum of Closed Balls
Informal description
Let $\mathbb{K}$ be a seminormed ring and $E$ a module over $\mathbb{K}$. Given a family of seminorms $(p_i)_{i \in \iota}$ on $E$, a finite subset $s \subseteq \iota$, a point $x \in E$, and a nonnegative real number $r \geq 0$, the closed ball of radius $r$ centered at $x$ with respect to the seminorm $\sup_{i \in s} p_i$ is equal to the infimum of the closed balls of radius $r$ centered at $x$ with respect to each seminorm $p_i$ for $i \in s$. That is, \[ \{ y \in E \mid \sup_{i \in s} p_i(y - x) \leq r \} = \inf_{i \in s} \{ y \in E \mid p_i(y - x) \leq r \}. \]
Seminorm.ball_eq_emptyset theorem
(p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r ≀ 0) : p.ball x r = βˆ…
Full source
@[simp]
theorem ball_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r ≀ 0) : p.ball x r = βˆ… := by
  ext
  rw [Seminorm.mem_ball, Set.mem_empty_iff_false, iff_false, not_lt]
  exact hr.trans (apply_nonneg p _)
Empty Open Ball for Nonpositive Radius in Seminormed Space
Informal description
For any seminorm $p$ on a module $E$ over a normed ring $\mathbb{K}$, any point $x \in E$, and any radius $r \leq 0$, the open ball $B_p(x, r)$ is empty.
Seminorm.closedBall_eq_emptyset theorem
(p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r < 0) : p.closedBall x r = βˆ…
Full source
@[simp]
theorem closedBall_eq_emptyset (p : Seminorm π•œ E) {x : E} {r : ℝ} (hr : r < 0) :
    p.closedBall x r = βˆ… := by
  ext
  rw [Seminorm.mem_closedBall, Set.mem_empty_iff_false, iff_false, not_le]
  exact hr.trans_le (apply_nonneg _ _)
Empty Closed Ball for Negative Radius in Seminormed Space
Informal description
For any seminorm $p$ on a module $E$ over a normed ring $\mathbb{K}$, any $x \in E$, and any real number $r < 0$, the closed ball $\{y \in E \mid p(y - x) \leq r\}$ is empty.
Seminorm.closedBall_smul_ball theorem
(p : Seminorm π•œ E) {r₁ : ℝ} (hr₁ : r₁ β‰  0) (rβ‚‚ : ℝ) : Metric.closedBall (0 : π•œ) r₁ β€’ p.ball 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚)
Full source
theorem closedBall_smul_ball (p : Seminorm π•œ E) {r₁ : ℝ} (hr₁ : r₁ β‰  0) (rβ‚‚ : ℝ) :
    Metric.closedBallMetric.closedBall (0 : π•œ) r₁ β€’ p.ball 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by
  simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
  refine fun a ha b hb ↦ mul_lt_mul' ha hb (apply_nonneg _ _) ?_
  exact hr₁.lt_or_lt.resolve_left <| ((norm_nonneg a).trans ha).not_lt
Inclusion of Scaled Balls under Seminorm: $\overline{B}_{\mathbb{K}}(0, r_1) \cdot B_p(0, r_2) \subseteq B_p(0, r_1 \cdot r_2)$
Informal description
Let $p$ be a seminorm on a module $E$ over a normed ring $\mathbb{K}$. For any nonzero real number $r_1$ and any real number $r_2$, the Minkowski sum of the closed ball of radius $r_1$ centered at $0$ in $\mathbb{K}$ and the open ball of radius $r_2$ centered at $0$ in $E$ is contained in the open ball of radius $r_1 \cdot r_2$ centered at $0$ in $E$ with respect to $p$. In other words: \[ \overline{B}_{\mathbb{K}}(0, r_1) \cdot B_p(0, r_2) \subseteq B_p(0, r_1 \cdot r_2) \] where $\overline{B}_{\mathbb{K}}(0, r_1)$ denotes the closed ball in $\mathbb{K}$ and $B_p(0, r_2)$ denotes the open ball in $E$ with respect to $p$.
Seminorm.ball_smul_closedBall theorem
(p : Seminorm π•œ E) (r₁ : ℝ) {rβ‚‚ : ℝ} (hrβ‚‚ : rβ‚‚ β‰  0) : Metric.ball (0 : π•œ) r₁ β€’ p.closedBall 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚)
Full source
theorem ball_smul_closedBall (p : Seminorm π•œ E) (r₁ : ℝ) {rβ‚‚ : ℝ} (hrβ‚‚ : rβ‚‚ β‰  0) :
    Metric.ballMetric.ball (0 : π•œ) r₁ β€’ p.closedBall 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by
  simp only [smul_subset_iff, mem_ball_zero, mem_closedBall_zero, mem_ball_zero_iff,
    map_smul_eq_mul]
  intro a ha b hb
  rw [mul_comm, mul_comm r₁]
  refine mul_lt_mul' hb ha (norm_nonneg _) (hrβ‚‚.lt_or_lt.resolve_left ?_)
  exact ((apply_nonneg p b).trans hb).not_lt
Inclusion of Scaled Open and Closed Balls under Seminorm
Informal description
Let $p$ be a seminorm on a module $E$ over a normed ring $\mathbb{K}$. For any real number $r_1$ and any nonzero real number $r_2$, the Minkowski sum of the open ball of radius $r_1$ centered at $0$ in $\mathbb{K}$ and the closed ball of radius $r_2$ centered at $0$ in $E$ (with respect to $p$) is contained in the open ball of radius $r_1 \cdot r_2$ centered at $0$ in $E$ (with respect to $p$). In other words, \[ B_{\mathbb{K}}(0, r_1) \cdot \overline{B}_p(0, r_2) \subseteq B_p(0, r_1 \cdot r_2), \] where $B_{\mathbb{K}}(0, r_1)$ denotes the open ball in $\mathbb{K}$ and $\overline{B}_p(0, r_2)$ denotes the closed ball in $E$ with respect to $p$.
Seminorm.ball_smul_ball theorem
(p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) : Metric.ball (0 : π•œ) r₁ β€’ p.ball 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚)
Full source
theorem ball_smul_ball (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) :
    Metric.ballMetric.ball (0 : π•œ) r₁ β€’ p.ball 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) := by
  rcases eq_or_ne rβ‚‚ 0 with rfl | hrβ‚‚
  Β· simp
  Β· exact (smul_subset_smul_left (ball_subset_closedBall _ _ _)).trans
      (ball_smul_closedBall _ _ hrβ‚‚)
Inclusion of Scaled Open Balls under Seminorm: $B_{\mathbb{K}}(0, r_1) \cdot B_p(0, r_2) \subseteq B_p(0, r_1 \cdot r_2)$
Informal description
Let $p$ be a seminorm on a module $E$ over a normed ring $\mathbb{K}$. For any real numbers $r_1$ and $r_2$, the Minkowski sum of the open ball of radius $r_1$ centered at $0$ in $\mathbb{K}$ and the open ball of radius $r_2$ centered at $0$ in $E$ (with respect to $p$) is contained in the open ball of radius $r_1 \cdot r_2$ centered at $0$ in $E$ (with respect to $p$). In other words, \[ B_{\mathbb{K}}(0, r_1) \cdot B_p(0, r_2) \subseteq B_p(0, r_1 \cdot r_2), \] where $B_{\mathbb{K}}(0, r_1)$ denotes the open ball in $\mathbb{K}$ and $B_p(0, r_2)$ denotes the open ball in $E$ with respect to $p$.
Seminorm.closedBall_smul_closedBall theorem
(p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) : Metric.closedBall (0 : π•œ) r₁ β€’ p.closedBall 0 rβ‚‚ βŠ† p.closedBall 0 (r₁ * rβ‚‚)
Full source
theorem closedBall_smul_closedBall (p : Seminorm π•œ E) (r₁ rβ‚‚ : ℝ) :
    Metric.closedBallMetric.closedBall (0 : π•œ) r₁ β€’ p.closedBall 0 rβ‚‚ βŠ† p.closedBall 0 (r₁ * rβ‚‚) := by
  simp only [smul_subset_iff, mem_closedBall_zero, mem_closedBall_zero_iff, map_smul_eq_mul]
  intro a ha b hb
  gcongr
  exact (norm_nonneg _).trans ha
Inclusion of Scaled Closed Balls under Seminorm
Informal description
Let $p$ be a seminorm on a module $E$ over a normed ring $\mathbb{K}$. For any non-negative real numbers $r_1$ and $r_2$, the Minkowski sum of the closed ball of radius $r_1$ centered at $0$ in $\mathbb{K}$ and the closed ball of radius $r_2$ centered at $0$ in $E$ (with respect to $p$) is contained in the closed ball of radius $r_1 \cdot r_2$ centered at $0$ in $E$ (with respect to $p$). In other words, \[ \overline{B}_{\mathbb{K}}(0, r_1) \cdot \overline{B}_p(0, r_2) \subseteq \overline{B}_p(0, r_1 \cdot r_2), \] where $\overline{B}_{\mathbb{K}}(0, r_1)$ denotes the closed ball in $\mathbb{K}$ and $\overline{B}_p(0, r)$ denotes the closed ball in $E$ with respect to $p$.
Seminorm.neg_mem_ball_zero theorem
{r : ℝ} {x : E} : -x ∈ ball p 0 r ↔ x ∈ ball p 0 r
Full source
theorem neg_mem_ball_zero {r : ℝ} {x : E} : -x ∈ ball p 0 r-x ∈ ball p 0 r ↔ x ∈ ball p 0 r := by
  simp only [mem_ball_zero, map_neg_eq_map]
Negation Invariance of Seminorm Balls Centered at Zero
Informal description
For any seminorm $p$ on a module $E$ over a normed ring $\mathbb{K}$, any real number $r > 0$, and any element $x \in E$, the negation $-x$ belongs to the open ball of radius $r$ centered at $0$ with respect to $p$ if and only if $x$ belongs to the same ball. In other words, $$ -x \in \{ y \in E \mid p(y) < r \} \leftrightarrow x \in \{ y \in E \mid p(y) < r \}. $$
Seminorm.neg_mem_closedBall_zero theorem
{r : ℝ} {x : E} : -x ∈ closedBall p 0 r ↔ x ∈ closedBall p 0 r
Full source
theorem neg_mem_closedBall_zero {r : ℝ} {x : E} : -x ∈ closedBall p 0 r-x ∈ closedBall p 0 r ↔ x ∈ closedBall p 0 r := by
  simp only [mem_closedBall_zero, map_neg_eq_map]
Negation Invariance of Closed Balls Centered at Zero with Respect to a Seminorm
Informal description
For any seminorm $p$ on a module $E$ over a normed ring $\mathbb{K}$, a real number $r$, and an element $x \in E$, the negation $-x$ belongs to the closed ball of radius $r$ centered at $0$ with respect to $p$ if and only if $x$ belongs to the same closed ball. In other words, $-x \in \{ y \in E \mid p(y) \leq r \}$ if and only if $x \in \{ y \in E \mid p(y) \leq r \}$.
