doc-next-gen

Mathlib.Analysis.Normed.Ring.Basic

Module docstring

{"# Normed rings

In this file we define (semi)normed rings. We also prove some theorems about these definitions.

A normed ring instance can be constructed from a given real absolute value on a ring via AbsoluteValue.toNormedRing. ","### Induced normed structures "}

NonUnitalSeminormedRing structure
(α : Type*) extends Norm α, NonUnitalRing α, PseudoMetricSpace α
Full source
/-- A non-unital seminormed ring is a not-necessarily-unital ring
endowed with a seminorm which satisfies the inequality `‖x y‖ ≤ ‖x‖ ‖y‖`. -/
class NonUnitalSeminormedRing (α : Type*) extends Norm α, NonUnitalRing α,
  PseudoMetricSpace α where
  /-- The distance is induced by the norm. -/
  dist_eq : ∀ x y, dist x y = norm (x - y)
  /-- The norm is submultiplicative. -/
  protected norm_mul_le : ∀ a b, norm (a * b) ≤ norm a * norm b
Non-unital seminormed ring
Informal description
A non-unital seminormed ring is a non-unital ring $\alpha$ equipped with a seminorm $\|\cdot\|$ and a pseudometric space structure, satisfying the inequality $\|x y\| \leq \|x\| \|y\|$ for all $x, y \in \alpha$.
SeminormedRing structure
(α : Type*) extends Norm α, Ring α, PseudoMetricSpace α
Full source
/-- A seminormed ring is a ring endowed with a seminorm which satisfies the inequality
`‖x y‖ ≤ ‖x‖ ‖y‖`. -/
class SeminormedRing (α : Type*) extends Norm α, Ring α, PseudoMetricSpace α where
  /-- The distance is induced by the norm. -/
  dist_eq : ∀ x y, dist x y = norm (x - y)
  /-- The norm is submultiplicative. -/
  norm_mul_le : ∀ a b, norm (a * b) ≤ norm a * norm b
Seminormed ring
Informal description
A seminormed ring is a ring $\alpha$ equipped with a seminorm $\|\cdot\|$ and a pseudometric space structure, satisfying the inequality $\|x y\| \leq \|x\| \|y\|$ for all $x, y \in \alpha$.
SeminormedRing.toNonUnitalSeminormedRing instance
[β : SeminormedRing α] : NonUnitalSeminormedRing α
Full source
/-- A seminormed ring is a non-unital seminormed ring. -/
instance (priority := 100) SeminormedRing.toNonUnitalSeminormedRing [β : SeminormedRing α] :
    NonUnitalSeminormedRing α :=
  { β with }
Seminormed Rings as Non-Unital Seminormed Rings
Informal description
Every seminormed ring is a non-unital seminormed ring.
NonUnitalNormedRing structure
(α : Type*) extends Norm α, NonUnitalRing α, MetricSpace α
Full source
/-- A non-unital normed ring is a not-necessarily-unital ring
endowed with a norm which satisfies the inequality `‖x y‖ ≤ ‖x‖ ‖y‖`. -/
class NonUnitalNormedRing (α : Type*) extends Norm α, NonUnitalRing α, MetricSpace α where
  /-- The distance is induced by the norm. -/
  dist_eq : ∀ x y, dist x y = norm (x - y)
  /-- The norm is submultiplicative. -/
  norm_mul_le : ∀ a b, norm (a * b) ≤ norm a * norm b
Non-unital normed ring
Informal description
A non-unital normed ring is a non-unital ring $\alpha$ equipped with a norm function $\|\cdot\|$ and a metric space structure, satisfying the inequality $\|x y\| \leq \|x\| \|y\|$ for all $x, y \in \alpha$.
NonUnitalNormedRing.toNonUnitalSeminormedRing instance
[β : NonUnitalNormedRing α] : NonUnitalSeminormedRing α
Full source
/-- A non-unital normed ring is a non-unital seminormed ring. -/
instance (priority := 100) NonUnitalNormedRing.toNonUnitalSeminormedRing
    [β : NonUnitalNormedRing α] : NonUnitalSeminormedRing α :=
  { β with }
Non-Unital Normed Rings as Non-Unital Seminormed Rings
Informal description
Every non-unital normed ring is a non-unital seminormed ring.
NormedRing structure
(α : Type*) extends Norm α, Ring α, MetricSpace α
Full source
/-- A normed ring is a ring endowed with a norm which satisfies the inequality `‖x y‖ ≤ ‖x‖ ‖y‖`. -/
class NormedRing (α : Type*) extends Norm α, Ring α, MetricSpace α where
  /-- The distance is induced by the norm. -/
  dist_eq : ∀ x y, dist x y = norm (x - y)
  /-- The norm is submultiplicative. -/
  norm_mul_le : ∀ a b, norm (a * b) ≤ norm a * norm b
Normed Ring
Informal description
A normed ring is a ring $\alpha$ equipped with a norm function $\|\cdot\|$ and a metric space structure, such that the norm satisfies the inequality $\|x y\| \leq \|x\| \|y\|$ for all $x, y \in \alpha$.
NormedRing.toSeminormedRing instance
[β : NormedRing α] : SeminormedRing α
Full source
/-- A normed ring is a seminormed ring. -/
instance (priority := 100) NormedRing.toSeminormedRing [β : NormedRing α] : SeminormedRing α :=
  { β with }
Normed Rings are Seminormed Rings
Informal description
Every normed ring is a seminormed ring.
NormedRing.toNonUnitalNormedRing instance
[β : NormedRing α] : NonUnitalNormedRing α
Full source
/-- A normed ring is a non-unital normed ring. -/
instance (priority := 100) NormedRing.toNonUnitalNormedRing [β : NormedRing α] :
    NonUnitalNormedRing α :=
  { β with }
Normed Rings are Non-unital Normed Rings
Informal description
Every normed ring is a non-unital normed ring.
NonUnitalSeminormedCommRing structure
(α : Type*) extends NonUnitalSeminormedRing α, NonUnitalCommRing α
Full source
/-- A non-unital seminormed commutative ring is a non-unital commutative ring endowed with a
seminorm which satisfies the inequality `‖x y‖ ≤ ‖x‖ ‖y‖`. -/
class NonUnitalSeminormedCommRing (α : Type*)
    extends NonUnitalSeminormedRing α, NonUnitalCommRing α where
Non-unital seminormed commutative ring
Informal description
A non-unital seminormed commutative ring is a non-unital commutative ring $\alpha$ equipped with a seminorm $\|\cdot\|$ that satisfies the inequality $\|xy\| \leq \|x\|\|y\|$ for all $x, y \in \alpha$.
NonUnitalNormedCommRing structure
(α : Type*) extends NonUnitalNormedRing α, NonUnitalCommRing α
Full source
/-- A non-unital normed commutative ring is a non-unital commutative ring endowed with a
norm which satisfies the inequality `‖x y‖ ≤ ‖x‖ ‖y‖`. -/
class NonUnitalNormedCommRing (α : Type*) extends NonUnitalNormedRing α, NonUnitalCommRing α where
Non-unital normed commutative ring
Informal description
A non-unital normed commutative ring is a non-unital commutative ring $\alpha$ equipped with a norm $\|\cdot\|$ that satisfies the inequality $\|xy\| \leq \|x\|\|y\|$ for all $x, y \in \alpha$.
NonUnitalNormedCommRing.toNonUnitalSeminormedCommRing instance
[β : NonUnitalNormedCommRing α] : NonUnitalSeminormedCommRing α
Full source
/-- A non-unital normed commutative ring is a non-unital seminormed commutative ring. -/
instance (priority := 100) NonUnitalNormedCommRing.toNonUnitalSeminormedCommRing
    [β : NonUnitalNormedCommRing α] : NonUnitalSeminormedCommRing α :=
  { β with }
Non-unital Normed Commutative Rings as Seminormed Rings
Informal description
Every non-unital normed commutative ring is also a non-unital seminormed commutative ring.
SeminormedCommRing structure
(α : Type*) extends SeminormedRing α, CommRing α
Full source
/-- A seminormed commutative ring is a commutative ring endowed with a seminorm which satisfies
the inequality `‖x y‖ ≤ ‖x‖ ‖y‖`. -/
class SeminormedCommRing (α : Type*) extends SeminormedRing α, CommRing α where
Seminormed commutative ring
Informal description
A seminormed commutative ring is a commutative ring $\alpha$ equipped with a seminorm $\|\cdot\|$ that satisfies the inequality $\|x y\| \leq \|x\| \|y\|$ for all $x, y \in \alpha$.
NormedCommRing structure
(α : Type*) extends NormedRing α, CommRing α
Full source
/-- A normed commutative ring is a commutative ring endowed with a norm which satisfies
the inequality `‖x y‖ ≤ ‖x‖ ‖y‖`. -/
class NormedCommRing (α : Type*) extends NormedRing α, CommRing α where
Normed commutative ring
Informal description
A normed commutative ring is a commutative ring $\alpha$ equipped with a norm function $\|\cdot\| \colon \alpha \to \mathbb{R}$ that satisfies the inequality $\|x y\| \leq \|x\| \|y\|$ for all $x, y \in \alpha$.
SeminormedCommRing.toNonUnitalSeminormedCommRing instance
[β : SeminormedCommRing α] : NonUnitalSeminormedCommRing α
Full source
/-- A seminormed commutative ring is a non-unital seminormed commutative ring. -/
instance (priority := 100) SeminormedCommRing.toNonUnitalSeminormedCommRing
    [β : SeminormedCommRing α] : NonUnitalSeminormedCommRing α :=
  { β with }
Seminormed Commutative Rings as Non-Unital Seminormed Commutative Rings
Informal description
Every seminormed commutative ring is also a non-unital seminormed commutative ring.
NormedCommRing.toNonUnitalNormedCommRing instance
[β : NormedCommRing α] : NonUnitalNormedCommRing α
Full source
/-- A normed commutative ring is a non-unital normed commutative ring. -/
instance (priority := 100) NormedCommRing.toNonUnitalNormedCommRing
    [β : NormedCommRing α] : NonUnitalNormedCommRing α :=
  { β with }
Normed Commutative Rings as Non-Unital Normed Commutative Rings
Informal description
Every normed commutative ring is also a non-unital normed commutative ring.
NormedCommRing.toSeminormedCommRing instance
[β : NormedCommRing α] : SeminormedCommRing α
Full source
/-- A normed commutative ring is a seminormed commutative ring. -/
instance (priority := 100) NormedCommRing.toSeminormedCommRing [β : NormedCommRing α] :
    SeminormedCommRing α :=
  { β with }
Normed Commutative Rings are Seminormed Commutative Rings
Informal description
Every normed commutative ring is also a seminormed commutative ring.
NormOneClass structure
(α : Type*) [Norm α] [One α]
Full source
/-- A mixin class with the axiom `‖1‖ = 1`. Many `NormedRing`s and all `NormedField`s satisfy this
axiom. -/
class NormOneClass (α : Type*) [Norm α] [One α] : Prop where
  /-- The norm of the multiplicative identity is 1. -/
  norm_one : ‖(1 : α)‖ = 1
Norm One Class
Informal description
A class for types with a norm and a multiplicative identity, requiring that the norm of the identity element is equal to 1. This property is satisfied by many normed rings and all normed fields.
nnnorm_one theorem
: ‖(1 : G)‖₊ = 1
Full source
@[simp] lemma nnnorm_one : ‖(1 : G)‖₊ = 1 := NNReal.eq norm_one
Nonnegative Norm of the Identity Element is One
Informal description
For any element $1$ in a group $G$ with a norm, the nonnegative norm of $1$ is equal to $1$, i.e., $\|1\|_+ = 1$.
enorm_one theorem
: ‖(1 : G)‖ₑ = 1
Full source
@[simp] lemma enorm_one : ‖(1 : G)‖ₑ = 1 := by simp [enorm]
Extended Norm of Identity Element is One
Informal description
For any element $1$ in a group $G$ with an extended norm, the extended norm of $1$ is equal to $1$, i.e., $\|1\|_e = 1$.
NormOneClass.nontrivial theorem
: Nontrivial G
Full source
theorem NormOneClass.nontrivial : Nontrivial G :=
  nontrivial_of_ne 0 1 <| ne_of_apply_ne norm <| by simp
Nontriviality from Norm-One Condition
Informal description
For any type $G$ with a norm and a multiplicative identity where the norm of the identity is $1$, the type $G$ is nontrivial (i.e., contains at least two distinct elements).
NonUnitalNormedRing.toNormedAddCommGroup instance
[β : NonUnitalNormedRing α] : NormedAddCommGroup α
Full source
instance (priority := 100) NonUnitalNormedRing.toNormedAddCommGroup [β : NonUnitalNormedRing α] :
    NormedAddCommGroup α :=
  { β with }
Non-unital Normed Rings as Normed Additive Commutative Groups
Informal description
Every non-unital normed ring $\alpha$ is also a normed additive commutative group.
NonUnitalSeminormedRing.toSeminormedAddCommGroup instance
[NonUnitalSeminormedRing α] : SeminormedAddCommGroup α
Full source
instance (priority := 100) NonUnitalSeminormedRing.toSeminormedAddCommGroup
    [NonUnitalSeminormedRing α] : SeminormedAddCommGroup α :=
  { ‹NonUnitalSeminormedRing α› with }
Non-unital Seminormed Rings as Seminormed Additive Commutative Groups
Informal description
Every non-unital seminormed ring $\alpha$ is also a seminormed additive commutative group.
ULift.normOneClass instance
[SeminormedAddCommGroup α] [One α] [NormOneClass α] : NormOneClass (ULift α)
Full source
instance ULift.normOneClass [SeminormedAddCommGroup α] [One α] [NormOneClass α] :
    NormOneClass (ULift α) :=
  ⟨by simp [ULift.norm_def]⟩
Norm of Identity in Lifted Seminormed Groups
Informal description
For any seminormed additive commutative group $\alpha$ with a multiplicative identity satisfying $\|1\| = 1$, the lifted type $\text{ULift}\,\alpha$ also satisfies $\|1\| = 1$.
Prod.normOneClass instance
[SeminormedAddCommGroup α] [One α] [NormOneClass α] [SeminormedAddCommGroup β] [One β] [NormOneClass β] : NormOneClass (α × β)
Full source
instance Prod.normOneClass [SeminormedAddCommGroup α] [One α] [NormOneClass α]
    [SeminormedAddCommGroup β] [One β] [NormOneClass β] : NormOneClass (α × β) :=
  ⟨by simp [Prod.norm_def]⟩
Norm of Identity in Product of Seminormed Groups
Informal description
For any two seminormed additive commutative groups $\alpha$ and $\beta$ each equipped with a multiplicative identity and satisfying $\|1\| = 1$, their product $\alpha \times \beta$ also satisfies $\|(1,1)\| = 1$.
Pi.normOneClass instance
{ι : Type*} {α : ι → Type*} [Nonempty ι] [Fintype ι] [∀ i, SeminormedAddCommGroup (α i)] [∀ i, One (α i)] [∀ i, NormOneClass (α i)] : NormOneClass (∀ i, α i)
Full source
instance Pi.normOneClass {ι : Type*} {α : ι → Type*} [Nonempty ι] [Fintype ι]
    [∀ i, SeminormedAddCommGroup (α i)] [∀ i, One (α i)] [∀ i, NormOneClass (α i)] :
    NormOneClass (∀ i, α i) :=
  ⟨by simpa [Pi.norm_def] using Finset.sup_const Finset.univ_nonempty 1⟩
Norm of Identity in Product of Seminormed Groups
Informal description
For any nonempty finite index set $\iota$ and a family of seminormed additive commutative groups $\alpha_i$ each equipped with a multiplicative identity satisfying $\|1\| = 1$, the product space $\prod_{i \in \iota} \alpha_i$ also satisfies $\|1\| = 1$.
MulOpposite.normOneClass instance
[SeminormedAddCommGroup α] [One α] [NormOneClass α] : NormOneClass αᵐᵒᵖ
Full source
instance MulOpposite.normOneClass [SeminormedAddCommGroup α] [One α] [NormOneClass α] :
    NormOneClass αᵐᵒᵖ :=
  ⟨@norm_one α _ _ _⟩
Norm of Identity in Opposite Seminormed Group
Informal description
For any seminormed additive commutative group $\alpha$ with a multiplicative identity satisfying $\|1\| = 1$, the opposite group $\alpha^{\mathrm{op}}$ also satisfies $\|1\| = 1$.
norm_mul_le theorem
(a b : α) : ‖a * b‖ ≤ ‖a‖ * ‖b‖
Full source
/-- The norm is submultiplicative. -/
theorem norm_mul_le (a b : α) : ‖a * b‖‖a‖ * ‖b‖ :=
  NonUnitalSeminormedRing.norm_mul_le a b
Submultiplicativity of the norm in a non-unital seminormed ring
Informal description
For any elements $a$ and $b$ in a non-unital seminormed ring $\alpha$, the norm of their product satisfies $\|a b\| \leq \|a\| \|b\|$.
nnnorm_mul_le theorem
(a b : α) : ‖a * b‖₊ ≤ ‖a‖₊ * ‖b‖₊
Full source
theorem nnnorm_mul_le (a b : α) : ‖a * b‖₊‖a‖₊ * ‖b‖₊ := norm_mul_le a b
Submultiplicativity of the Nonnegative Seminorm in a Non-Unital Seminormed Ring
Informal description
For any elements $a$ and $b$ in a non-unital seminormed ring $\alpha$, the seminorm of their product satisfies $\|a b\|_{\mathbb{R}_{\geq 0}} \leq \|a\|_{\mathbb{R}_{\geq 0}} \|b\|_{\mathbb{R}_{\geq 0}}$, where $\|\cdot\|_{\mathbb{R}_{\geq 0}}$ denotes the nonnegative real seminorm.
norm_mul_le_of_le theorem
{r₁ r₂ : ℝ} (h₁ : ‖a₁‖ ≤ r₁) (h₂ : ‖a₂‖ ≤ r₂) : ‖a₁ * a₂‖ ≤ r₁ * r₂
Full source
lemma norm_mul_le_of_le {r₁ r₂ : } (h₁ : ‖a₁‖ ≤ r₁) (h₂ : ‖a₂‖ ≤ r₂) : ‖a₁ * a₂‖ ≤ r₁ * r₂ :=
  (norm_mul_le ..).trans <| mul_le_mul h₁ h₂ (norm_nonneg _) ((norm_nonneg _).trans h₁)
Submultiplicativity of Norm with Bounds in Non-Unital Seminormed Ring
Informal description
For any elements $a_1$ and $a_2$ in a non-unital seminormed ring $\alpha$, if $\|a_1\| \leq r_1$ and $\|a_2\| \leq r_2$ for some real numbers $r_1$ and $r_2$, then the norm of their product satisfies $\|a_1 a_2\| \leq r_1 r_2$.
nnnorm_mul_le_of_le theorem
{r₁ r₂ : ℝ≥0} (h₁ : ‖a₁‖₊ ≤ r₁) (h₂ : ‖a₂‖₊ ≤ r₂) : ‖a₁ * a₂‖₊ ≤ r₁ * r₂
Full source
lemma nnnorm_mul_le_of_le {r₁ r₂ : ℝ≥0} (h₁ : ‖a₁‖₊ ≤ r₁) (h₂ : ‖a₂‖₊ ≤ r₂) :
    ‖a₁ * a₂‖₊ ≤ r₁ * r₂ := (nnnorm_mul_le ..).trans <| mul_le_mul' h₁ h₂
Submultiplicativity of Nonnegative Seminorm with Bounds
Informal description
For any elements $a_1$ and $a_2$ in a non-unital seminormed ring $\alpha$, if their nonnegative seminorms satisfy $\|a_1\|_{\mathbb{R}_{\geq 0}} \leq r_1$ and $\|a_2\|_{\mathbb{R}_{\geq 0}} \leq r_2$ for some nonnegative real numbers $r_1, r_2 \in \mathbb{R}_{\geq 0}$, then the seminorm of their product satisfies $\|a_1 a_2\|_{\mathbb{R}_{\geq 0}} \leq r_1 r_2$.
norm_mul₃_le theorem
: ‖a * b * c‖ ≤ ‖a‖ * ‖b‖ * ‖c‖
Full source
lemma norm_mul₃_le : ‖a * b * c‖‖a‖ * ‖b‖ * ‖c‖ := norm_mul_le_of_le (norm_mul_le ..) le_rfl
Submultiplicativity of Norm for Triple Product in Non-Unital Seminormed Ring
Informal description
For any elements $a$, $b$, and $c$ in a non-unital seminormed ring $\alpha$, the norm of their triple product satisfies $\|a b c\| \leq \|a\| \|b\| \|c\|$.