Seminorm.neg_ball theorem
(p : Seminorm π•œ E) (r : ℝ) (x : E) : -ball p x r = ball p (-x) r
Full source
@[simp]
theorem neg_ball (p : Seminorm π•œ E) (r : ℝ) (x : E) : -ball p x r = ball p (-x) r := by
  ext
  rw [Set.mem_neg, mem_ball, mem_ball, ← neg_add', sub_neg_eq_add, map_neg_eq_map]
Negation of Open Balls under Seminorms: $-B_p(x,r) = B_p(-x,r)$
Informal description
For any seminorm $p$ on a module $E$ over a normed ring $\mathbb{K}$, any real number $r$, and any element $x \in E$, the negation of the open ball centered at $x$ with radius $r$ is equal to the open ball centered at $-x$ with the same radius $r$. That is, $$ -\{ y \in E \mid p(y - x) < r \} = \{ y \in E \mid p(y + x) < r \}. $$
Seminorm.neg_closedBall theorem
(p : Seminorm π•œ E) (r : ℝ) (x : E) : -closedBall p x r = closedBall p (-x) r
Full source
@[simp]
theorem neg_closedBall (p : Seminorm π•œ E) (r : ℝ) (x : E) :
    -closedBall p x r = closedBall p (-x) r := by
  ext
  rw [Set.mem_neg, mem_closedBall, mem_closedBall, ← neg_add', sub_neg_eq_add, map_neg_eq_map]
Negation of Closed Balls in Seminormed Spaces: $-\overline{B}_p(x, r) = \overline{B}_p(-x, r)$
Informal description
For any seminorm $p$ on a module $E$ over a normed ring $\mathbb{K}$, any real number $r$, and any element $x \in E$, the negation of the closed ball centered at $x$ with radius $r$ is equal to the closed ball centered at $-x$ with radius $r$. In other words, $$ -\overline{B}_p(x, r) = \overline{B}_p(-x, r), $$ where $\overline{B}_p(x, r) = \{ y \in E \mid p(y - x) \leq r \}$.
Seminorm.closedBall_iSup theorem
{ΞΉ : Sort*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) (e : E) {r : ℝ} (hr : 0 < r) : closedBall (⨆ i, p i) e r = β‹‚ i, closedBall (p i) e r
Full source
theorem closedBall_iSup {ΞΉ : Sort*} {p : ΞΉ β†’ Seminorm π•œ E} (hp : BddAbove (range p)) (e : E)
    {r : ℝ} (hr : 0 < r) : closedBall (⨆ i, p i) e r = β‹‚ i, closedBall (p i) e r := by
  cases isEmpty_or_nonempty ΞΉ
  Β· rw [iSup_of_empty', iInter_of_empty, Seminorm.sSup_empty]
    exact closedBall_bot _ hr
  Β· ext x
    have := Seminorm.bddAbove_range_iff.mp hp (x - e)
    simp only [mem_closedBall, mem_iInter, Seminorm.iSup_apply hp, ciSup_le_iff this]
Closed Ball of Supremum Seminorm as Intersection of Closed Balls
Informal description
Let $\mathbb{K}$ be a seminormed ring and $E$ a module over $\mathbb{K}$. Given a bounded above family of seminorms $\{p_i\}_{i \in \iota}$ on $E$, a point $e \in E$, and a positive radius $r > 0$, the closed ball of radius $r$ centered at $e$ with respect to the supremum seminorm $\bigvee_i p_i$ is equal to the intersection of the closed balls of radius $r$ centered at $e$ with respect to each seminorm $p_i$. That is, \[ \overline{B}_{\bigvee_i p_i}(e, r) = \bigcap_{i} \overline{B}_{p_i}(e, r), \] where $\overline{B}_p(x, r) = \{ y \in E \mid p(y - x) \leq r \}$ denotes the closed ball with respect to seminorm $p$.
Seminorm.ball_norm_mul_subset theorem
{p : Seminorm π•œ E} {k : π•œ} {r : ℝ} : p.ball 0 (β€–kβ€– * r) βŠ† k β€’ p.ball 0 r
Full source
theorem ball_norm_mul_subset {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} :
    p.ball 0 (β€–kβ€– * r) βŠ† k β€’ p.ball 0 r := by
  rcases eq_or_ne k 0 with (rfl | hk)
  Β· rw [norm_zero, zero_mul, ball_eq_emptyset _ le_rfl]
    exact empty_subset _
  Β· intro x
    rw [Set.mem_smul_set, Seminorm.mem_ball_zero]
    refine fun hx => ⟨k⁻¹ β€’ x, ?_, ?_⟩
    Β· rwa [Seminorm.mem_ball_zero, map_smul_eq_mul, norm_inv, ←
        mul_lt_mul_left <| norm_pos_iff.mpr hk, ← mul_assoc, ← div_eq_mul_inv β€–kβ€– β€–kβ€–,
        div_self (ne_of_gt <| norm_pos_iff.mpr hk), one_mul]
    rw [← smul_assoc, smul_eq_mul, ← div_eq_mul_inv, div_self hk, one_smul]
Inclusion of Scaled Open Balls in Seminormed Spaces: $B_p(0, \|k\| \cdot r) \subseteq k \cdot B_p(0, r)$
Informal description
For any seminorm $p$ on a module $E$ over a normed ring $\mathbb{K}$, any scalar $k \in \mathbb{K}$, and any radius $r \in \mathbb{R}$, the open ball centered at $0$ with radius $\|k\| \cdot r$ is contained in the scaled set $k \cdot B_p(0, r)$, where $B_p(0, r) = \{ y \in E \mid p(y) < r \}$.
Seminorm.smul_ball_zero theorem
{p : Seminorm π•œ E} {k : π•œ} {r : ℝ} (hk : k β‰  0) : k β€’ p.ball 0 r = p.ball 0 (β€–kβ€– * r)
Full source
theorem smul_ball_zero {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} (hk : k β‰  0) :
    k β€’ p.ball 0 r = p.ball 0 (β€–kβ€– * r) := by
  ext
  rw [mem_smul_set_iff_inv_smul_memβ‚€ hk, p.mem_ball_zero, p.mem_ball_zero, map_smul_eq_mul,
    norm_inv, ← div_eq_inv_mul, div_lt_iffβ‚€ (norm_pos_iff.2 hk), mul_comm]
Scaled Open Ball Equality in Seminormed Modules: $k \cdot B_p(0, r) = B_p(0, \|k\| \cdot r)$ for $k \neq 0$
Informal description
Let $E$ be a module over a normed ring $\mathbb{K}$ and $p$ be a seminorm on $E$. For any nonzero scalar $k \in \mathbb{K}$ and any radius $r \in \mathbb{R}$, the scaled open ball $k \cdot B_p(0, r)$ equals the open ball $B_p(0, \|k\| \cdot r)$, where $B_p(0, r) = \{ y \in E \mid p(y) < r \}$ denotes the open ball centered at $0$ with radius $r$ with respect to the seminorm $p$.
Seminorm.smul_closedBall_subset theorem
{p : Seminorm π•œ E} {k : π•œ} {r : ℝ} : k β€’ p.closedBall 0 r βŠ† p.closedBall 0 (β€–kβ€– * r)
Full source
theorem smul_closedBall_subset {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} :
    k β€’ p.closedBall 0 r βŠ† p.closedBall 0 (β€–kβ€– * r) := by
  rintro x ⟨y, hy, h⟩
  rw [Seminorm.mem_closedBall_zero, ← h, map_smul_eq_mul]
  rw [Seminorm.mem_closedBall_zero] at hy
  gcongr
Inclusion of Scaled Closed Balls in Seminormed Modules: $k \cdot \overline{B}_p(0, r) \subseteq \overline{B}_p(0, \|k\| \cdot r)$
Informal description
Let $E$ be a module over a normed ring $\mathbb{K}$ and $p$ be a seminorm on $E$. For any $k \in \mathbb{K}$ and $r \in \mathbb{R}$, the scaled closed ball $k \cdot \overline{B}_p(0, r)$ is contained in the closed ball $\overline{B}_p(0, \|k\| \cdot r)$, where $\overline{B}_p(x, r) = \{y \in E \mid p(y - x) \leq r\}$ denotes the closed ball centered at $x$ with radius $r$ with respect to the seminorm $p$.
Seminorm.smul_closedBall_zero theorem
{p : Seminorm π•œ E} {k : π•œ} {r : ℝ} (hk : 0 < β€–kβ€–) : k β€’ p.closedBall 0 r = p.closedBall 0 (β€–kβ€– * r)
Full source
theorem smul_closedBall_zero {p : Seminorm π•œ E} {k : π•œ} {r : ℝ} (hk : 0 < β€–kβ€–) :
    k β€’ p.closedBall 0 r = p.closedBall 0 (β€–kβ€– * r) := by
  refine subset_antisymm smul_closedBall_subset ?_
  intro x
  rw [Set.mem_smul_set, Seminorm.mem_closedBall_zero]
  refine fun hx => ⟨k⁻¹ β€’ x, ?_, ?_⟩
  Β· rwa [Seminorm.mem_closedBall_zero, map_smul_eq_mul, norm_inv, ← mul_le_mul_left hk, ← mul_assoc,
      ← div_eq_mul_inv β€–kβ€– β€–kβ€–, div_self (ne_of_gt hk), one_mul]
  rw [← smul_assoc, smul_eq_mul, ← div_eq_mul_inv, div_self (norm_pos_iff.mp hk), one_smul]
Equality of Scaled Closed Balls in Seminormed Modules: $k \cdot \overline{B}_p(0, r) = \overline{B}_p(0, \|k\| \cdot r)$ for $\|k\| > 0$
Informal description
Let $E$ be a module over a normed ring $\mathbb{K}$ and $p$ be a seminorm on $E$. For any $k \in \mathbb{K}$ with $\|k\| > 0$ and any $r \in \mathbb{R}$, the scaled closed ball $k \cdot \overline{B}_p(0, r)$ equals the closed ball $\overline{B}_p(0, \|k\| \cdot r)$, where $\overline{B}_p(x, r) = \{y \in E \mid p(y - x) \leq r\}$ denotes the closed ball centered at $x$ with radius $r$ with respect to the seminorm $p$.
Seminorm.ball_zero_absorbs_ball_zero theorem
(p : Seminorm π•œ E) {r₁ rβ‚‚ : ℝ} (hr₁ : 0 < r₁) : Absorbs π•œ (p.ball 0 r₁) (p.ball 0 rβ‚‚)
Full source
theorem ball_zero_absorbs_ball_zero (p : Seminorm π•œ E) {r₁ rβ‚‚ : ℝ} (hr₁ : 0 < r₁) :
    Absorbs π•œ (p.ball 0 r₁) (p.ball 0 rβ‚‚) := by
  rcases exists_pos_lt_mul hr₁ rβ‚‚ with ⟨r, hrβ‚€, hr⟩
  refine .of_norm ⟨r, fun a ha x hx => ?_⟩
  rw [smul_ball_zero (norm_pos_iff.1 <| hrβ‚€.trans_le ha), p.mem_ball_zero]
  rw [p.mem_ball_zero] at hx
  exact hx.trans (hr.trans_le <| by gcongr)
Absorption of Open Balls at Zero by a Seminorm: $B_p(0, r_1)$ absorbs $B_p(0, r_2)$ for $r_1 > 0$
Informal description
Let $E$ be a module over a normed ring $\mathbb{K}$ and $p$ be a seminorm on $E$. For any positive real numbers $r_1 > 0$ and $r_2$, the open ball $B_p(0, r_1)$ centered at $0$ with radius $r_1$ absorbs the open ball $B_p(0, r_2)$ with respect to the seminorm $p$, where $B_p(0, r) = \{ y \in E \mid p(y) < r \}$.