nnnorm_mul₃_le theorem
: ‖a * b * c‖₊ ≤ ‖a‖₊ * ‖b‖₊ * ‖c‖₊
Full source
lemma nnnorm_mul₃_le : ‖a * b * c‖₊‖a‖₊ * ‖b‖₊ * ‖c‖₊ :=
  nnnorm_mul_le_of_le (norm_mul_le ..) le_rfl
Submultiplicativity of Nonnegative Seminorm for Triple Product
Informal description
For any elements $a$, $b$, and $c$ in a non-unital seminormed ring $\alpha$, the nonnegative seminorm of their triple product satisfies $\|a b c\|_{\mathbb{R}_{\geq 0}} \leq \|a\|_{\mathbb{R}_{\geq 0}} \|b\|_{\mathbb{R}_{\geq 0}} \|c\|_{\mathbb{R}_{\geq 0}}$.
one_le_norm_one theorem
(β) [NormedRing β] [Nontrivial β] : 1 ≤ ‖(1 : β)‖
Full source
theorem one_le_norm_one (β) [NormedRing β] [Nontrivial β] : 1 ≤ ‖(1 : β)‖ :=
  (le_mul_iff_one_le_left <| norm_pos_iff.mpr (one_ne_zero : (1 : β) ≠ 0)).mp
    (by simpa only [mul_one] using norm_mul_le (1 : β) 1)
Lower Bound on Norm of Identity in Nontrivial Normed Rings: $1 \leq \|1\|$
Informal description
For any nontrivial normed ring $\beta$, the norm of the multiplicative identity satisfies $1 \leq \|1\|$.
one_le_nnnorm_one theorem
(β) [NormedRing β] [Nontrivial β] : 1 ≤ ‖(1 : β)‖₊
Full source
theorem one_le_nnnorm_one (β) [NormedRing β] [Nontrivial β] : 1 ≤ ‖(1 : β)‖₊ :=
  one_le_norm_one β
Lower Bound on Seminorm of Identity in Nontrivial Normed Rings: $1 \leq \|1\|_\mathbb{N}$
Informal description
For any nontrivial normed ring $\beta$, the seminorm of the multiplicative identity satisfies $1 \leq \|1\|_\mathbb{N}$, where $\|\cdot\|_\mathbb{N}$ denotes the seminorm.
mulLeft_bound theorem
(x : α) : ∀ y : α, ‖AddMonoidHom.mulLeft x y‖ ≤ ‖x‖ * ‖y‖
Full source
/-- In a seminormed ring, the left-multiplication `AddMonoidHom` is bounded. -/
theorem mulLeft_bound (x : α) : ∀ y : α, ‖AddMonoidHom.mulLeft x y‖‖x‖ * ‖y‖ :=
  norm_mul_le x
Boundedness of Left Multiplication in Non-Unital Seminormed Rings
Informal description
In a non-unital seminormed ring $\alpha$, for any element $x \in \alpha$, the left-multiplication map $y \mapsto xy$ (as an additive monoid homomorphism) satisfies the inequality $\|xy\| \leq \|x\| \|y\|$ for all $y \in \alpha$.
mulRight_bound theorem
(x : α) : ∀ y : α, ‖AddMonoidHom.mulRight x y‖ ≤ ‖x‖ * ‖y‖
Full source
/-- In a seminormed ring, the right-multiplication `AddMonoidHom` is bounded. -/
theorem mulRight_bound (x : α) : ∀ y : α, ‖AddMonoidHom.mulRight x y‖‖x‖ * ‖y‖ := fun y => by
  rw [mul_comm]
  exact norm_mul_le y x
Boundedness of Right Multiplication in Non-Unital Seminormed Rings
Informal description
In a non-unital seminormed ring $\alpha$, for any element $x \in \alpha$, the right-multiplication map $y \mapsto yx$ (as an additive monoid homomorphism) satisfies the inequality $\|yx\| \leq \|y\| \|x\|$ for all $y \in \alpha$.
NonUnitalSubalgebra.nonUnitalSeminormedRing instance
{𝕜 : Type*} [CommRing 𝕜] {E : Type*} [NonUnitalSeminormedRing E] [Module 𝕜 E] (s : NonUnitalSubalgebra 𝕜 E) : NonUnitalSeminormedRing s
Full source
/-- A non-unital subalgebra of a non-unital seminormed ring is also a non-unital seminormed ring,
with the restriction of the norm. -/
instance NonUnitalSubalgebra.nonUnitalSeminormedRing {𝕜 : Type*} [CommRing 𝕜] {E : Type*}
    [NonUnitalSeminormedRing E] [Module 𝕜 E] (s : NonUnitalSubalgebra 𝕜 E) :
    NonUnitalSeminormedRing s :=
  { s.toSubmodule.seminormedAddCommGroup, s.toNonUnitalRing with
    norm_mul_le a b := norm_mul_le a.1 b.1 }
Non-unital Subalgebras as Non-unital Seminormed Rings
Informal description
For any commutative ring $\mathbb{k}$ and non-unital seminormed ring $E$ equipped with a $\mathbb{k}$-module structure, every non-unital subalgebra $s$ of $E$ inherits a non-unital seminormed ring structure, where the norm is restricted from $E$.
NonUnitalSubalgebraClass.nonUnitalSeminormedRing instance
{S 𝕜 E : Type*} [CommRing 𝕜] [NonUnitalSeminormedRing E] [Module 𝕜 E] [SetLike S E] [NonUnitalSubringClass S E] [SMulMemClass S 𝕜 E] (s : S) : NonUnitalSeminormedRing s
Full source
/-- A non-unital subalgebra of a non-unital seminormed ring is also a non-unital seminormed ring,
with the restriction of the norm. -/
-- necessary to require `SMulMemClass S 𝕜 E` so that `𝕜` can be determined as an `outParam`
@[nolint unusedArguments]
instance (priority := 75) NonUnitalSubalgebraClass.nonUnitalSeminormedRing {S 𝕜 E : Type*}
    [CommRing 𝕜] [NonUnitalSeminormedRing E] [Module 𝕜 E] [SetLike S E] [NonUnitalSubringClass S E]
    [SMulMemClass S 𝕜 E] (s : S) :
    NonUnitalSeminormedRing s :=
  { AddSubgroupClass.seminormedAddCommGroup s, NonUnitalSubringClass.toNonUnitalRing s with
    norm_mul_le a b := norm_mul_le a.1 b.1 }
Non-unital Subrings Closed Under Scalar Multiplication as Non-unital Seminormed Rings
Informal description
For any commutative ring $\mathbb{k}$ and non-unital seminormed ring $E$ equipped with a $\mathbb{k}$-module structure, if $S$ is a type of subsets of $E$ that forms a non-unital subring and is closed under scalar multiplication by $\mathbb{k}$, then every subset $s \in S$ inherits a non-unital seminormed ring structure from $E$.
NonUnitalSubalgebra.nonUnitalNormedRing instance
{𝕜 : Type*} [CommRing 𝕜] {E : Type*} [NonUnitalNormedRing E] [Module 𝕜 E] (s : NonUnitalSubalgebra 𝕜 E) : NonUnitalNormedRing s
Full source
/-- A non-unital subalgebra of a non-unital normed ring is also a non-unital normed ring, with the
restriction of the norm. -/
instance NonUnitalSubalgebra.nonUnitalNormedRing {𝕜 : Type*} [CommRing 𝕜] {E : Type*}
    [NonUnitalNormedRing E] [Module 𝕜 E] (s : NonUnitalSubalgebra 𝕜 E) : NonUnitalNormedRing s :=
  { s.nonUnitalSeminormedRing with
    eq_of_dist_eq_zero := eq_of_dist_eq_zero }
Non-Unital Subalgebras as Non-Unital Normed Rings
Informal description
For any commutative ring $\mathbb{k}$ and non-unital normed ring $E$ equipped with a $\mathbb{k}$-module structure, every non-unital subalgebra $s$ of $E$ inherits a non-unital normed ring structure, where the norm is restricted from $E$.
NonUnitalSubalgebraClass.nonUnitalNormedRing instance
{S 𝕜 E : Type*} [CommRing 𝕜] [NonUnitalNormedRing E] [Module 𝕜 E] [SetLike S E] [NonUnitalSubringClass S E] [SMulMemClass S 𝕜 E] (s : S) : NonUnitalNormedRing s
Full source
/-- A non-unital subalgebra of a non-unital normed ring is also a non-unital normed ring,
with the restriction of the norm. -/
instance (priority := 75) NonUnitalSubalgebraClass.nonUnitalNormedRing {S 𝕜 E : Type*}
    [CommRing 𝕜] [NonUnitalNormedRing E] [Module 𝕜 E] [SetLike S E] [NonUnitalSubringClass S E]
    [SMulMemClass S 𝕜 E] (s : S) :
    NonUnitalNormedRing s :=
  { nonUnitalSeminormedRing s with
    eq_of_dist_eq_zero := eq_of_dist_eq_zero }
Non-unital Subrings Closed Under Scalar Multiplication as Non-unital Normed Rings
Informal description
For any commutative ring $\mathbb{k}$ and non-unital normed ring $E$ equipped with a $\mathbb{k}$-module structure, if $S$ is a type of subsets of $E$ that forms a non-unital subring and is closed under scalar multiplication by $\mathbb{k}$, then every subset $s \in S$ inherits a non-unital normed ring structure from $E$.
Prod.nonUnitalSeminormedRing instance
[NonUnitalSeminormedRing β] : NonUnitalSeminormedRing (α × β)
Full source
/-- Non-unital seminormed ring structure on the product of two non-unital seminormed rings,
  using the sup norm. -/
instance Prod.nonUnitalSeminormedRing [NonUnitalSeminormedRing β] :
    NonUnitalSeminormedRing (α × β) :=
  { seminormedAddCommGroup, instNonUnitalRing with
    norm_mul_le x y := calc
      ‖x * y‖ = ‖(x.1 * y.1, x.2 * y.2)‖ := rfl
      _ = max ‖x.1 * y.1‖ ‖x.2 * y.2‖ := rfl
      _ ≤ max (‖x.1‖ * ‖y.1‖) (‖x.2‖ * ‖y.2‖) :=
        (max_le_max (norm_mul_le x.1 y.1) (norm_mul_le x.2 y.2))
      _ = max (‖x.1‖ * ‖y.1‖) (‖y.2‖ * ‖x.2‖) := by simp [mul_comm]
      _ ≤ max ‖x.1‖ ‖x.2‖ * max ‖y.2‖ ‖y.1‖ := by
        apply max_mul_mul_le_max_mul_max <;> simp [norm_nonneg]
      _ = max ‖x.1‖ ‖x.2‖ * max ‖y.1‖ ‖y.2‖ := by simp [max_comm]
      _ = ‖x‖ * ‖y‖ := rfl }
Product of Non-Unital Seminormed Rings is a Non-Unital Seminormed Ring
Informal description
For any two non-unital seminormed rings $\alpha$ and $\beta$, the product $\alpha \times \beta$ is also a non-unital seminormed ring with the sup norm.