Seminorm.absorbent_ball_zero theorem
(hr : 0 < r) : Absorbent π•œ (ball p (0 : E) r)
Full source
/-- Seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_ball_zero (hr : 0 < r) : Absorbent π•œ (ball p (0 : E) r) :=
  absorbent_iff_forall_absorbs_singleton.2 fun _ =>
    (p.ball_zero_absorbs_ball_zero hr).mono_right <|
      singleton_subset_iff.2 <| p.mem_ball_zero.2 <| lt_add_one _
Absorbency of Open Balls at Zero in Seminormed Modules
Informal description
For any seminorm $p$ on a module $E$ over a normed ring $\mathbb{K}$ and any positive real number $r > 0$, the open ball $B_p(0, r) = \{ y \in E \mid p(y) < r \}$ centered at $0$ is absorbent in $E$.
Seminorm.absorbent_closedBall_zero theorem
(hr : 0 < r) : Absorbent π•œ (closedBall p (0 : E) r)
Full source
/-- Closed seminorm-balls at the origin are absorbent. -/
protected theorem absorbent_closedBall_zero (hr : 0 < r) : Absorbent π•œ (closedBall p (0 : E) r) :=
  (p.absorbent_ball_zero hr).mono (p.ball_subset_closedBall _ _)
Absorbency of Closed Balls at Zero in Seminormed Modules
Informal description
For any seminorm $p$ on a module $E$ over a normed ring $\mathbb{K}$ and any positive real number $r > 0$, the closed ball $\{ y \in E \mid p(y) \leq r \}$ centered at $0$ is absorbent in $E$.
Seminorm.absorbent_ball theorem
(hpr : p x < r) : Absorbent π•œ (ball p x r)
Full source
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_ball (hpr : p x < r) : Absorbent π•œ (ball p x r) := by
  refine (p.absorbent_ball_zero <| sub_pos.2 hpr).mono fun y hy => ?_
  rw [p.mem_ball_zero] at hy
  exact p.mem_ball.2 ((map_sub_le_add p _ _).trans_lt <| add_lt_of_lt_sub_right hy)
Absorbency of Open Balls in Seminormed Modules
Informal description
For any seminorm $p$ on a module $E$ over a normed ring $\mathbb{K}$, any point $x \in E$ with $p(x) < r$, and any positive real number $r > 0$, the open ball $B_p(x, r) = \{ y \in E \mid p(y - x) < r \}$ is absorbent in $E$.
Seminorm.absorbent_closedBall theorem
(hpr : p x < r) : Absorbent π•œ (closedBall p x r)
Full source
/-- Seminorm-balls containing the origin are absorbent. -/
protected theorem absorbent_closedBall (hpr : p x < r) : Absorbent π•œ (closedBall p x r) := by
  refine (p.absorbent_closedBall_zero <| sub_pos.2 hpr).mono fun y hy => ?_
  rw [p.mem_closedBall_zero] at hy
  exact p.mem_closedBall.2 ((map_sub_le_add p _ _).trans <| add_le_of_le_sub_right hy)
Absorbency of Closed Balls in Seminormed Modules
Informal description
For any seminorm $p$ on a module $E$ over a normed ring $\mathbb{K}$, any point $x \in E$ with $p(x) < r$, and any positive real number $r > 0$, the closed ball $\{ y \in E \mid p(y - x) \leq r \}$ is absorbent in $E$.
Seminorm.smul_ball_preimage theorem
(p : Seminorm π•œ E) (y : E) (r : ℝ) (a : π•œ) (ha : a β‰  0) : (a β€’ Β·) ⁻¹' p.ball y r = p.ball (a⁻¹ β€’ y) (r / β€–aβ€–)
Full source
@[simp]
theorem smul_ball_preimage (p : Seminorm π•œ E) (y : E) (r : ℝ) (a : π•œ) (ha : a β‰  0) :
    (a β€’ Β·) ⁻¹' p.ball y r = p.ball (a⁻¹ β€’ y) (r / β€–aβ€–) :=
  Set.ext fun _ => by
    rw [mem_preimage, mem_ball, mem_ball, lt_div_iffβ‚€ (norm_pos_iff.mpr ha), mul_comm, ←
      map_smul_eq_mul p, smul_sub, smul_inv_smulβ‚€ ha]
Preimage of Seminorm Ball under Scalar Multiplication: $(a \cdot)^{-1} B_p(y,r) = B_p(a^{-1} \cdot y, r/\|a\|)$
Informal description
Let $p$ be a seminorm on a module $E$ over a normed ring $\mathbb{K}$. For any $y \in E$, $r \in \mathbb{R}$, and $a \in \mathbb{K}$ with $a \neq 0$, the preimage of the open ball $B_p(y, r)$ under the scalar multiplication map $x \mapsto a \cdot x$ is equal to the open ball $B_p(a^{-1} \cdot y, r/\|a\|)$. In other words: \[ \{x \in E \mid p(a \cdot x - y) < r\} = \{x \in E \mid p(x - a^{-1} \cdot y) < r/\|a\|\}. \]
Seminorm.smul_closedBall_preimage theorem
(p : Seminorm π•œ E) (y : E) (r : ℝ) (a : π•œ) (ha : a β‰  0) : (a β€’ Β·) ⁻¹' p.closedBall y r = p.closedBall (a⁻¹ β€’ y) (r / β€–aβ€–)
Full source
@[simp]
theorem smul_closedBall_preimage (p : Seminorm π•œ E) (y : E) (r : ℝ) (a : π•œ) (ha : a β‰  0) :
    (a β€’ Β·) ⁻¹' p.closedBall y r = p.closedBall (a⁻¹ β€’ y) (r / β€–aβ€–) :=
  Set.ext fun _ => by
    rw [mem_preimage, mem_closedBall, mem_closedBall, le_div_iffβ‚€ (norm_pos_iff.mpr ha), mul_comm, ←
      map_smul_eq_mul p, smul_sub, smul_inv_smulβ‚€ ha]
Preimage of Closed Ball under Scalar Multiplication: $(a \cdot)^{-1} \overline{B}_p(y,r) = \overline{B}_p(a^{-1} \cdot y, r/\|a\|)$
Informal description
Let $p$ be a seminorm on a module $E$ over a normed ring $\mathbb{K}$. For any $y \in E$, $r \in \mathbb{R}$, and $a \in \mathbb{K}$ with $a \neq 0$, the preimage of the closed ball $\{z \in E \mid p(z - y) \leq r\}$ under the scalar multiplication map $x \mapsto a \cdot x$ is equal to the closed ball centered at $a^{-1} \cdot y$ with radius $r / \|a\|$, i.e., \[ \{x \in E \mid p(a \cdot x - y) \leq r\} = \{x \in E \mid p(x - a^{-1} \cdot y) \leq r / \|a\|\}. \]
Seminorm.convexOn theorem
: ConvexOn ℝ univ p
Full source
/-- A seminorm is convex. Also see `convexOn_norm`. -/
protected theorem convexOn : ConvexOn ℝ univ p := by
  refine ⟨convex_univ, fun x _ y _ a b ha hb _ => ?_⟩
  calc
    p (a β€’ x + b β€’ y) ≀ p (a β€’ x) + p (b β€’ y) := map_add_le_add p _ _
    _ = β€–a β€’ (1 : π•œ)β€– * p x + β€–b β€’ (1 : π•œ)β€– * p y := by
      rw [← map_smul_eq_mul p, ← map_smul_eq_mul p, smul_one_smul, smul_one_smul]
    _ = a * p x + b * p y := by
      rw [norm_smul, norm_smul, norm_one, mul_one, mul_one, Real.norm_of_nonneg ha,
        Real.norm_of_nonneg hb]
Convexity of Seminorms
Informal description
For any seminorm $p$ on a module $E$ over a normed ring $\mathbb{K}$, the function $p$ is convex on the entire space $E$, i.e., for all $x, y \in E$ and $t \in [0,1]$, we have \[ p(tx + (1-t)y) \leq t p(x) + (1-t) p(y). \]
Seminorm.convex_ball theorem
: Convex ℝ (ball p x r)
Full source
/-- Seminorm-balls are convex. -/
theorem convex_ball : Convex ℝ (ball p x r) := by
  convert (p.convexOn.translate_left (-x)).convex_lt r
  ext y
  rw [preimage_univ, sep_univ, p.mem_ball, sub_eq_add_neg]
  rfl
Convexity of Seminorm Balls
Informal description
For any seminorm $p$ on a module $E$ over a normed ring $\mathbb{K}$, the open ball $\{y \in E \mid p(y - x) < r\}$ is a convex set in $E$ for any center $x \in E$ and radius $r \in \mathbb{R}$.
Seminorm.convex_closedBall theorem
: Convex ℝ (closedBall p x r)
Full source
/-- Closed seminorm-balls are convex. -/
theorem convex_closedBall : Convex ℝ (closedBall p x r) := by
  rw [closedBall_eq_biInter_ball]
  exact convex_iInterβ‚‚ fun _ _ => convex_ball _ _ _
Convexity of Closed Seminorm Balls
Informal description
For any seminorm $p$ on a module $E$ over a normed ring $\mathbb{K}$, the closed ball $\{y \in E \mid p(y - x) \leq r\}$ is a convex set in $E$ for any center $x \in E$ and radius $r \in \mathbb{R}$.
Seminorm.restrictScalars definition
(p : Seminorm π•œ' E) : Seminorm π•œ E
Full source
/-- Reinterpret a seminorm over a field `π•œ'` as a seminorm over a smaller field `π•œ`. This will
typically be used with `RCLike π•œ'` and `π•œ = ℝ`. -/
protected def restrictScalars (p : Seminorm π•œ' E) : Seminorm π•œ E :=
  { p with
    smul' := fun a x => by rw [← smul_one_smul π•œ' a x, p.smul', norm_smul, norm_one, mul_one] }
Restriction of scalars for seminorms
Informal description
Given a seminorm $p$ on a module $E$ over a field $\mathbb{K}'$, the function `restrictScalars` reinterprets $p$ as a seminorm over a smaller field $\mathbb{K} \subseteq \mathbb{K}'$. Specifically, for any $a \in \mathbb{K}$ and $x \in E$, the seminorm satisfies $p(a \cdot x) = \|a\| \cdot p(x)$, where $\| \cdot \|$ is the norm on $\mathbb{K}$.
Seminorm.coe_restrictScalars theorem
(p : Seminorm π•œ' E) : (p.restrictScalars π•œ : E β†’ ℝ) = p
Full source
@[simp]
theorem coe_restrictScalars (p : Seminorm π•œ' E) : (p.restrictScalars π•œ : E β†’ ℝ) = p :=
  rfl
Restriction of Scalars Preserves Seminorm Functionality
Informal description
For any seminorm $p$ on a module $E$ over a normed ring $\mathbb{K}'$, the function obtained by restricting the scalars of $p$ to a subring $\mathbb{K}$ is equal to $p$ itself when viewed as a function from $E$ to $\mathbb{R}$.
Seminorm.restrictScalars_ball theorem
(p : Seminorm π•œ' E) : (p.restrictScalars π•œ).ball = p.ball
Full source
@[simp]
theorem restrictScalars_ball (p : Seminorm π•œ' E) : (p.restrictScalars π•œ).ball = p.ball :=
  rfl
Open Balls are Preserved Under Restriction of Scalars for Seminorms
Informal description
For any seminorm $p$ on a module $E$ over a normed ring $\mathbb{K}'$, the open balls defined by the seminorm $p$ and its restriction of scalars to $\mathbb{K}$ are identical. That is, for any $x \in E$ and $r > 0$, the set $\{y \in E \mid p(y - x) < r\}$ is equal to $\{y \in E \mid (p.\text{restrictScalars}\ \mathbb{K})(y - x) < r\}$.