MulOpposite.instNonUnitalSeminormedRing instance
: NonUnitalSeminormedRing αᵐᵒᵖ
Full source
instance MulOpposite.instNonUnitalSeminormedRing : NonUnitalSeminormedRing αᵐᵒᵖ where
  __ := instNonUnitalRing
  __ := instSeminormedAddCommGroup
  norm_mul_le := MulOpposite.rec' fun x ↦ MulOpposite.rec' fun y ↦
    (norm_mul_le y x).trans_eq (mul_comm _ _)
Opposite Ring of a Non-Unital Seminormed Ring is a Non-Unital Seminormed Ring
Informal description
The opposite ring $\alpha^\text{op}$ of a non-unital seminormed ring $\alpha$ is also a non-unital seminormed ring.
Subalgebra.seminormedRing instance
{𝕜 : Type*} [CommRing 𝕜] {E : Type*} [SeminormedRing E] [Algebra 𝕜 E] (s : Subalgebra 𝕜 E) : SeminormedRing s
Full source
/-- A subalgebra of a seminormed ring is also a seminormed ring, with the restriction of the
norm. -/
instance Subalgebra.seminormedRing {𝕜 : Type*} [CommRing 𝕜] {E : Type*} [SeminormedRing E]
    [Algebra 𝕜 E] (s : Subalgebra 𝕜 E) : SeminormedRing s :=
  { s.toSubmodule.seminormedAddCommGroup, s.toRing with
    norm_mul_le a b := norm_mul_le a.1 b.1 }
Subalgebras Inherit Seminormed Ring Structure
Informal description
For any commutative ring $\mathbb{K}$ and seminormed ring $E$ with an algebra structure $\mathbb{K} \to E$, every subalgebra $s$ of $E$ inherits a seminormed ring structure from $E$.
SubalgebraClass.seminormedRing instance
{S 𝕜 E : Type*} [CommRing 𝕜] [SeminormedRing E] [Algebra 𝕜 E] [SetLike S E] [SubringClass S E] [SMulMemClass S 𝕜 E] (s : S) : SeminormedRing s
Full source
/-- A subalgebra of a seminormed ring is also a seminormed ring, with the restriction of the
norm. -/
-- necessary to require `SMulMemClass S 𝕜 E` so that `𝕜` can be determined as an `outParam`
@[nolint unusedArguments]
instance (priority := 75) SubalgebraClass.seminormedRing {S 𝕜 E : Type*} [CommRing 𝕜]
    [SeminormedRing E] [Algebra 𝕜 E] [SetLike S E] [SubringClass S E] [SMulMemClass S 𝕜 E]
    (s : S) : SeminormedRing s :=
  { AddSubgroupClass.seminormedAddCommGroup s, SubringClass.toRing s with
    norm_mul_le a b := norm_mul_le a.1 b.1 }
Subsets Closed Under Ring Operations and Scalar Multiplication Inherit Seminormed Ring Structure
Informal description
For any commutative ring $\mathbb{K}$, seminormed ring $E$ with an algebra structure $\mathbb{K} \to E$, and subset $s$ of $E$ that is closed under ring operations and scalar multiplication by $\mathbb{K}$, the subset $s$ inherits a seminormed ring structure from $E$.
Subalgebra.normedRing instance
{𝕜 : Type*} [CommRing 𝕜] {E : Type*} [NormedRing E] [Algebra 𝕜 E] (s : Subalgebra 𝕜 E) : NormedRing s
Full source
/-- A subalgebra of a normed ring is also a normed ring, with the restriction of the norm. -/
instance Subalgebra.normedRing {𝕜 : Type*} [CommRing 𝕜] {E : Type*} [NormedRing E]
    [Algebra 𝕜 E] (s : Subalgebra 𝕜 E) : NormedRing s :=
  { s.seminormedRing with
    eq_of_dist_eq_zero := eq_of_dist_eq_zero }
Subalgebras Inherit Normed Ring Structure
Informal description
For any commutative ring $\mathbb{K}$ and normed ring $E$ with an algebra structure $\mathbb{K} \to E$, every subalgebra $s$ of $E$ inherits a normed ring structure from $E$.
SubalgebraClass.normedRing instance
{S 𝕜 E : Type*} [CommRing 𝕜] [NormedRing E] [Algebra 𝕜 E] [SetLike S E] [SubringClass S E] [SMulMemClass S 𝕜 E] (s : S) : NormedRing s
Full source
/-- A subalgebra of a normed ring is also a normed ring, with the restriction of the
norm. -/
instance (priority := 75) SubalgebraClass.normedRing {S 𝕜 E : Type*} [CommRing 𝕜]
    [NormedRing E] [Algebra 𝕜 E] [SetLike S E] [SubringClass S E] [SMulMemClass S 𝕜 E]
    (s : S) : NormedRing s :=
  { seminormedRing s with
    eq_of_dist_eq_zero := eq_of_dist_eq_zero }
Subsets Closed Under Ring Operations and Scalar Multiplication Inherit Normed Ring Structure
Informal description
For any commutative ring $\mathbb{K}$, normed ring $E$ with an algebra structure $\mathbb{K} \to E$, and subset $s$ of $E$ that is closed under ring operations and scalar multiplication by $\mathbb{K}$, the subset $s$ inherits a normed ring structure from $E$.
Nat.norm_cast_le theorem
: ∀ n : ℕ, ‖(n : α)‖ ≤ n * ‖(1 : α)‖
Full source
theorem Nat.norm_cast_le : ∀ n : , ‖(n : α)‖ ≤ n * ‖(1 : α)‖
  | 0 => by simp
  | n + 1 => by
    rw [n.cast_succ, n.cast_succ, add_mul, one_mul]
    exact norm_add_le_of_le (Nat.norm_cast_le n) le_rfl
Norm of Natural Number Cast in Seminormed Ring is Bounded by $n \cdot \|1\|$
Informal description
For any natural number $n$ and any seminormed ring $\alpha$, the norm of the canonical image of $n$ in $\alpha$ satisfies $\|n\| \leq n \cdot \|1\|$.
List.norm_prod_le' theorem
: ∀ {l : List α}, l ≠ [] → ‖l.prod‖ ≤ (l.map norm).prod
Full source
theorem List.norm_prod_le' : ∀ {l : List α}, l ≠ []‖l.prod‖ ≤ (l.map norm).prod
  | [], h => (h rfl).elim
  | [a], _ => by simp
  | a::b::l, _ => by
    rw [List.map_cons, List.prod_cons, List.prod_cons (a := ‖a‖)]
    refine le_trans (norm_mul_le _ _) (mul_le_mul_of_nonneg_left ?_ (norm_nonneg _))
    exact List.norm_prod_le' (List.cons_ne_nil b l)
Norm of Product in Seminormed Ring Bounded by Product of Norms for Non-Empty Lists
Informal description
For any non-empty list $l$ of elements in a seminormed ring $\alpha$, the norm of the product of the elements in $l$ is bounded by the product of the norms of the elements in $l$, i.e., $\|\prod l\| \leq \prod (\text{norm} \circ l)$.
List.nnnorm_prod_le' theorem
{l : List α} (hl : l ≠ []) : ‖l.prod‖₊ ≤ (l.map nnnorm).prod
Full source
theorem List.nnnorm_prod_le' {l : List α} (hl : l ≠ []) : ‖l.prod‖₊ ≤ (l.map nnnorm).prod :=
  (List.norm_prod_le' hl).trans_eq <| by simp [NNReal.coe_list_prod, List.map_map]
Product Norm Inequality for Non-Empty Lists in Seminormed Rings
Informal description
For any non-empty list $l$ of elements in a seminormed ring $\alpha$, the seminorm of the product of the elements in $l$ is bounded by the product of the seminorms of the elements in $l$, i.e., $\|\prod l\| \leq \prod (\text{norm} \circ l)$.
List.norm_prod_le theorem
[NormOneClass α] : ∀ l : List α, ‖l.prod‖ ≤ (l.map norm).prod
Full source
theorem List.norm_prod_le [NormOneClass α] : ∀ l : List α, ‖l.prod‖ ≤ (l.map norm).prod
  | [] => by simp
  | a::l => List.norm_prod_le' (List.cons_ne_nil a l)
Norm of Product Bounded by Product of Norms in Seminormed Ring with Norm One
Informal description
For any list $l$ of elements in a seminormed ring $\alpha$ with $\|1\| = 1$, the norm of the product of the elements in $l$ is bounded by the product of the norms of the elements, i.e., $\|\prod l\| \leq \prod_{x \in l} \|x\|$.
List.nnnorm_prod_le theorem
[NormOneClass α] (l : List α) : ‖l.prod‖₊ ≤ (l.map nnnorm).prod
Full source
theorem List.nnnorm_prod_le [NormOneClass α] (l : List α) : ‖l.prod‖₊ ≤ (l.map nnnorm).prod :=
  l.norm_prod_le.trans_eq <| by simp [NNReal.coe_list_prod, List.map_map]
Product Norm Inequality in Seminormed Ring with $\|1\| = 1$
Informal description
For any list $l$ of elements in a seminormed ring $\alpha$ with $\|1\| = 1$, the seminorm of the product of the elements in $l$ is bounded by the product of the seminorms of the elements, i.e., $\|\prod l\| \leq \prod_{x \in l} \|x\|$.