Seminorm.restrictScalars_closedBall theorem
(p : Seminorm π•œ' E) : (p.restrictScalars π•œ).closedBall = p.closedBall
Full source
@[simp]
theorem restrictScalars_closedBall (p : Seminorm π•œ' E) :
    (p.restrictScalars π•œ).closedBall = p.closedBall :=
  rfl
Closed Balls are Preserved Under Restriction of Scalars for Seminorms
Informal description
For any seminorm $p$ on a module $E$ over a normed ring $\mathbb{K}'$, the closed balls defined by the seminorm $p$ and its restriction of scalars to $\mathbb{K}$ are identical. That is, for any $x \in E$ and $r \geq 0$, the set $\{y \in E \mid p(y - x) \leq r\}$ is equal to $\{y \in E \mid (p.\text{restrictScalars}\ \mathbb{K})(y - x) \leq r\}$.
Seminorm.continuousAt_zero_of_forall' theorem
[TopologicalSpace E] {p : Seminorm 𝕝 E} (hp : βˆ€ r > 0, p.closedBall 0 r ∈ (𝓝 0 : Filter E)) : ContinuousAt p 0
Full source
/-- A seminorm is continuous at `0` if `p.closedBall 0 r ∈ 𝓝 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall' [TopologicalSpace E] {p : Seminorm 𝕝 E}
    (hp : βˆ€ r > 0, p.closedBall 0 r ∈ (𝓝 0 : Filter E)) :
    ContinuousAt p 0 := by
  simp_rw [Seminorm.closedBall_zero_eq_preimage_closedBall] at hp
  rwa [ContinuousAt, Metric.nhds_basis_closedBall.tendsto_right_iff, map_zero]
Continuity of Seminorm at Zero via Closed Balls
Informal description
Let $E$ be a topological space and $p$ be a seminorm on $E$. If for every $r > 0$, the closed ball $\{x \in E \mid p(x) \leq r\}$ centered at $0$ is a neighborhood of $0$ in $E$, then $p$ is continuous at $0$.
Seminorm.continuousAt_zero' theorem
[TopologicalSpace E] [ContinuousConstSMul π•œ E] {p : Seminorm π•œ E} {r : ℝ} (hp : p.closedBall 0 r ∈ (𝓝 0 : Filter E)) : ContinuousAt p 0
Full source
theorem continuousAt_zero' [TopologicalSpace E] [ContinuousConstSMul π•œ E] {p : Seminorm π•œ E}
    {r : ℝ} (hp : p.closedBall 0 r ∈ (𝓝 0 : Filter E)) : ContinuousAt p 0 := by
  refine continuousAt_zero_of_forall' fun Ξ΅ hΞ΅ ↦ ?_
  obtain ⟨k, hkβ‚€, hk⟩ : βˆƒ k : π•œ, 0 < β€–kβ€– ∧ β€–kβ€– * r < Ξ΅ := by
    rcases le_or_lt r 0 with hr | hr
    Β· use 1; simpa using hr.trans_lt hΞ΅
    Β· simpa [lt_div_iffβ‚€ hr] using exists_norm_lt π•œ (div_pos hΞ΅ hr)
  rw [← set_smul_mem_nhds_zero_iff (norm_pos_iff.1 hkβ‚€), smul_closedBall_zero hkβ‚€] at hp
  exact mem_of_superset hp <| p.closedBall_mono hk.le
Continuity of Seminorm at Zero via Closed Ball Neighborhood
Informal description
Let $E$ be a topological space with a continuous scalar multiplication action by a normed ring $\mathbb{K}$, and let $p$ be a seminorm on $E$. If there exists a real number $r > 0$ such that the closed ball $\{x \in E \mid p(x) \leq r\}$ centered at $0$ is a neighborhood of $0$ in $E$, then $p$ is continuous at $0$.
Seminorm.continuousAt_zero_of_forall theorem
[TopologicalSpace E] {p : Seminorm 𝕝 E} (hp : βˆ€ r > 0, p.ball 0 r ∈ (𝓝 0 : Filter E)) : ContinuousAt p 0
Full source
/-- A seminorm is continuous at `0` if `p.ball 0 r ∈ 𝓝 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuousAt_zero'`. -/
theorem continuousAt_zero_of_forall [TopologicalSpace E] {p : Seminorm 𝕝 E}
    (hp : βˆ€ r > 0, p.ball 0 r ∈ (𝓝 0 : Filter E)) :
    ContinuousAt p 0 :=
  continuousAt_zero_of_forall'
    (fun r hr ↦ Filter.mem_of_superset (hp r hr) <| p.ball_subset_closedBall _ _)
Continuity of Seminorm at Zero via Open Balls
Informal description
Let $E$ be a topological space and $p$ be a seminorm on $E$. If for every $r > 0$, the open ball $\{x \in E \mid p(x) < r\}$ centered at $0$ is a neighborhood of $0$ in $E$, then $p$ is continuous at $0$.
Seminorm.continuousAt_zero theorem
[TopologicalSpace E] [ContinuousConstSMul π•œ E] {p : Seminorm π•œ E} {r : ℝ} (hp : p.ball 0 r ∈ (𝓝 0 : Filter E)) : ContinuousAt p 0
Full source
theorem continuousAt_zero [TopologicalSpace E] [ContinuousConstSMul π•œ E] {p : Seminorm π•œ E} {r : ℝ}
    (hp : p.ball 0 r ∈ (𝓝 0 : Filter E)) : ContinuousAt p 0 :=
  continuousAt_zero' (Filter.mem_of_superset hp <| p.ball_subset_closedBall _ _)
Continuity of Seminorm at Zero via Open Ball Neighborhood
Informal description
Let $E$ be a topological space with a continuous scalar multiplication action by a normed ring $\mathbb{K}$, and let $p$ be a seminorm on $E$. If there exists a real number $r > 0$ such that the open ball $\{x \in E \mid p(x) < r\}$ centered at $0$ is a neighborhood of $0$ in $E$, then $p$ is continuous at $0$.
Seminorm.uniformContinuous_of_continuousAt_zero theorem
[UniformSpace E] [IsUniformAddGroup E] {p : Seminorm 𝕝 E} (hp : ContinuousAt p 0) : UniformContinuous p
Full source
protected theorem uniformContinuous_of_continuousAt_zero [UniformSpace E] [IsUniformAddGroup E]
    {p : Seminorm 𝕝 E} (hp : ContinuousAt p 0) : UniformContinuous p := by
  have hp : Filter.Tendsto p (𝓝 0) (𝓝 0) := map_zero p β–Έ hp
  rw [UniformContinuous, uniformity_eq_comap_nhds_zero_swapped,
    Metric.uniformity_eq_comap_nhds_zero, Filter.tendsto_comap_iff]
  exact
    tendsto_of_tendsto_of_tendsto_of_le_of_le tendsto_const_nhds (hp.comp Filter.tendsto_comap)
      (fun xy => dist_nonneg) fun xy => p.norm_sub_map_le_sub _ _
Uniform Continuity of Seminorms from Continuity at Zero
Informal description
Let $E$ be a uniform space equipped with a uniform additive group structure, and let $p$ be a seminorm on $E$ over a normed ring $\mathbb{K}$. If $p$ is continuous at $0$, then $p$ is uniformly continuous on $E$.
Seminorm.continuous_of_continuousAt_zero theorem
[TopologicalSpace E] [IsTopologicalAddGroup E] {p : Seminorm 𝕝 E} (hp : ContinuousAt p 0) : Continuous p
Full source
protected theorem continuous_of_continuousAt_zero [TopologicalSpace E] [IsTopologicalAddGroup E]
    {p : Seminorm 𝕝 E} (hp : ContinuousAt p 0) : Continuous p := by
  letI := IsTopologicalAddGroup.toUniformSpace E
  haveI : IsUniformAddGroup E := isUniformAddGroup_of_addCommGroup
  exact (Seminorm.uniformContinuous_of_continuousAt_zero hp).continuous
Continuity of Seminorms from Continuity at Zero
Informal description
Let $E$ be a topological space equipped with a topological additive group structure, and let $p$ be a seminorm on $E$ over a normed ring $\mathbb{K}$. If $p$ is continuous at $0$, then $p$ is continuous on $E$.
Seminorm.uniformContinuous_of_forall theorem
[UniformSpace E] [IsUniformAddGroup E] {p : Seminorm 𝕝 E} (hp : βˆ€ r > 0, p.ball 0 r ∈ (𝓝 0 : Filter E)) : UniformContinuous p
Full source
/-- A seminorm is uniformly continuous if `p.ball 0 r ∈ 𝓝 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous`. -/
protected theorem uniformContinuous_of_forall [UniformSpace E] [IsUniformAddGroup E]
    {p : Seminorm 𝕝 E} (hp : βˆ€ r > 0, p.ball 0 r ∈ (𝓝 0 : Filter E)) :
    UniformContinuous p :=
  Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
Uniform Continuity of Seminorms via Open Balls at Zero
Informal description
Let $E$ be a uniform space with a uniform additive group structure and let $p$ be a seminorm on $E$. If for every $r > 0$, the open ball $\{x \in E \mid p(x) < r\}$ centered at $0$ is a neighborhood of $0$ in $E$, then $p$ is uniformly continuous on $E$.
Seminorm.uniformContinuous theorem
[UniformSpace E] [IsUniformAddGroup E] [ContinuousConstSMul π•œ E] {p : Seminorm π•œ E} {r : ℝ} (hp : p.ball 0 r ∈ (𝓝 0 : Filter E)) : UniformContinuous p
Full source
protected theorem uniformContinuous [UniformSpace E] [IsUniformAddGroup E]
    [ContinuousConstSMul π•œ E] {p : Seminorm π•œ E} {r : ℝ} (hp : p.ball 0 r ∈ (𝓝 0 : Filter E)) :
    UniformContinuous p :=
  Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero hp)
Uniform Continuity of Seminorms via Open Ball at Zero
Informal description
Let $E$ be a uniform space with a uniform additive group structure and continuous scalar multiplication by a normed ring $\mathbb{K}$. For a seminorm $p$ on $E$, if there exists a real number $r > 0$ such that the open ball $\{x \in E \mid p(x) < r\}$ centered at $0$ is a neighborhood of $0$ in $E$, then $p$ is uniformly continuous on $E$.
Seminorm.uniformContinuous_of_forall' theorem
[UniformSpace E] [IsUniformAddGroup E] {p : Seminorm 𝕝 E} (hp : βˆ€ r > 0, p.closedBall 0 r ∈ (𝓝 0 : Filter E)) : UniformContinuous p
Full source
/-- A seminorm is uniformly continuous if `p.closedBall 0 r ∈ 𝓝 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.uniformContinuous'`. -/
protected theorem uniformContinuous_of_forall' [UniformSpace E] [IsUniformAddGroup E]
    {p : Seminorm 𝕝 E} (hp : βˆ€ r > 0, p.closedBall 0 r ∈ (𝓝 0 : Filter E)) :
    UniformContinuous p :=
  Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
Uniform Continuity of Seminorms via Closed Balls at Zero
Informal description
Let $E$ be a uniform space with a uniform additive group structure and let $p$ be a seminorm on $E$. If for every $r > 0$, the closed ball $\{x \in E \mid p(x) \leq r\}$ centered at $0$ is a neighborhood of $0$ in $E$, then $p$ is uniformly continuous on $E$.
Seminorm.uniformContinuous' theorem
[UniformSpace E] [IsUniformAddGroup E] [ContinuousConstSMul π•œ E] {p : Seminorm π•œ E} {r : ℝ} (hp : p.closedBall 0 r ∈ (𝓝 0 : Filter E)) : UniformContinuous p
Full source
protected theorem uniformContinuous' [UniformSpace E] [IsUniformAddGroup E]
    [ContinuousConstSMul π•œ E] {p : Seminorm π•œ E} {r : ℝ}
    (hp : p.closedBall 0 r ∈ (𝓝 0 : Filter E)) : UniformContinuous p :=
  Seminorm.uniformContinuous_of_continuousAt_zero (continuousAt_zero' hp)
Uniform Continuity of Seminorms via Closed Ball at Zero
Informal description
Let $E$ be a uniform space with a uniform additive group structure and continuous scalar multiplication by a normed ring $\mathbb{K}$. For a seminorm $p$ on $E$, if there exists a real number $r > 0$ such that the closed ball $\{x \in E \mid p(x) \leq r\}$ centered at $0$ is a neighborhood of $0$ in $E$, then $p$ is uniformly continuous on $E$.
Seminorm.continuous_of_forall theorem
[TopologicalSpace E] [IsTopologicalAddGroup E] {p : Seminorm 𝕝 E} (hp : βˆ€ r > 0, p.ball 0 r ∈ (𝓝 0 : Filter E)) : Continuous p
Full source
/-- A seminorm is continuous if `p.ball 0 r ∈ 𝓝 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous`. -/
protected theorem continuous_of_forall [TopologicalSpace E] [IsTopologicalAddGroup E]
    {p : Seminorm 𝕝 E} (hp : βˆ€ r > 0, p.ball 0 r ∈ (𝓝 0 : Filter E)) :
    Continuous p :=
  Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall hp)
Continuity of Seminorm via Open Balls at Zero
Informal description
Let $E$ be a topological space with a topological additive group structure, and let $p$ be a seminorm on $E$. If for every $r > 0$, the open ball $\{x \in E \mid p(x) < r\}$ centered at $0$ is a neighborhood of $0$ in $E$, then $p$ is continuous on $E$.
Seminorm.continuous theorem
[TopologicalSpace E] [IsTopologicalAddGroup E] [ContinuousConstSMul π•œ E] {p : Seminorm π•œ E} {r : ℝ} (hp : p.ball 0 r ∈ (𝓝 0 : Filter E)) : Continuous p
Full source
protected theorem continuous [TopologicalSpace E] [IsTopologicalAddGroup E]
    [ContinuousConstSMul π•œ E] {p : Seminorm π•œ E} {r : ℝ} (hp : p.ball 0 r ∈ (𝓝 0 : Filter E)) :
    Continuous p :=
  Seminorm.continuous_of_continuousAt_zero (continuousAt_zero hp)
Continuity of Seminorm via Open Ball Neighborhood Condition
Informal description
Let $E$ be a topological space equipped with a topological additive group structure and continuous scalar multiplication by a normed ring $\mathbb{K}$. For a seminorm $p$ on $E$, if there exists $r > 0$ such that the open ball $\{x \in E \mid p(x) < r\}$ centered at $0$ is a neighborhood of $0$ in $E$, then $p$ is continuous on $E$.
Seminorm.continuous_of_forall' theorem
[TopologicalSpace E] [IsTopologicalAddGroup E] {p : Seminorm 𝕝 E} (hp : βˆ€ r > 0, p.closedBall 0 r ∈ (𝓝 0 : Filter E)) : Continuous p
Full source
/-- A seminorm is continuous if `p.closedBall 0 r ∈ 𝓝 0` for *all* `r > 0`.
Over a `NontriviallyNormedField` it is actually enough to check that this is true
for *some* `r`, see `Seminorm.continuous'`. -/
protected theorem continuous_of_forall' [TopologicalSpace E] [IsTopologicalAddGroup E]
    {p : Seminorm 𝕝 E} (hp : βˆ€ r > 0, p.closedBall 0 r ∈ (𝓝 0 : Filter E)) :
    Continuous p :=
  Seminorm.continuous_of_continuousAt_zero (continuousAt_zero_of_forall' hp)
Continuity of Seminorm via Closed Balls at Zero
Informal description
Let $E$ be a topological space equipped with a topological additive group structure, and let $p$ be a seminorm on $E$. If for every $r > 0$, the closed ball $\{x \in E \mid p(x) \leq r\}$ centered at $0$ is a neighborhood of $0$ in $E$, then $p$ is continuous on $E$.
Seminorm.continuous' theorem
[TopologicalSpace E] [IsTopologicalAddGroup E] [ContinuousConstSMul π•œ E] {p : Seminorm π•œ E} {r : ℝ} (hp : p.closedBall 0 r ∈ (𝓝 0 : Filter E)) : Continuous p
Full source
protected theorem continuous' [TopologicalSpace E] [IsTopologicalAddGroup E]
    [ContinuousConstSMul π•œ E] {p : Seminorm π•œ E} {r : ℝ}
    (hp : p.closedBall 0 r ∈ (𝓝 0 : Filter E)) : Continuous p :=
  Seminorm.continuous_of_continuousAt_zero (continuousAt_zero' hp)
Continuity of Seminorm via Closed Ball Neighborhood Condition
Informal description
Let $E$ be a topological space equipped with a topological additive group structure and continuous scalar multiplication by a normed ring $\mathbb{K}$. For a seminorm $p$ on $E$, if there exists $r > 0$ such that the closed ball $\{x \in E \mid p(x) \leq r\}$ centered at $0$ is a neighborhood of $0$ in $E$, then $p$ is continuous on $E$.
Seminorm.continuous_of_le theorem
[TopologicalSpace E] [IsTopologicalAddGroup E] {p q : Seminorm 𝕝 E} (hq : Continuous q) (hpq : p ≀ q) : Continuous p
Full source
theorem continuous_of_le [TopologicalSpace E] [IsTopologicalAddGroup E]
    {p q : Seminorm 𝕝 E} (hq : Continuous q) (hpq : p ≀ q) : Continuous p := by
  refine Seminorm.continuous_of_forall (fun r hr ↦ Filter.mem_of_superset
    (IsOpen.mem_nhds ?_ <| q.mem_ball_self hr) (ball_antitone hpq))
  rw [ball_zero_eq]
  exact isOpen_lt hq continuous_const
Continuity of Seminorm via Dominance by a Continuous Seminorm
Informal description
Let $E$ be a topological space with a topological additive group structure, and let $p$ and $q$ be seminorms on $E$ over a normed ring $\mathbb{K}$. If $q$ is continuous and $p \leq q$ (i.e., $p(x) \leq q(x)$ for all $x \in E$), then $p$ is also continuous.
Seminorm.ball_mem_nhds theorem
[TopologicalSpace E] {p : Seminorm 𝕝 E} (hp : Continuous p) {r : ℝ} (hr : 0 < r) : p.ball 0 r ∈ (𝓝 0 : Filter E)
Full source
lemma ball_mem_nhds [TopologicalSpace E] {p : Seminorm 𝕝 E} (hp : Continuous p) {r : ℝ}
    (hr : 0 < r) : p.ball 0 r ∈ (𝓝 0 : Filter E) :=
  have this : Tendsto p (𝓝 0) (𝓝 0) := map_zero p β–Έ hp.tendsto 0
  by simpa only [p.ball_zero_eq] using this (Iio_mem_nhds hr)
Open Seminorm Ball at Zero is a Neighborhood of Zero
Informal description
Let $E$ be a topological space equipped with a seminorm $p$ over a normed ring $\mathbb{K}$. If $p$ is continuous and $r > 0$, then the open ball $\{x \in E \mid p(x) < r\}$ centered at $0$ is a neighborhood of $0$ in the topology of $E$.
Seminorm.uniformSpace_eq_of_hasBasis theorem
{ΞΉ} [UniformSpace E] [IsUniformAddGroup E] [ContinuousConstSMul π•œ E] {p' : ΞΉ β†’ Prop} {s : ΞΉ β†’ Set E} (p : Seminorm π•œ E) (hb : (𝓝 0 : Filter E).HasBasis p' s) (h₁ : βˆƒ r, p.closedBall 0 r ∈ 𝓝 0) (hβ‚‚ : βˆ€ i, p' i β†’ βˆƒ r > 0, p.ball 0 r βŠ† s i) : β€ΉUniformSpace Eβ€Ί = p.toAddGroupSeminorm.toSeminormedAddGroup.toUniformSpace
Full source
lemma uniformSpace_eq_of_hasBasis
    {ΞΉ} [UniformSpace E] [IsUniformAddGroup E] [ContinuousConstSMul π•œ E]
    {p' : ΞΉ β†’ Prop} {s : ΞΉ β†’ Set E} (p : Seminorm π•œ E) (hb : (𝓝 0 : Filter E).HasBasis p' s)
    (h₁ : βˆƒ r, p.closedBall 0 r ∈ 𝓝 0) (hβ‚‚ : βˆ€ i, p' i β†’ βˆƒ r > 0, p.ball 0 r βŠ† s i) :
    β€ΉUniformSpace Eβ€Ί = p.toAddGroupSeminorm.toSeminormedAddGroup.toUniformSpace := by
  refine IsUniformAddGroup.ext β€Ή_β€Ί
    p.toAddGroupSeminorm.toSeminormedAddCommGroup.to_isUniformAddGroup ?_
  apply le_antisymm
  Β· rw [← @comap_norm_nhds_zero E p.toAddGroupSeminorm.toSeminormedAddGroup, ← tendsto_iff_comap]
    suffices Continuous p from this.tendsto' 0 _ (map_zero p)
    rcases h₁ with ⟨r, hr⟩
    exact p.continuous' hr
  Β· rw [(@NormedAddCommGroup.nhds_zero_basis_norm_lt E
      p.toAddGroupSeminorm.toSeminormedAddGroup).le_basis_iff hb]
    simpa only [subset_def, mem_ball_zero] using hβ‚‚
Uniform Space Structure Induced by Seminorm Basis Condition
Informal description
Let $E$ be a uniform space with a topological additive group structure and continuous scalar multiplication by a normed ring $\mathbb{K}$. Let $p$ be a seminorm on $E$ and suppose: 1. The neighborhood filter of $0$ in $E$ has a basis $\{s_i\}_{i \in \iota}$ indexed by some property $p'$, 2. There exists $r > 0$ such that the closed ball $\{x \in E \mid p(x) \leq r\}$ is a neighborhood of $0$, 3. For each $i \in \iota$ with $p'(i)$, there exists $r > 0$ such that the open ball $\{x \in E \mid p(x) < r\}$ is contained in $s_i$. Then the uniform space structure on $E$ coincides with the uniform structure induced by the seminorm $p$.