Finset.norm_prod_le' theorem
{α : Type*} [NormedCommRing α] (s : Finset ι) (hs : s.Nonempty) (f : ι → α) : ‖∏ i ∈ s, f i‖ ≤ ∏ i ∈ s, ‖f i‖
Full source
theorem Finset.norm_prod_le' {α : Type*} [NormedCommRing α] (s : Finset ι) (hs : s.Nonempty)
    (f : ι → α) : ‖∏ i ∈ s, f i‖∏ i ∈ s, ‖f i‖ := by
  rcases s with ⟨⟨l⟩, hl⟩
  have : l.map f ≠ [] := by simpa using hs
  simpa using List.norm_prod_le' this
Norm of Product in Normed Commutative Ring Bounded by Product of Norms for Non-Empty Finite Sets
Informal description
Let $\alpha$ be a normed commutative ring and $s$ be a non-empty finite set indexed by $\iota$. For any function $f \colon \iota \to \alpha$, the norm of the product $\prod_{i \in s} f(i)$ is bounded by the product of the norms $\prod_{i \in s} \|f(i)\|$, i.e., \[ \left\|\prod_{i \in s} f(i)\right\| \leq \prod_{i \in s} \|f(i)\|. \]
Finset.nnnorm_prod_le' theorem
{α : Type*} [NormedCommRing α] (s : Finset ι) (hs : s.Nonempty) (f : ι → α) : ‖∏ i ∈ s, f i‖₊ ≤ ∏ i ∈ s, ‖f i‖₊
Full source
theorem Finset.nnnorm_prod_le' {α : Type*} [NormedCommRing α] (s : Finset ι) (hs : s.Nonempty)
    (f : ι → α) : ‖∏ i ∈ s, f i‖₊∏ i ∈ s, ‖f i‖₊ :=
  (s.norm_prod_le' hs f).trans_eq <| by simp [NNReal.coe_prod]
Non-Negative Norm of Product Bounded by Product of Non-Negative Norms in Normed Commutative Ring for Non-Empty Finite Sets
Informal description
Let $\alpha$ be a normed commutative ring and $s$ be a non-empty finite set indexed by $\iota$. For any function $f \colon \iota \to \alpha$, the non-negative norm of the product $\prod_{i \in s} f(i)$ is bounded by the product of the non-negative norms $\prod_{i \in s} \|f(i)\|_{\mathbb{R}_{\geq 0}}$, i.e., \[ \left\|\prod_{i \in s} f(i)\right\|_{\mathbb{R}_{\geq 0}} \leq \prod_{i \in s} \|f(i)\|_{\mathbb{R}_{\geq 0}}. \]
Finset.norm_prod_le theorem
{α : Type*} [NormedCommRing α] [NormOneClass α] (s : Finset ι) (f : ι → α) : ‖∏ i ∈ s, f i‖ ≤ ∏ i ∈ s, ‖f i‖
Full source
theorem Finset.norm_prod_le {α : Type*} [NormedCommRing α] [NormOneClass α] (s : Finset ι)
    (f : ι → α) : ‖∏ i ∈ s, f i‖∏ i ∈ s, ‖f i‖ := by
  rcases s with ⟨⟨l⟩, hl⟩
  simpa using (l.map f).norm_prod_le
Norm of Product Bounded by Product of Norms in Normed Commutative Ring with $\|1\| = 1$
Informal description
Let $\alpha$ be a normed commutative ring with $\|1\| = 1$, and let $s$ be a finite set indexed by $\iota$. For any function $f \colon \iota \to \alpha$, the norm of the product $\prod_{i \in s} f(i)$ is bounded by the product of the norms $\prod_{i \in s} \|f(i)\|$, i.e., \[ \left\|\prod_{i \in s} f(i)\right\| \leq \prod_{i \in s} \|f(i)\|. \]
Finset.nnnorm_prod_le theorem
{α : Type*} [NormedCommRing α] [NormOneClass α] (s : Finset ι) (f : ι → α) : ‖∏ i ∈ s, f i‖₊ ≤ ∏ i ∈ s, ‖f i‖₊
Full source
theorem Finset.nnnorm_prod_le {α : Type*} [NormedCommRing α] [NormOneClass α] (s : Finset ι)
    (f : ι → α) : ‖∏ i ∈ s, f i‖₊∏ i ∈ s, ‖f i‖₊ :=
  (s.norm_prod_le f).trans_eq <| by simp [NNReal.coe_prod]
Nonnegative norm submultiplicativity: $\|\prod f_i\|_{\mathbb{R}_{\geq 0}} \leq \prod \|f_i\|_{\mathbb{R}_{\geq 0}}$ in normed commutative rings with $\|1\| = 1$
Informal description
Let $\alpha$ be a normed commutative ring with $\|1\| = 1$, and let $s$ be a finite set indexed by $\iota$. For any function $f \colon \iota \to \alpha$, the nonnegative norm of the product $\prod_{i \in s} f(i)$ is bounded by the product of the nonnegative norms $\prod_{i \in s} \|f(i)\|_{\mathbb{R}_{\geq 0}}$, i.e., \[ \left\|\prod_{i \in s} f(i)\right\|_{\mathbb{R}_{\geq 0}} \leq \prod_{i \in s} \|f(i)\|_{\mathbb{R}_{\geq 0}}. \]
nnnorm_pow_le' theorem
(a : α) : ∀ {n : ℕ}, 0 < n → ‖a ^ n‖₊ ≤ ‖a‖₊ ^ n
Full source
/-- If `α` is a seminormed ring, then `‖a ^ n‖₊ ≤ ‖a‖₊ ^ n` for `n > 0`.
See also `nnnorm_pow_le`. -/
theorem nnnorm_pow_le' (a : α) : ∀ {n : }, 0 < n → ‖a ^ n‖₊‖a‖₊ ^ n
  | 1, _ => by simp only [pow_one, le_rfl]
  | n + 2, _ => by
    simpa only [pow_succ' _ (n + 1)] using
      le_trans (nnnorm_mul_le _ _) (mul_le_mul_left' (nnnorm_pow_le' a n.succ_pos) _)
Submultiplicative Property of Nonnegative Seminorm for Powers in Seminormed Rings
Informal description
For any element $a$ in a seminormed ring $\alpha$ and any positive integer $n$, the nonnegative seminorm of $a^n$ satisfies $\|a^n\|_{\mathbb{R}_{\geq 0}} \leq \|a\|_{\mathbb{R}_{\geq 0}}^n$.
nnnorm_pow_le theorem
[NormOneClass α] (a : α) (n : ℕ) : ‖a ^ n‖₊ ≤ ‖a‖₊ ^ n
Full source
/-- If `α` is a seminormed ring with `‖1‖₊ = 1`, then `‖a ^ n‖₊ ≤ ‖a‖₊ ^ n`.
See also `nnnorm_pow_le'`. -/
theorem nnnorm_pow_le [NormOneClass α] (a : α) (n : ) : ‖a ^ n‖₊‖a‖₊ ^ n :=
  Nat.recOn n (by simp only [pow_zero, nnnorm_one, le_rfl])
    fun k _hk => nnnorm_pow_le' a k.succ_pos
Submultiplicative Inequality for Powers in Seminormed Rings: $\|a^n\| \leq \|a\|^n$
Informal description
Let $\alpha$ be a seminormed ring with $\|1\|_{\mathbb{R}_{\geq 0}} = 1$. For any element $a \in \alpha$ and any natural number $n$, the nonnegative seminorm of $a^n$ satisfies $\|a^n\|_{\mathbb{R}_{\geq 0}} \leq \|a\|_{\mathbb{R}_{\geq 0}}^n$.
norm_pow_le' theorem
(a : α) {n : ℕ} (h : 0 < n) : ‖a ^ n‖ ≤ ‖a‖ ^ n
Full source
/-- If `α` is a seminormed ring, then `‖a ^ n‖ ≤ ‖a‖ ^ n` for `n > 0`. See also `norm_pow_le`. -/
theorem norm_pow_le' (a : α) {n : } (h : 0 < n) : ‖a ^ n‖‖a‖ ^ n := by
  simpa only [NNReal.coe_pow, coe_nnnorm] using NNReal.coe_mono (nnnorm_pow_le' a h)
Submultiplicative Property of Norm for Powers in Seminormed Rings
Informal description
For any element $a$ in a seminormed ring $\alpha$ and any positive integer $n$, the norm of $a^n$ satisfies $\|a^n\| \leq \|a\|^n$.
norm_pow_le theorem
[NormOneClass α] (a : α) (n : ℕ) : ‖a ^ n‖ ≤ ‖a‖ ^ n
Full source
/-- If `α` is a seminormed ring with `‖1‖ = 1`, then `‖a ^ n‖ ≤ ‖a‖ ^ n`.
See also `norm_pow_le'`. -/
theorem norm_pow_le [NormOneClass α] (a : α) (n : ) : ‖a ^ n‖‖a‖ ^ n :=
  Nat.recOn n (by simp only [pow_zero, norm_one, le_rfl])
    fun n _hn => norm_pow_le' a n.succ_pos
Norm Submultiplicativity for Powers: $\|a^n\| \leq \|a\|^n$
Informal description
Let $\alpha$ be a seminormed ring with $\|1\| = 1$. For any element $a \in \alpha$ and any natural number $n$, the norm of $a^n$ satisfies $\|a^n\| \leq \|a\|^n$.
eventually_norm_pow_le theorem
(a : α) : ∀ᶠ n : ℕ in atTop, ‖a ^ n‖ ≤ ‖a‖ ^ n
Full source
theorem eventually_norm_pow_le (a : α) : ∀ᶠ n : ℕ in atTop, ‖a ^ n‖ ≤ ‖a‖ ^ n :=
  eventually_atTop.mpr ⟨1, fun _b h => norm_pow_le' a (Nat.succ_le_iff.mp h)⟩
Eventual Submultiplicative Property of Norm for Powers in Seminormed Rings
Informal description
For any element $a$ in a seminormed ring $\alpha$, the inequality $\|a^n\| \leq \|a\|^n$ holds for all sufficiently large natural numbers $n$.
Prod.seminormedRing instance
[SeminormedRing β] : SeminormedRing (α × β)
Full source
/-- Seminormed ring structure on the product of two seminormed rings,
  using the sup norm. -/
instance Prod.seminormedRing [SeminormedRing β] : SeminormedRing (α × β) :=
  { nonUnitalSeminormedRing, instRing with }
Product of Seminormed Rings is a Seminormed Ring
Informal description
For any two seminormed rings $\alpha$ and $\beta$, the product $\alpha \times \beta$ is also a seminormed ring with the sup norm.
norm_sub_mul_le theorem
(ha : ‖a‖ ≤ 1) : ‖c - a * b‖ ≤ ‖c - a‖ + ‖1 - b‖
Full source
/-- This inequality is particularly useful when `c = 1` and `‖a‖ = ‖b‖ = 1` as it then shows that
chord length is a metric on the unit complex numbers. -/
lemma norm_sub_mul_le (ha : ‖a‖ ≤ 1) : ‖c - a * b‖‖c - a‖ + ‖1 - b‖ :=
  calc
    _ ≤ ‖c - a‖ + ‖a * (1 - b)‖ := by
        simpa [mul_one_sub] using norm_sub_le_norm_sub_add_norm_sub c a (a * b)
    _ ≤ ‖c - a‖ + ‖a‖ * ‖1 - b‖ := by gcongr; exact norm_mul_le ..