Seminorm.uniformity_eq_of_hasBasis theorem
{ΞΉ} [UniformSpace E] [IsUniformAddGroup E] [ContinuousConstSMul π•œ E] {p' : ΞΉ β†’ Prop} {s : ΞΉ β†’ Set E} (p : Seminorm π•œ E) (hb : (𝓝 0 : Filter E).HasBasis p' s) (h₁ : βˆƒ r, p.closedBall 0 r ∈ 𝓝 0) (hβ‚‚ : βˆ€ i, p' i β†’ βˆƒ r > 0, p.ball 0 r βŠ† s i) : 𝓀 E = β¨… r > 0, π“Ÿ {x | p (x.1 - x.2) < r}
Full source
lemma uniformity_eq_of_hasBasis
    {ΞΉ} [UniformSpace E] [IsUniformAddGroup E] [ContinuousConstSMul π•œ E]
    {p' : ΞΉ β†’ Prop} {s : ΞΉ β†’ Set E} (p : Seminorm π•œ E) (hb : (𝓝 0 : Filter E).HasBasis p' s)
    (h₁ : βˆƒ r, p.closedBall 0 r ∈ 𝓝 0) (hβ‚‚ : βˆ€ i, p' i β†’ βˆƒ r > 0, p.ball 0 r βŠ† s i) :
    𝓀 E = β¨… r > 0, π“Ÿ {x | p (x.1 - x.2) < r} := by
  rw [uniformSpace_eq_of_hasBasis p hb h₁ hβ‚‚]; rfl
Uniformity Characterization via Seminorm Basis Condition
Informal description
Let $E$ be a uniform space with a topological additive group structure and continuous scalar multiplication by a normed ring $\mathbb{K}$. Let $p$ be a seminorm on $E$ and suppose: 1. The neighborhood filter of $0$ in $E$ has a basis $\{s_i\}_{i \in \iota}$ indexed by some property $p'$, 2. There exists $r > 0$ such that the closed ball $\{x \in E \mid p(x) \leq r\}$ is a neighborhood of $0$, 3. For each $i \in \iota$ with $p'(i)$, there exists $r > 0$ such that the open ball $\{x \in E \mid p(x) < r\}$ is contained in $s_i$. Then the uniformity of $E$ is equal to the filter $\bigwedge_{r>0} \mathcal{P}\{(x,y) \mid p(x-y) < r\}$.
Seminorm.rescale_to_shell_zpow theorem
(p : Seminorm π•œ E) {c : π•œ} (hc : 1 < β€–cβ€–) {Ξ΅ : ℝ} (Ξ΅pos : 0 < Ξ΅) {x : E} (hx : p x β‰  0) : βˆƒ n : β„€, c ^ n β‰  0 ∧ p (c ^ n β€’ x) < Ξ΅ ∧ (Ξ΅ / β€–cβ€– ≀ p (c ^ n β€’ x)) ∧ (β€–c ^ n‖⁻¹ ≀ Ρ⁻¹ * β€–cβ€– * p x)
Full source
/-- Let `p` be a seminorm on a vector space over a `NormedField`.
If there is a scalar `c` with `β€–cβ€–>1`, then any `x` such that `p x β‰  0` can be
moved by scalar multiplication to any `p`-shell of width `β€–cβ€–`. Also recap information on the
value of `p` on the rescaling element that shows up in applications. -/
lemma rescale_to_shell_zpow (p : Seminorm π•œ E) {c : π•œ} (hc : 1 < β€–cβ€–) {Ξ΅ : ℝ}
    (Ξ΅pos : 0 < Ξ΅) {x : E} (hx : p x β‰  0) : βˆƒ n : β„€, c^n β‰  0 ∧
    p (c^n β€’ x) < Ξ΅ ∧ (Ξ΅ / β€–cβ€– ≀ p (c^n β€’ x)) ∧ (β€–c^n‖⁻¹ ≀ Ρ⁻¹ * β€–cβ€– * p x) := by
  have xΞ΅pos : 0 < (p x)/Ξ΅ := by positivity
  rcases exists_mem_Ico_zpow xΡpos hc with ⟨n, hn⟩
  have cpos : 0 < β€–cβ€– := by positivity
  have cnpos : 0 < β€–c^(n+1)β€– := by rw [norm_zpow]; exact xΞ΅pos.trans hn.2
  refine ⟨-(n+1), ?_, ?_, ?_, ?_⟩
  Β· show c ^ (-(n + 1)) β‰  0; exact zpow_ne_zero _ (norm_pos_iff.1 cpos)
  Β· show p ((c ^ (-(n + 1))) β€’ x) < Ξ΅
    rw [map_smul_eq_mul, zpow_neg, norm_inv, ← div_eq_inv_mul, div_lt_iffβ‚€ cnpos, mul_comm,
        norm_zpow]
    exact (div_lt_iffβ‚€ Ξ΅pos).1 (hn.2)
  Β· show Ξ΅ / β€–cβ€– ≀ p (c ^ (-(n + 1)) β€’ x)
    rw [zpow_neg, div_le_iffβ‚€ cpos, map_smul_eq_mul, norm_inv, norm_zpow, zpow_addβ‚€ (ne_of_gt cpos),
        zpow_one, mul_inv_rev, mul_comm, ← mul_assoc, ← mul_assoc, mul_inv_cancelβ‚€ (ne_of_gt cpos),
        one_mul, ← div_eq_inv_mul, le_div_iffβ‚€ (zpow_pos cpos _), mul_comm]
    exact (le_div_iffβ‚€ Ξ΅pos).1 hn.1
  Β· show β€–(c ^ (-(n + 1)))β€–β€–(c ^ (-(n + 1)))‖⁻¹ ≀ Ρ⁻¹ * β€–cβ€– * p x
    have : Ρ⁻¹ * β€–cβ€– * p x = Ρ⁻¹ * p x * β€–cβ€– := by ring
    rw [zpow_neg, norm_inv, inv_inv, norm_zpow, zpow_addβ‚€ (ne_of_gt cpos), zpow_one, this,
        ← div_eq_inv_mul]
    exact mul_le_mul_of_nonneg_right hn.1 (norm_nonneg _)
Rescaling to Shell via Integer Powers: $p(c^n \cdot x) \in [\varepsilon / \|c\|, \varepsilon)$ for $\|c\| > 1$ and $p(x) \neq 0$
Informal description
Let $p$ be a seminorm on a vector space $E$ over a normed field $\mathbb{K}$. Suppose there exists a scalar $c \in \mathbb{K}$ with $\|c\| > 1$, and let $\varepsilon > 0$ be a positive real number. For any nonzero vector $x \in E$ (i.e., $p(x) \neq 0$), there exists an integer $n \in \mathbb{Z}$ such that: 1. $c^n \neq 0$, 2. $p(c^n \cdot x) < \varepsilon$, 3. $\varepsilon / \|c\| \leq p(c^n \cdot x)$, and 4. $\|c^n\|^{-1} \leq \varepsilon^{-1} \|c\| p(x)$.
Seminorm.rescale_to_shell theorem
(p : Seminorm π•œ E) {c : π•œ} (hc : 1 < β€–cβ€–) {Ξ΅ : ℝ} (Ξ΅pos : 0 < Ξ΅) {x : E} (hx : p x β‰  0) : βˆƒ d : π•œ, d β‰  0 ∧ p (d β€’ x) < Ξ΅ ∧ (Ξ΅ / β€–cβ€– ≀ p (d β€’ x)) ∧ (β€–d‖⁻¹ ≀ Ρ⁻¹ * β€–cβ€– * p x)
Full source
/-- Let `p` be a seminorm on a vector space over a `NormedField`.
If there is a scalar `c` with `β€–cβ€–>1`, then any `x` such that `p x β‰  0` can be
moved by scalar multiplication to any `p`-shell of width `β€–cβ€–`. Also recap information on the
value of `p` on the rescaling element that shows up in applications. -/
lemma rescale_to_shell (p : Seminorm π•œ E) {c : π•œ} (hc : 1 < β€–cβ€–) {Ξ΅ : ℝ} (Ξ΅pos : 0 < Ξ΅) {x : E}
    (hx : p x β‰  0) :
    βˆƒd : π•œ, d β‰  0 ∧ p (d β€’ x) < Ξ΅ ∧ (Ξ΅/β€–cβ€– ≀ p (d β€’ x)) ∧ (β€–d‖⁻¹ ≀ Ρ⁻¹ * β€–cβ€– * p x) :=
let ⟨_, hn⟩ := p.rescale_to_shell_zpow hc Ρpos hx; ⟨_, hn⟩
Rescaling to Shell: $p(d \cdot x) \in [\varepsilon / \|c\|, \varepsilon)$ for $\|c\| > 1$ and $p(x) \neq 0$
Informal description
Let $p$ be a seminorm on a vector space $E$ over a normed field $\mathbb{K}$. Suppose there exists a scalar $c \in \mathbb{K}$ with $\|c\| > 1$, and let $\varepsilon > 0$ be a positive real number. For any nonzero vector $x \in E$ (i.e., $p(x) \neq 0$), there exists a nonzero scalar $d \in \mathbb{K}$ such that: 1. $p(d \cdot x) < \varepsilon$, 2. $\varepsilon / \|c\| \leq p(d \cdot x)$, and 3. $\|d\|^{-1} \leq \varepsilon^{-1} \|c\| p(x)$.
Seminorm.bound_of_shell theorem
(p q : Seminorm π•œ E) {Ξ΅ C : ℝ} (Ξ΅_pos : 0 < Ξ΅) {c : π•œ} (hc : 1 < β€–cβ€–) (hf : βˆ€ x, Ξ΅ / β€–cβ€– ≀ p x β†’ p x < Ξ΅ β†’ q x ≀ C * p x) {x : E} (hx : p x β‰  0) : q x ≀ C * p x
Full source
/-- Let `p` and `q` be two seminorms on a vector space over a `NontriviallyNormedField`.
If we have `q x ≀ C * p x` on some shell of the form `{x | Ξ΅/β€–cβ€– ≀ p x < Ξ΅}` (where `Ξ΅ > 0`
and `β€–cβ€– > 1`), then we also have `q x ≀ C * p x` for all `x` such that `p x β‰  0`. -/
lemma bound_of_shell
    (p q : Seminorm π•œ E) {Ξ΅ C : ℝ} (Ξ΅_pos : 0 < Ξ΅) {c : π•œ} (hc : 1 < β€–cβ€–)
    (hf : βˆ€ x, Ξ΅ / β€–cβ€– ≀ p x β†’ p x < Ξ΅ β†’ q x ≀ C * p x) {x : E} (hx : p x β‰  0) :
    q x ≀ C * p x := by
  rcases p.rescale_to_shell hc Ρ_pos hx with ⟨δ, hδ, δxle, leδx, -⟩
  simpa only [map_smul_eq_mul, mul_left_comm C, mul_le_mul_left (norm_pos_iff.2 hΞ΄)]
    using hf (Ξ΄ β€’ x) leΞ΄x Ξ΄xle
Seminorm Comparison via Shell Condition: $q(x) \leq C \cdot p(x)$ for $p(x) \neq 0$
Informal description
Let $p$ and $q$ be two seminorms on a vector space $E$ over a nontrivially normed field $\mathbb{K}$. Suppose there exist real numbers $\varepsilon > 0$ and $C \geq 0$, and a scalar $c \in \mathbb{K}$ with $\|c\| > 1$, such that for all $x \in E$ satisfying $\varepsilon / \|c\| \leq p(x) < \varepsilon$, the inequality $q(x) \leq C \cdot p(x)$ holds. Then, for any $x \in E$ with $p(x) \neq 0$, we have $q(x) \leq C \cdot p(x)$.