    _ ≤ ‖c - a‖ + 1 * ‖1 - b‖ := by gcongr
    _ = ‖c - a‖ + ‖1 - b‖ := by simp
Norm Inequality for Chord Length in Seminormed Rings: $\|c - a b\| \leq \|c - a\| + \|1 - b\|$ when $\|a\| \leq 1$
Informal description
For any elements $a$, $b$, and $c$ in a seminormed ring $\alpha$ with $\|a\| \leq 1$, the norm of $c - a \cdot b$ satisfies the inequality $\|c - a \cdot b\| \leq \|c - a\| + \|1 - b\|$.
norm_sub_mul_le' theorem
(hb : ‖b‖ ≤ 1) : ‖c - a * b‖ ≤ ‖1 - a‖ + ‖c - b‖
Full source
/-- This inequality is particularly useful when `c = 1` and `‖a‖ = ‖b‖ = 1` as it then shows that
chord length is a metric on the unit complex numbers. -/
lemma norm_sub_mul_le' (hb : ‖b‖ ≤ 1) : ‖c - a * b‖‖1 - a‖ + ‖c - b‖ := by
  rw [add_comm]; exact norm_sub_mul_le (α := αᵐᵒᵖ) hb
Norm Inequality for Chord Length in Seminormed Rings: $\|c - a b\| \leq \|1 - a\| + \|c - b\|$ when $\|b\| \leq 1$
Informal description
For any elements $a$, $b$, and $c$ in a seminormed ring $\alpha$ with $\|b\| \leq 1$, the norm of $c - a \cdot b$ satisfies the inequality $\|c - a \cdot b\| \leq \|1 - a\| + \|c - b\|$.
nnnorm_sub_mul_le theorem
(ha : ‖a‖₊ ≤ 1) : ‖c - a * b‖₊ ≤ ‖c - a‖₊ + ‖1 - b‖₊
Full source
/-- This inequality is particularly useful when `c = 1` and `‖a‖ = ‖b‖ = 1` as it then shows that
chord length is a metric on the unit complex numbers. -/
lemma nnnorm_sub_mul_le (ha : ‖a‖₊ ≤ 1) : ‖c - a * b‖₊‖c - a‖₊ + ‖1 - b‖₊ := norm_sub_mul_le ha
Nonnegative Norm Inequality for Chord Length: $\|c - a b\| \leq \|c - a\| + \|1 - b\|$ when $\|a\| \leq 1$
Informal description
For any elements $a$, $b$, and $c$ in a seminormed ring $\alpha$ with $\|a\| \leq 1$, the nonnegative norm of $c - a \cdot b$ satisfies the inequality $\|c - a \cdot b\| \leq \|c - a\| + \|1 - b\|$.
nnnorm_sub_mul_le' theorem
(hb : ‖b‖₊ ≤ 1) : ‖c - a * b‖₊ ≤ ‖1 - a‖₊ + ‖c - b‖₊
Full source
/-- This inequality is particularly useful when `c = 1` and `‖a‖ = ‖b‖ = 1` as it then shows that
chord length is a metric on the unit complex numbers. -/
lemma nnnorm_sub_mul_le' (hb : ‖b‖₊ ≤ 1) : ‖c - a * b‖₊‖1 - a‖₊ + ‖c - b‖₊ := norm_sub_mul_le' hb
Nonnegative Norm Inequality: $\|c - a b\| \leq \|1 - a\| + \|c - b\|$ when $\|b\| \leq 1$
Informal description
For any elements $a$, $b$, and $c$ in a seminormed ring $\alpha$ with $\|b\| \leq 1$, the nonnegative norm of $c - a \cdot b$ satisfies the inequality $\|c - a \cdot b\| \leq \|1 - a\| + \|c - b\|$.
norm_commutator_units_sub_one_le theorem
(a b : αˣ) : ‖(a * b * a⁻¹ * b⁻¹).val - 1‖ ≤ 2 * ‖a⁻¹.val‖ * ‖b⁻¹.val‖ * ‖a.val - 1‖ * ‖b.val - 1‖
Full source
lemma norm_commutator_units_sub_one_le (a b : αˣ) :
    ‖(a * b * a⁻¹ * b⁻¹).val - 1‖ ≤ 2 * ‖a⁻¹.val‖ * ‖b⁻¹.val‖ * ‖a.val - 1‖ * ‖b.val - 1‖ :=
  calc
    ‖(a * b * a⁻¹ * b⁻¹).val - 1‖ = ‖(a * b - b * a) * a⁻¹.val * b⁻¹.val‖ := by simp [sub_mul, *]
    _ ≤ ‖(a * b - b * a : α)‖ * ‖a⁻¹.val‖ * ‖b⁻¹.val‖ := norm_mul₃_le
    _ = ‖(a - 1 : α) * (b - 1) - (b - 1) * (a - 1)‖ * ‖a⁻¹.val‖ * ‖b⁻¹.val‖ := by
      simp_rw [sub_one_mul, mul_sub_one]; abel_nf
    _ ≤ (‖(a - 1 : α) * (b - 1)‖ + ‖(b - 1 : α) * (a - 1)‖) * ‖a⁻¹.val‖ * ‖b⁻¹.val‖ := by
      gcongr; exact norm_sub_le ..
    _ ≤ (‖a.val - 1‖ * ‖b.val - 1‖ + ‖b.val - 1‖ * ‖a.val - 1‖) * ‖a⁻¹.val‖ * ‖b⁻¹.val‖ := by
      gcongr <;> exact norm_mul_le ..
    _ = 2 * ‖a⁻¹.val‖ * ‖b⁻¹.val‖ * ‖a.val - 1‖ * ‖b.val - 1‖ := by ring
Norm Inequality for Commutator of Units in a Seminormed Ring
Informal description
For any invertible elements $a$ and $b$ in a seminormed ring $\alpha$, the norm of the commutator $[a, b] = a b a^{-1} b^{-1}$ minus the identity satisfies the inequality \[ \| [a, b] - 1 \| \leq 2 \| a^{-1} \| \| b^{-1} \| \| a - 1 \| \| b - 1 \|. \]
nnnorm_commutator_units_sub_one_le theorem
(a b : αˣ) : ‖(a * b * a⁻¹ * b⁻¹).val - 1‖₊ ≤ 2 * ‖a⁻¹.val‖₊ * ‖b⁻¹.val‖₊ * ‖a.val - 1‖₊ * ‖b.val - 1‖₊
Full source
lemma nnnorm_commutator_units_sub_one_le (a b : αˣ) :
    ‖(a * b * a⁻¹ * b⁻¹).val - 1‖₊ ≤ 2 * ‖a⁻¹.val‖₊ * ‖b⁻¹.val‖₊ * ‖a.val - 1‖₊ * ‖b.val - 1‖₊ := by
  simpa using norm_commutator_units_sub_one_le a b
Nonnegative Norm Inequality for Commutator of Units in a Seminormed Ring
Informal description
For any invertible elements $a$ and $b$ in a seminormed ring $\alpha$, the nonnegative norm of the commutator $[a, b] = a b a^{-1} b^{-1}$ minus the identity satisfies the inequality \[ \| [a, b] - 1 \| \leq 2 \| a^{-1} \| \| b^{-1} \| \| a - 1 \| \| b - 1 \|. \]
RingHom.IsBounded definition
{α : Type*} [SeminormedRing α] {β : Type*} [SeminormedRing β] (f : α →+* β) : Prop
Full source
/-- A homomorphism `f` between semi_normed_rings is bounded if there exists a positive
  constant `C` such that for all `x` in `α`, `norm (f x) ≤ C * norm x`. -/
def RingHom.IsBounded {α : Type*} [SeminormedRing α] {β : Type*} [SeminormedRing β]
    (f : α →+* β) : Prop :=
  ∃ C : ℝ, 0 < C ∧ ∀ x : α, norm (f x) ≤ C * norm x
Bounded ring homomorphism
Informal description
A ring homomorphism $f \colon \alpha \to \beta$ between seminormed rings is called *bounded* if there exists a positive constant $C$ such that for all $x \in \alpha$, the inequality $\|f(x)\| \leq C \|x\|$ holds.
Prod.nonUnitalNormedRing instance
[NonUnitalNormedRing β] : NonUnitalNormedRing (α × β)
Full source
/-- Non-unital normed ring structure on the product of two non-unital normed rings,
using the sup norm. -/
instance Prod.nonUnitalNormedRing [NonUnitalNormedRing β] : NonUnitalNormedRing (α × β) :=
  { Prod.nonUnitalSeminormedRing, Prod.normedAddCommGroup with }
Product of Non-Unital Normed Rings is a Non-Unital Normed Ring
Informal description
For any two non-unital normed rings $\alpha$ and $\beta$, the product $\alpha \times \beta$ is also a non-unital normed ring with the sup norm.
Units.norm_pos theorem
[Nontrivial α] (x : αˣ) : 0 < ‖(x : α)‖
Full source
theorem Units.norm_pos [Nontrivial α] (x : αˣ) : 0 < ‖(x : α)‖ :=
  norm_pos_iff.mpr (Units.ne_zero x)
Positivity of Norm for Units in Nontrivial Normed Rings
Informal description
Let $\alpha$ be a nontrivial normed ring. For any unit $x$ in $\alpha$, the norm of $x$ is strictly positive, i.e., $\|x\| > 0$.
Units.nnnorm_pos theorem
[Nontrivial α] (x : αˣ) : 0 < ‖(x : α)‖₊
Full source
theorem Units.nnnorm_pos [Nontrivial α] (x : αˣ) : 0 < ‖(x : α)‖₊ :=
  x.norm_pos
Positivity of Seminorm for Units in Nontrivial Normed Rings
Informal description
Let $\alpha$ be a nontrivial normed ring. For any unit $x$ in $\alpha$, the seminorm of $x$ is strictly positive, i.e., $\|x\|₊ > 0$.
Prod.normedRing instance
[NormedRing β] : NormedRing (α × β)
Full source
/-- Normed ring structure on the product of two normed rings, using the sup norm. -/
instance Prod.normedRing [NormedRing β] : NormedRing (α × β) :=
  { nonUnitalNormedRing, instRing with }
Product of Normed Rings is a Normed Ring
Informal description
For any two normed rings $\alpha$ and $\beta$, the product $\alpha \times \beta$ is also a normed ring with the sup norm.
Prod.nonUnitalSeminormedCommRing instance
[NonUnitalSeminormedCommRing β] : NonUnitalSeminormedCommRing (α × β)
Full source
/-- Non-unital seminormed commutative ring structure on the product of two non-unital seminormed
commutative rings, using the sup norm. -/
instance Prod.nonUnitalSeminormedCommRing [NonUnitalSeminormedCommRing β] :
    NonUnitalSeminormedCommRing (α × β) :=
  { nonUnitalSeminormedRing, instNonUnitalCommRing with }
Product of Non-Unital Seminormed Commutative Rings with Sup Norm
Informal description
For any two non-unital seminormed commutative rings $\alpha$ and $\beta$, the product $\alpha \times \beta$ is also a non-unital seminormed commutative ring with the supremum norm.