Seminorm.bound_of_shell_smul theorem
(p q : Seminorm π•œ E) {Ξ΅ : ℝ} {C : ℝβ‰₯0} (Ξ΅_pos : 0 < Ξ΅) {c : π•œ} (hc : 1 < β€–cβ€–) (hf : βˆ€ x, Ξ΅ / β€–cβ€– ≀ p x β†’ p x < Ξ΅ β†’ q x ≀ (C β€’ p) x) {x : E} (hx : p x β‰  0) : q x ≀ (C β€’ p) x
Full source
/-- A version of `Seminorm.bound_of_shell` expressed using pointwise scalar multiplication of
seminorms. -/
lemma bound_of_shell_smul
    (p q : Seminorm π•œ E) {Ξ΅ : ℝ} {C : ℝβ‰₯0} (Ξ΅_pos : 0 < Ξ΅) {c : π•œ} (hc : 1 < β€–cβ€–)
    (hf : βˆ€ x, Ξ΅ / β€–cβ€– ≀ p x β†’ p x < Ξ΅ β†’ q x ≀ (C β€’ p) x) {x : E} (hx : p x β‰  0) :
    q x ≀ (C β€’ p) x :=
  Seminorm.bound_of_shell p q Ξ΅_pos hc hf hx
Comparison of Seminorms via Scalar Multiplication in Shell Condition: $q(x) \leq (C \cdot p)(x)$ for $p(x) \neq 0$
Informal description
Let $p$ and $q$ be two seminorms on a vector space $E$ over a normed field $\mathbb{K}$. Suppose there exist real numbers $\varepsilon > 0$ and $C \geq 0$, and a scalar $c \in \mathbb{K}$ with $\|c\| > 1$, such that for all $x \in E$ satisfying $\varepsilon / \|c\| \leq p(x) < \varepsilon$, the inequality $q(x) \leq (C \cdot p)(x)$ holds. Then, for any $x \in E$ with $p(x) \neq 0$, we have $q(x) \leq (C \cdot p)(x)$.
Seminorm.bound_of_shell_sup theorem
(p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ) (q : Seminorm π•œ E) {Ξ΅ : ℝ} {C : ℝβ‰₯0} (Ξ΅_pos : 0 < Ξ΅) {c : π•œ} (hc : 1 < β€–cβ€–) (hf : βˆ€ x, (βˆ€ i ∈ s, p i x < Ξ΅) β†’ βˆ€ j ∈ s, Ξ΅ / β€–cβ€– ≀ p j x β†’ q x ≀ (C β€’ p j) x) {x : E} (hx : βˆƒ j, j ∈ s ∧ p j x β‰  0) : q x ≀ (C β€’ s.sup p) x
Full source
lemma bound_of_shell_sup (p : ΞΉ β†’ Seminorm π•œ E) (s : Finset ΞΉ)
    (q : Seminorm π•œ E) {Ξ΅ : ℝ} {C : ℝβ‰₯0} (Ξ΅_pos : 0 < Ξ΅) {c : π•œ} (hc : 1 < β€–cβ€–)
    (hf : βˆ€ x, (βˆ€ i ∈ s, p i x < Ξ΅) β†’ βˆ€ j ∈ s, Ξ΅ / β€–cβ€– ≀ p j x β†’ q x ≀ (C β€’ p j) x)
    {x : E} (hx : βˆƒ j, j ∈ s ∧ p j x β‰  0) :
    q x ≀ (C β€’ s.sup p) x := by
  rcases hx with ⟨j, hj, hjx⟩
  have : (s.sup p) x β‰  0 :=
    ne_of_gt ((hjx.symm.lt_of_le <| apply_nonneg _ _).trans_le (le_finset_sup_apply hj))
  refine (s.sup p).bound_of_shell_smul q Ξ΅_pos hc (fun y hle hlt ↦ ?_) this
  rcases exists_apply_eq_finset_sup p ⟨j, hj⟩ y with ⟨i, hi, hiy⟩
  rw [smul_apply, hiy]
  exact hf y (fun k hk ↦ (le_finset_sup_apply hk).trans_lt hlt) i hi (hiy β–Έ hle)
Comparison of Seminorm via Shell Condition on Finite Supremum: $q(x) \leq C \cdot \sup_{i \in s} p_i(x)$ for Nonzero $p_j(x)$
Informal description
Let $E$ be a module over a normed ring $\mathbb{K}$, and let $(p_i)_{i \in \iota}$ be a family of seminorms on $E$. For any finite subset $s \subseteq \iota$, a seminorm $q$ on $E$, real numbers $\varepsilon > 0$ and $C \geq 0$, and a scalar $c \in \mathbb{K}$ with $\|c\| > 1$, suppose that for all $x \in E$ satisfying $p_i(x) < \varepsilon$ for all $i \in s$, and for any $j \in s$ with $\varepsilon / \|c\| \leq p_j(x)$, we have $q(x) \leq (C \cdot p_j)(x)$. Then, for any $x \in E$ such that there exists $j \in s$ with $p_j(x) \neq 0$, it holds that $q(x) \leq (C \cdot \sup_{i \in s} p_i)(x)$.
Seminorm.bddAbove_of_absorbent theorem
{ΞΉ : Sort*} {p : ΞΉ β†’ Seminorm π•œ E} {s : Set E} (hs : Absorbent π•œ s) (h : βˆ€ x ∈ s, BddAbove (range (p Β· x))) : BddAbove (range p)
Full source
/-- Let `p i` be a family of seminorms on `E`. Let `s` be an absorbent set in `π•œ`.
If all seminorms are uniformly bounded at every point of `s`,
then they are bounded in the space of seminorms. -/
lemma bddAbove_of_absorbent {ΞΉ : Sort*} {p : ΞΉ β†’ Seminorm π•œ E} {s : Set E} (hs : Absorbent π•œ s)
    (h : βˆ€ x ∈ s, BddAbove (range (p Β· x))) : BddAbove (range p) := by
  rw [Seminorm.bddAbove_range_iff]
  intro x
  obtain ⟨c, hcβ‚€, hc⟩ : βˆƒ c β‰  0, (c : π•œ) β€’ x ∈ s :=
    (eventually_mem_nhdsWithin.and (hs.eventually_nhdsNE_zero x)).exists
  rcases h _ hc with ⟨M, hM⟩
  refine ⟨M / β€–cβ€–, forall_mem_range.mpr fun i ↦ (le_div_iffβ‚€' (norm_pos_iff.2 hcβ‚€)).2 ?_⟩
  exact hM ⟨i, map_smul_eq_mul ..⟩
Boundedness of Seminorm Family on Absorbent Set Implies Global Boundedness
Informal description
Let $\{p_i\}_{i \in I}$ be a family of seminorms on a module $E$ over a seminormed ring $\mathbb{K}$. If $s$ is an absorbent subset of $E$ (i.e., for every $x \in E$, there exists $a \in \mathbb{K}$ such that $a \cdot x \in s$) and for every $x \in s$, the set $\{p_i(x) \mid i \in I\}$ is bounded above in $\mathbb{R}$, then the family $\{p_i\}_{i \in I}$ is bounded above in the space of seminorms.
normSeminorm definition
: Seminorm π•œ E
Full source
/-- The norm of a seminormed group as a seminorm. -/
def normSeminorm : Seminorm π•œ E :=
  { normAddGroupSeminorm E with smul' := norm_smul }
Norm as a seminorm
Informal description
The norm of a seminormed group $E$ over a normed ring $\mathbb{K}$ as a seminorm, i.e., a function $\|\cdot\| \colon E \to \mathbb{R}$ that satisfies: 1. **Positive semidefiniteness**: $\|x\| \geq 0$ for all $x \in E$. 2. **Absolute homogeneity**: $\|a \cdot x\| = \|a\| \cdot \|x\|$ for all $a \in \mathbb{K}$ and $x \in E$. 3. **Subadditivity**: $\|x + y\| \leq \|x\| + \|y\|$ for all $x, y \in E$. This seminorm extends the additive group seminorm structure on $E$ and coincides with the usual norm function on $E$.
coe_normSeminorm theorem
: ⇑(normSeminorm π•œ E) = norm
Full source
@[simp]
theorem coe_normSeminorm : ⇑(normSeminorm π•œ E) = norm :=
  rfl
Equality of Norm Seminorm and Norm Function
Informal description
The function associated with the seminorm `normSeminorm π•œ E` is equal to the norm function on $E$, i.e., $\text{normSeminorm}_{\mathbb{K}}(E)(x) = \|x\|$ for all $x \in E$.
ball_normSeminorm theorem
: (normSeminorm π•œ E).ball = Metric.ball
Full source
@[simp]
theorem ball_normSeminorm : (normSeminorm π•œ E).ball = Metric.ball := by
  ext x r y
  simp only [Seminorm.mem_ball, Metric.mem_ball, coe_normSeminorm, dist_eq_norm]
Equality of Seminorm Ball and Metric Ball
Informal description
For a normed space $E$ over a normed ring $\mathbb{K}$, the open ball defined by the seminorm induced by the norm coincides with the metric ball, i.e., $\text{ball}_{\text{normSeminorm}_{\mathbb{K}}(E)} = \text{ball}_E$.
closedBall_normSeminorm theorem
: (normSeminorm π•œ E).closedBall = Metric.closedBall
Full source
@[simp]
theorem closedBall_normSeminorm : (normSeminorm π•œ E).closedBall = Metric.closedBall := by
  ext x r y
  simp only [Seminorm.mem_closedBall, Metric.mem_closedBall, coe_normSeminorm, dist_eq_norm]
Equality of Seminorm Closed Ball and Metric Closed Ball
Informal description
For a normed space $E$ over a normed ring $\mathbb{K}$, the closed ball defined by the seminorm induced by the norm coincides with the metric closed ball, i.e., $\text{closedBall}_{\text{normSeminorm}_{\mathbb{K}}(E)} = \text{closedBall}_E$.
absorbent_ball_zero theorem
(hr : 0 < r) : Absorbent π•œ (Metric.ball (0 : E) r)
Full source
/-- Balls at the origin are absorbent. -/
theorem absorbent_ball_zero (hr : 0 < r) : Absorbent π•œ (Metric.ball (0 : E) r) := by
  rw [← ball_normSeminorm π•œ]
  exact (normSeminorm _ _).absorbent_ball_zero hr
Absorbency of Open Balls Centered at Zero in Normed Spaces
Informal description
For any positive real number $r > 0$, the open ball centered at the origin in a normed space $E$ over a normed field $\mathbb{K}$ is absorbent. That is, for every $x \in E$, there exists a positive scalar $\lambda > 0$ such that $x \in \lambda \cdot B(0, r)$, where $B(0, r) = \{ y \in E \mid \|y\| < r \}$.
absorbent_ball theorem
(hx : β€–xβ€– < r) : Absorbent π•œ (Metric.ball x r)
Full source
/-- Balls containing the origin are absorbent. -/
theorem absorbent_ball (hx : β€–xβ€– < r) : Absorbent π•œ (Metric.ball x r) := by
  rw [← ball_normSeminorm π•œ]
  exact (normSeminorm _ _).absorbent_ball hx
Absorbency of Open Balls in Normed Spaces
Informal description
For any point $x$ in a normed space $E$ over a normed field $\mathbb{K}$ and any real number $r > \|x\|$, the open ball $B(x, r) = \{ y \in E \mid \|y - x\| < r \}$ is absorbent in $E$. That is, for every $y \in E$, there exists a positive scalar $\lambda > 0$ such that $y \in \lambda \cdot B(x, r)$.
balanced_ball_zero theorem
: Balanced π•œ (Metric.ball (0 : E) r)
Full source
/-- Balls at the origin are balanced. -/
theorem balanced_ball_zero : Balanced π•œ (Metric.ball (0 : E) r) := by
  rw [← ball_normSeminorm π•œ]
  exact (normSeminorm _ _).balanced_ball_zero r
Balancedness of Open Balls Centered at Zero in Normed Spaces
Informal description
For any real number $r \geq 0$, the open ball $\{x \in E \mid \|x\| < r\}$ centered at $0$ in a normed space $E$ over a normed field $\mathbb{K}$ is balanced. That is, for every scalar $a \in \mathbb{K}$ with $\|a\| \leq 1$, the scaled set $a \cdot \{x \in E \mid \|x\| < r\}$ is contained in $\{x \in E \mid \|x\| < r\}$.
balanced_closedBall_zero theorem
: Balanced π•œ (Metric.closedBall (0 : E) r)
Full source
/-- Closed balls at the origin are balanced. -/
theorem balanced_closedBall_zero : Balanced π•œ (Metric.closedBall (0 : E) r) := by
  rw [← closedBall_normSeminorm π•œ]
  exact (normSeminorm _ _).balanced_closedBall_zero r
Closed Balls at Zero are Balanced in Normed Spaces
Informal description
For any real number $r \geq 0$, the closed ball $\{x \in E \mid \|x\| \leq r\}$ centered at $0$ in a normed space $E$ over a normed field $\mathbb{K}$ is balanced. That is, for every scalar $a \in \mathbb{K}$ with $\|a\| \leq 1$, the scaled set $a \cdot \{x \in E \mid \|x\| \leq r\}$ is contained in $\{x \in E \mid \|x\| \leq r\}$.
rescale_to_shell_semi_normed_zpow theorem
{c : π•œ} (hc : 1 < β€–cβ€–) {Ξ΅ : ℝ} (Ξ΅pos : 0 < Ξ΅) {x : E} (hx : β€–xβ€– β‰  0) : βˆƒ n : β„€, c ^ n β‰  0 ∧ β€–c ^ n β€’ xβ€– < Ξ΅ ∧ (Ξ΅ / β€–cβ€– ≀ β€–c ^ n β€’ xβ€–) ∧ (β€–c ^ n‖⁻¹ ≀ Ρ⁻¹ * β€–cβ€– * β€–xβ€–)
Full source
/-- If there is a scalar `c` with `β€–cβ€–>1`, then any element with nonzero norm can be
moved by scalar multiplication to any shell of width `β€–cβ€–`. Also recap information on the norm of
the rescaling element that shows up in applications. -/
lemma rescale_to_shell_semi_normed_zpow {c : π•œ} (hc : 1 < β€–cβ€–) {Ξ΅ : ℝ} (Ξ΅pos : 0 < Ξ΅) {x : E}
    (hx : β€–xβ€–β€–xβ€– β‰  0) :
    βˆƒ n : β„€, c^n β‰  0 ∧ β€–c^n β€’ xβ€– < Ξ΅ ∧ (Ξ΅ / β€–cβ€– ≀ β€–c^n β€’ xβ€–) ∧ (β€–c^n‖⁻¹ ≀ Ρ⁻¹ * β€–cβ€– * β€–xβ€–) :=
  (normSeminorm π•œ E).rescale_to_shell_zpow hc Ξ΅pos hx
Rescaling to Shell via Integer Powers in Seminormed Spaces: $\|c^n \cdot x\| \in [\varepsilon / \|c\|, \varepsilon)$ for $\|c\| > 1$ and $\|x\| \neq 0$
Informal description
Let $E$ be a seminormed space over a normed field $\mathbb{K}$. Suppose there exists a scalar $c \in \mathbb{K}$ with $\|c\| > 1$, and let $\varepsilon > 0$ be a positive real number. For any nonzero vector $x \in E$ (i.e., $\|x\| \neq 0$), there exists an integer $n \in \mathbb{Z}$ such that: 1. $c^n \neq 0$, 2. $\|c^n \cdot x\| < \varepsilon$, 3. $\varepsilon / \|c\| \leq \|c^n \cdot x\|$, and 4. $\|c^n\|^{-1} \leq \varepsilon^{-1} \|c\| \|x\|$.
rescale_to_shell_semi_normed theorem
{c : π•œ} (hc : 1 < β€–cβ€–) {Ξ΅ : ℝ} (Ξ΅pos : 0 < Ξ΅) {x : E} (hx : β€–xβ€– β‰  0) : βˆƒ d : π•œ, d β‰  0 ∧ β€–d β€’ xβ€– < Ξ΅ ∧ (Ξ΅ / β€–cβ€– ≀ β€–d β€’ xβ€–) ∧ (β€–d‖⁻¹ ≀ Ρ⁻¹ * β€–cβ€– * β€–xβ€–)
Full source
/-- If there is a scalar `c` with `β€–cβ€–>1`, then any element with nonzero norm can be
moved by scalar multiplication to any shell of width `β€–cβ€–`. Also recap information on the norm of
the rescaling element that shows up in applications. -/
lemma rescale_to_shell_semi_normed {c : π•œ} (hc : 1 < β€–cβ€–) {Ξ΅ : ℝ} (Ξ΅pos : 0 < Ξ΅)
    {x : E} (hx : β€–xβ€–β€–xβ€– β‰  0) :
    βˆƒd : π•œ, d β‰  0 ∧ β€–d β€’ xβ€– < Ξ΅ ∧ (Ξ΅/β€–cβ€– ≀ β€–d β€’ xβ€–) ∧ (β€–d‖⁻¹ ≀ Ρ⁻¹ * β€–cβ€– * β€–xβ€–) :=
  (normSeminorm π•œ E).rescale_to_shell hc Ξ΅pos hx
Rescaling to Shell in Seminormed Spaces: $\|d \cdot x\| \in [\varepsilon / \|c\|, \varepsilon)$ for $\|c\| > 1$ and $\|x\| \neq 0$
Informal description
Let $E$ be a seminormed space over a normed field $\mathbb{K}$. Given a scalar $c \in \mathbb{K}$ with $\|c\| > 1$, a positive real number $\varepsilon > 0$, and a nonzero vector $x \in E$ (i.e., $\|x\| \neq 0$), there exists a nonzero scalar $d \in \mathbb{K}$ such that: 1. $\|d \cdot x\| < \varepsilon$, 2. $\varepsilon / \|c\| \leq \|d \cdot x\|$, and 3. $\|d\|^{-1} \leq \varepsilon^{-1} \|c\| \|x\|$.
rescale_to_shell_zpow theorem
[NormedAddCommGroup F] [NormedSpace π•œ F] {c : π•œ} (hc : 1 < β€–cβ€–) {Ξ΅ : ℝ} (Ξ΅pos : 0 < Ξ΅) {x : F} (hx : x β‰  0) : βˆƒ n : β„€, c ^ n β‰  0 ∧ β€–c ^ n β€’ xβ€– < Ξ΅ ∧ (Ξ΅ / β€–cβ€– ≀ β€–c ^ n β€’ xβ€–) ∧ (β€–c ^ n‖⁻¹ ≀ Ρ⁻¹ * β€–cβ€– * β€–xβ€–)
Full source
lemma rescale_to_shell_zpow [NormedAddCommGroup F] [NormedSpace π•œ F] {c : π•œ} (hc : 1 < β€–cβ€–)
    {Ξ΅ : ℝ} (Ξ΅pos : 0 < Ξ΅) {x : F} (hx : x β‰  0) :
    βˆƒ n : β„€, c^n β‰  0 ∧ β€–c^n β€’ xβ€– < Ξ΅ ∧ (Ξ΅ / β€–cβ€– ≀ β€–c^n β€’ xβ€–) ∧ (β€–c^n‖⁻¹ ≀ Ρ⁻¹ * β€–cβ€– * β€–xβ€–) :=
  rescale_to_shell_semi_normed_zpow hc Ξ΅pos (norm_ne_zero_iff.mpr hx)
Rescaling to Shell via Integer Powers in Normed Spaces: $\|c^n \cdot x\| \in [\varepsilon / \|c\|, \varepsilon)$ for $\|c\| > 1$ and $x \neq 0$
Informal description
Let $F$ be a normed additive commutative group with a normed space structure over a normed field $\mathbb{K}$. Given a scalar $c \in \mathbb{K}$ with $\|c\| > 1$, a positive real number $\varepsilon > 0$, and a nonzero vector $x \in F$, there exists an integer $n \in \mathbb{Z}$ such that: 1. $c^n \neq 0$, 2. $\|c^n \cdot x\| < \varepsilon$, 3. $\varepsilon / \|c\| \leq \|c^n \cdot x\|$, and 4. $\|c^n\|^{-1} \leq \varepsilon^{-1} \|c\| \|x\|$.
rescale_to_shell theorem
[NormedAddCommGroup F] [NormedSpace π•œ F] {c : π•œ} (hc : 1 < β€–cβ€–) {Ξ΅ : ℝ} (Ξ΅pos : 0 < Ξ΅) {x : F} (hx : x β‰  0) : βˆƒ d : π•œ, d β‰  0 ∧ β€–d β€’ xβ€– < Ξ΅ ∧ (Ξ΅ / β€–cβ€– ≀ β€–d β€’ xβ€–) ∧ (β€–d‖⁻¹ ≀ Ρ⁻¹ * β€–cβ€– * β€–xβ€–)
Full source
/-- If there is a scalar `c` with `β€–cβ€–>1`, then any element can be moved by scalar multiplication to
any shell of width `β€–cβ€–`. Also recap information on the norm of the rescaling element that shows
up in applications. -/
lemma rescale_to_shell [NormedAddCommGroup F] [NormedSpace π•œ F] {c : π•œ} (hc : 1 < β€–cβ€–)
    {Ξ΅ : ℝ} (Ξ΅pos : 0 < Ξ΅) {x : F} (hx : x β‰  0) :
    βˆƒd : π•œ, d β‰  0 ∧ β€–d β€’ xβ€– < Ξ΅ ∧ (Ξ΅/β€–cβ€– ≀ β€–d β€’ xβ€–) ∧ (β€–d‖⁻¹ ≀ Ρ⁻¹ * β€–cβ€– * β€–xβ€–) :=
  rescale_to_shell_semi_normed hc Ξ΅pos (norm_ne_zero_iff.mpr hx)
Rescaling to Shell in Normed Spaces: $\|d \cdot x\| \in [\varepsilon / \|c\|, \varepsilon)$ for $\|c\| > 1$ and $x \neq 0$
Informal description
Let $F$ be a normed additive commutative group with a normed space structure over a normed field $\mathbb{K}$. Given a scalar $c \in \mathbb{K}$ with $\|c\| > 1$, a positive real number $\varepsilon > 0$, and a nonzero vector $x \in F$, there exists a nonzero scalar $d \in \mathbb{K}$ such that: 1. $\|d \cdot x\| < \varepsilon$, 2. $\varepsilon / \|c\| \leq \|d \cdot x\|$, and 3. $\|d\|^{-1} \leq \varepsilon^{-1} \|c\| \|x\|$.