MulOpposite.instNonUnitalSeminormedCommRing instance
: NonUnitalSeminormedCommRing αᵐᵒᵖ
Full source
instance MulOpposite.instNonUnitalSeminormedCommRing : NonUnitalSeminormedCommRing αᵐᵒᵖ where
  __ := instNonUnitalSeminormedRing
  __ := instNonUnitalCommRing
Opposite Ring of a Non-Unital Seminormed Commutative Ring is a Non-Unital Seminormed Commutative Ring
Informal description
The opposite ring $\alpha^\text{op}$ of a non-unital seminormed commutative ring $\alpha$ is also a non-unital seminormed commutative ring.
NonUnitalSubalgebra.nonUnitalSeminormedCommRing instance
{𝕜 : Type*} [CommRing 𝕜] {E : Type*} [NonUnitalSeminormedCommRing E] [Module 𝕜 E] (s : NonUnitalSubalgebra 𝕜 E) : NonUnitalSeminormedCommRing s
Full source
/-- A non-unital subalgebra of a non-unital seminormed commutative ring is also a non-unital
seminormed commutative ring, with the restriction of the norm. -/
instance NonUnitalSubalgebra.nonUnitalSeminormedCommRing {𝕜 : Type*} [CommRing 𝕜] {E : Type*}
    [NonUnitalSeminormedCommRing E] [Module 𝕜 E] (s : NonUnitalSubalgebra 𝕜 E) :
    NonUnitalSeminormedCommRing s :=
  { s.nonUnitalSeminormedRing, s.toNonUnitalCommRing with }
Non-unital Subalgebras as Non-unital Seminormed Commutative Rings
Informal description
For any commutative ring $\mathbb{k}$ and non-unital seminormed commutative ring $E$ equipped with a $\mathbb{k}$-module structure, every non-unital subalgebra $s$ of $E$ inherits a non-unital seminormed commutative ring structure, where the norm is restricted from $E$.
NonUnitalSubalgebra.nonUnitalNormedCommRing instance
{𝕜 : Type*} [CommRing 𝕜] {E : Type*} [NonUnitalNormedCommRing E] [Module 𝕜 E] (s : NonUnitalSubalgebra 𝕜 E) : NonUnitalNormedCommRing s
Full source
/-- A non-unital subalgebra of a non-unital normed commutative ring is also a non-unital normed
commutative ring, with the restriction of the norm. -/
instance NonUnitalSubalgebra.nonUnitalNormedCommRing {𝕜 : Type*} [CommRing 𝕜] {E : Type*}
    [NonUnitalNormedCommRing E] [Module 𝕜 E] (s : NonUnitalSubalgebra 𝕜 E) :
    NonUnitalNormedCommRing s :=
  { s.nonUnitalSeminormedCommRing, s.nonUnitalNormedRing with }
Non-Unital Subalgebras as Non-Unital Normed Commutative Rings
Informal description
For any commutative ring $\mathbb{k}$ and non-unital normed commutative ring $E$ equipped with a $\mathbb{k}$-module structure, every non-unital subalgebra $s$ of $E$ inherits a non-unital normed commutative ring structure, where the norm is restricted from $E$.
Prod.nonUnitalNormedCommRing instance
[NonUnitalNormedCommRing β] : NonUnitalNormedCommRing (α × β)
Full source
/-- Non-unital normed commutative ring structure on the product of two non-unital normed
commutative rings, using the sup norm. -/
instance Prod.nonUnitalNormedCommRing [NonUnitalNormedCommRing β] :
    NonUnitalNormedCommRing (α × β) :=
  { Prod.nonUnitalSeminormedCommRing, Prod.normedAddCommGroup with }
Product of Non-Unital Normed Commutative Rings with Sup Norm
Informal description
For any two non-unital normed commutative rings $\alpha$ and $\beta$, the product $\alpha \times \beta$ is also a non-unital normed commutative ring with the supremum norm.
MulOpposite.instNonUnitalNormedCommRing instance
: NonUnitalNormedCommRing αᵐᵒᵖ
Full source
instance MulOpposite.instNonUnitalNormedCommRing : NonUnitalNormedCommRing αᵐᵒᵖ where
  __ := instNonUnitalNormedRing
  __ := instNonUnitalSeminormedCommRing
Opposite Ring of a Non-Unital Normed Commutative Ring is a Non-Unital Normed Commutative Ring
Informal description
The opposite ring $\alpha^\text{op}$ of a non-unital normed commutative ring $\alpha$ is also a non-unital normed commutative ring.
Prod.seminormedCommRing instance
[SeminormedCommRing β] : SeminormedCommRing (α × β)
Full source
/-- Seminormed commutative ring structure on the product of two seminormed commutative rings,
  using the sup norm. -/
instance Prod.seminormedCommRing [SeminormedCommRing β] : SeminormedCommRing (α × β) :=
  { Prod.nonUnitalSeminormedCommRing, instCommRing with }
Product of Seminormed Commutative Rings with Sup Norm
Informal description
For any two seminormed commutative rings $\alpha$ and $\beta$, the product $\alpha \times \beta$ is also a seminormed commutative ring with the supremum norm. Specifically, the norm of an element $(x, y) \in \alpha \times \beta$ is defined as $\max(\|x\|, \|y\|)$.
Subalgebra.seminormedCommRing instance
{𝕜 : Type*} [CommRing 𝕜] {E : Type*} [SeminormedCommRing E] [Algebra 𝕜 E] (s : Subalgebra 𝕜 E) : SeminormedCommRing s
Full source
/-- A subalgebra of a seminormed commutative ring is also a seminormed commutative ring, with the
restriction of the norm. -/
instance Subalgebra.seminormedCommRing {𝕜 : Type*} [CommRing 𝕜] {E : Type*} [SeminormedCommRing E]
    [Algebra 𝕜 E] (s : Subalgebra 𝕜 E) : SeminormedCommRing s :=
  { s.seminormedRing, s.toCommRing with }
Subalgebras Inherit Seminormed Commutative Ring Structure
Informal description
For any commutative ring $\mathbb{K}$ and seminormed commutative ring $E$ with an algebra structure $\mathbb{K} \to E$, every subalgebra $s$ of $E$ inherits a seminormed commutative ring structure from $E$.
Subalgebra.normedCommRing instance
{𝕜 : Type*} [CommRing 𝕜] {E : Type*} [NormedCommRing E] [Algebra 𝕜 E] (s : Subalgebra 𝕜 E) : NormedCommRing s
Full source
/-- A subalgebra of a normed commutative ring is also a normed commutative ring, with the
restriction of the norm. -/
instance Subalgebra.normedCommRing {𝕜 : Type*} [CommRing 𝕜] {E : Type*} [NormedCommRing E]
    [Algebra 𝕜 E] (s : Subalgebra 𝕜 E) : NormedCommRing s :=
  { s.seminormedCommRing, s.normedRing with }
Subalgebras Inherit Normed Commutative Ring Structure
Informal description
For any commutative ring $\mathbb{K}$ and normed commutative ring $E$ with an algebra structure $\mathbb{K} \to E$, every subalgebra $s$ of $E$ inherits a normed commutative ring structure from $E$.
Prod.normedCommRing instance
[NormedCommRing β] : NormedCommRing (α × β)
Full source
/-- Normed commutative ring structure on the product of two normed commutative rings, using the sup
norm. -/
instance Prod.normedCommRing [NormedCommRing β] : NormedCommRing (α × β) :=
  { nonUnitalNormedRing, instCommRing with }
Product of Normed Commutative Rings is a Normed Commutative Ring
Informal description
For any two normed commutative rings $\alpha$ and $\beta$, the product $\alpha \times \beta$ is also a normed commutative ring with the sup norm.
IsPowMul.restriction theorem
{R S : Type*} [CommRing R] [Ring S] [Algebra R S] (A : Subalgebra R S) {f : S → ℝ} (hf_pm : IsPowMul f) : IsPowMul fun x : A => f x.val
Full source
/-- The restriction of a power-multiplicative function to a subalgebra is power-multiplicative. -/
theorem IsPowMul.restriction {R S : Type*} [CommRing R] [Ring S] [Algebra R S]
    (A : Subalgebra R S) {f : S → } (hf_pm : IsPowMul f) :
    IsPowMul fun x : A => f x.val := fun x n hn => by
  simpa [SubsemiringClass.coe_pow] using hf_pm (↑x) hn
Restriction of Power-Multiplicative Function to Subalgebra is Power-Multiplicative
Informal description
Let $R$ be a commutative ring and $S$ a ring with an algebra structure over $R$. Given a subalgebra $A$ of $S$ and a power-multiplicative function $f \colon S \to \mathbb{R}$, the restriction of $f$ to $A$ (defined by $x \mapsto f(x)$ for $x \in A$) is also power-multiplicative.
NNReal.norm_eq theorem
(x : ℝ≥0) : ‖(x : ℝ)‖ = x
Full source
theorem norm_eq (x : ℝ≥0) : ‖(x : ℝ)‖ = x := by rw [Real.norm_eq_abs, x.abs_eq]
Norm of Nonnegative Real Equals Itself
Informal description
For any nonnegative real number $x \in \mathbb{R}_{\geq 0}$, the norm of $x$ (viewed as an element of $\mathbb{R}$) is equal to $x$ itself, i.e., $\|x\| = x$.
NNReal.nnnorm_eq theorem
(x : ℝ≥0) : ‖(x : ℝ)‖₊ = x
Full source
@[simp] lemma nnnorm_eq (x : ℝ≥0) : ‖(x : ℝ)‖₊ = x := by ext; simp [nnnorm]
Seminorm of Nonnegative Real Equals Itself
Informal description
For any nonnegative real number $x \in \mathbb{R}_{\geq 0}$, the seminorm of $x$ (viewed as an element of $\mathbb{R}$) is equal to $x$ itself, i.e., $\|x\| = x$.
NormedAddCommGroup.tendsto_atTop theorem
[Nonempty α] [Preorder α] [IsDirected α (· ≤ ·)] {β : Type*} [SeminormedAddCommGroup β] {f : α → β} {b : β} : Tendsto f atTop (𝓝 b) ↔ ∀ ε, 0 < ε → ∃ N, ∀ n, N ≤ n → ‖f n - b‖ < ε
Full source
/-- A restatement of `MetricSpace.tendsto_atTop` in terms of the norm. -/
theorem NormedAddCommGroup.tendsto_atTop [Nonempty α] [Preorder α] [IsDirected α (· ≤ ·)]
    {β : Type*} [SeminormedAddCommGroup β] {f : α → β} {b : β} :
    TendstoTendsto f atTop (𝓝 b) ↔ ∀ ε, 0 < ε → ∃ N, ∀ n, N ≤ n → ‖f n - b‖ < ε :=
  (atTop_basis.tendsto_iff Metric.nhds_basis_ball).trans (by simp [dist_eq_norm])
Norm convergence at infinity in directed preorders
Informal description
Let $\alpha$ be a nonempty directed preorder and $\beta$ be a seminormed additive commutative group. For a function $f: \alpha \to \beta$ and an element $b \in \beta$, the following are equivalent: 1. The function $f$ tends to $b$ at infinity in the norm topology. 2. For every $\varepsilon > 0$, there exists $N \in \alpha$ such that for all $n \geq N$, the norm of $f(n) - b$ is less than $\varepsilon$.
NormedAddCommGroup.tendsto_atTop' theorem
[Nonempty α] [Preorder α] [IsDirected α (· ≤ ·)] [NoMaxOrder α] {β : Type*} [SeminormedAddCommGroup β] {f : α → β} {b : β} : Tendsto f atTop (𝓝 b) ↔ ∀ ε, 0 < ε → ∃ N, ∀ n, N < n → ‖f n - b‖ < ε
Full source
/-- A variant of `NormedAddCommGroup.tendsto_atTop` that
uses `∃ N, ∀ n > N, ...` rather than `∃ N, ∀ n ≥ N, ...`
-/
theorem NormedAddCommGroup.tendsto_atTop' [Nonempty α] [Preorder α] [IsDirected α (· ≤ ·)]
    [NoMaxOrder α] {β : Type*} [SeminormedAddCommGroup β] {f : α → β} {b : β} :
    TendstoTendsto f atTop (𝓝 b) ↔ ∀ ε, 0 < ε → ∃ N, ∀ n, N < n → ‖f n - b‖ < ε :=
  (atTop_basis_Ioi.tendsto_iff Metric.nhds_basis_ball).trans (by simp [dist_eq_norm])
Limit Characterization for Functions in Seminormed Groups with Strict Inequality
Informal description
Let $\alpha$ be a nonempty directed preorder without maximal elements, and let $\beta$ be a seminormed additive commutative group. For a function $f \colon \alpha \to \beta$ and an element $b \in \beta$, the following are equivalent: 1. The function $f$ tends to $b$ at infinity, i.e., $\lim_{n \to \infty} f(n) = b$. 2. For every $\varepsilon > 0$, there exists $N \in \alpha$ such that for all $n > N$, the norm of the difference satisfies $\|f(n) - b\| < \varepsilon$.
RingHomIsometric structure
[Semiring R₁] [Semiring R₂] [Norm R₁] [Norm R₂] (σ : R₁ →+* R₂)
Full source
/-- This class states that a ring homomorphism is isometric. This is a sufficient assumption
for a continuous semilinear map to be bounded and this is the main use for this typeclass. -/
class RingHomIsometric [Semiring R₁] [Semiring R₂] [Norm R₁] [Norm R₂] (σ : R₁ →+* R₂) : Prop where
  /-- The ring homomorphism is an isometry. -/
  is_iso : ∀ {x : R₁}, ‖σ x‖ = ‖x‖
Isometric ring homomorphism
Informal description
A ring homomorphism $\sigma: R_1 \to R_2$ between semirings $R_1$ and $R_2$ is called *isometric* if it preserves the norm, i.e., $\|\sigma(x)\| = \|x\|$ for all $x \in R_1$. This property ensures that the homomorphism is bounded when viewed as a continuous semilinear map.
RingHomIsometric.ids instance
: RingHomIsometric (RingHom.id R₁)
Full source
instance RingHomIsometric.ids : RingHomIsometric (RingHom.id R₁) :=
  ⟨rfl⟩
Isometric Property of the Identity Ring Homomorphism
Informal description
The identity ring homomorphism $\text{id} \colon R_1 \to R_1$ is isometric, i.e., it preserves the norm: $\|\text{id}(x)\| = \|x\|$ for all $x \in R_1$.
NormMulClass structure
(α : Type*) [Norm α] [Mul α]
Full source
/-- A mixin class for strict multiplicativity of the norm, `‖a * b‖ = ‖a‖ * ‖b‖` (rather than
`≤` as in the definition of `NormedRing`). Many `NormedRing`s satisfy this stronger property,
including all `NormedDivisionRing`s and `NormedField`s. -/
class NormMulClass (α : Type*) [Norm α] [Mul α] : Prop where
  /-- The norm is multiplicative. -/
  protected norm_mul : ∀ (a b : α), ‖a * b‖ = ‖a‖ * ‖b‖
Strictly Multiplicative Norm Class
Informal description
A class for types with a norm and a multiplication operation where the norm is strictly multiplicative, i.e., the norm of the product of two elements equals the product of their norms: $\|a \cdot b\| = \|a\| \cdot \|b\|$. This is a stronger condition than the general `NormedRing` definition, which only requires $\|a \cdot b\| \leq \|a\| \cdot \|b\|$. Examples include all normed division rings and normed fields.
norm_mul theorem
[Norm α] [Mul α] [NormMulClass α] (a b : α) : ‖a * b‖ = ‖a‖ * ‖b‖
Full source
@[simp] lemma norm_mul [Norm α] [Mul α] [NormMulClass α] (a b : α) :
    ‖a * b‖ = ‖a‖ * ‖b‖ :=
  NormMulClass.norm_mul a b
Norm is Multiplicative: $\|a \cdot b\| = \|a\| \cdot \|b\|$
Informal description
For any elements $a$ and $b$ in a normed multiplicative structure $\alpha$ (i.e., a type with a norm and multiplication operation satisfying `NormMulClass`), the norm of the product $a \cdot b$ equals the product of their norms: $\|a \cdot b\| = \|a\| \cdot \|b\|$.
nnnorm_mul theorem
: ‖a * b‖₊ = ‖a‖₊ * ‖b‖₊
Full source
@[simp] lemma nnnorm_mul : ‖a * b‖₊ = ‖a‖₊ * ‖b‖₊ := NNReal.eq <| norm_mul a b
Nonnegative Norm is Multiplicative: $\|a \cdot b\|_+ = \|a\|_+ \cdot \|b\|_+$
Informal description
For any elements $a$ and $b$ in a normed multiplicative structure $\alpha$ (i.e., a type with a norm and multiplication operation satisfying `NormMulClass`), the nonnegative norm (nnnorm) of the product $a \cdot b$ equals the product of their nonnegative norms: $\|a \cdot b\|_+ = \|a\|_+ \cdot \|b\|_+$.
enorm_mul theorem
: ‖a * b‖ₑ = ‖a‖ₑ * ‖b‖ₑ
Full source
@[simp] lemma enorm_mul : ‖a * b‖ₑ = ‖a‖ₑ * ‖b‖ₑ := by simp [enorm]
Extended Norm is Multiplicative: $\|a \cdot b\|_e = \|a\|_e \cdot \|b\|_e$
Informal description
For any elements $a$ and $b$ in a normed multiplicative structure $\alpha$ (i.e., a type with a norm and multiplication operation satisfying `NormMulClass`), the extended norm (enorm) of the product $a \cdot b$ equals the product of their extended norms: $\|a \cdot b\|_e = \|a\|_e \cdot \|b\|_e$.
normHom definition
: α →*₀ ℝ
Full source
/-- `norm` as a `MonoidWithZeroHom`. -/
@[simps]
def normHom : α →*₀ ℝ where
  toFun := (‖·‖)
  map_zero' := norm_zero
  map_one' := norm_one
  map_mul' := norm_mul
Norm as a monoid homomorphism with zero
Informal description
The function that maps an element $a$ of a normed ring $\alpha$ to its norm $\|a\|$ is a monoid homomorphism with zero, i.e., it satisfies: - $\|0\| = 0$, - $\|1\| = 1$, - $\|a \cdot b\| = \|a\| \cdot \|b\|$ for all $a, b \in \alpha$.
nnnormHom definition
: α →*₀ ℝ≥0
Full source
/-- `nnnorm` as a `MonoidWithZeroHom`. -/
@[simps]
def nnnormHom : α →*₀ ℝ≥0 where
  toFun := (‖·‖₊)
  map_zero' := nnnorm_zero
  map_one' := nnnorm_one
  map_mul' := nnnorm_mul
Non-negative norm as a monoid homomorphism with zero
Informal description
The function that maps an element $a$ of a normed ring $\alpha$ to its non-negative norm $\|a\|_{\mathbb{R}_{\geq 0}}$ is a monoid homomorphism with zero, i.e., it satisfies: - $\|0\|_{\mathbb{R}_{\geq 0}} = 0$, - $\|1\|_{\mathbb{R}_{\geq 0}} = 1$, - $\|a \cdot b\|_{\mathbb{R}_{\geq 0}} = \|a\|_{\mathbb{R}_{\geq 0}} \cdot \|b\|_{\mathbb{R}_{\geq 0}}$ for all $a, b \in \alpha$.
norm_pow theorem
(a : α) : ∀ n : ℕ, ‖a ^ n‖ = ‖a‖ ^ n
Full source
@[simp]
theorem norm_pow (a : α) : ∀ n : , ‖a ^ n‖ = ‖a‖ ^ n :=
  (normHom.toMonoidHom : α →* ℝ).map_pow a
Power Norm Identity: $\|a^n\| = \|a\|^n$
Informal description
For any element $a$ in a seminormed ring $\alpha$ and any natural number $n$, the norm of $a^n$ equals the $n$-th power of the norm of $a$, i.e., $\|a^n\| = \|a\|^n$.
nnnorm_pow theorem
(a : α) (n : ℕ) : ‖a ^ n‖₊ = ‖a‖₊ ^ n
Full source
@[simp]
theorem nnnorm_pow (a : α) (n : ) : ‖a ^ n‖₊ = ‖a‖₊ ^ n :=
  (nnnormHom.toMonoidHom : α →* ℝ≥0).map_pow a n
Power Law for Non-Negative Norms: $\|a^n\|_{\mathbb{R}_{\geq 0}} = \|a\|_{\mathbb{R}_{\geq 0}}^n$
Informal description
For any element $a$ in a seminormed ring $\alpha$ and any natural number $n$, the non-negative norm of $a^n$ equals the $n$-th power of the non-negative norm of $a$, i.e., $\|a^n\|_{\mathbb{R}_{\geq 0}} = \|a\|_{\mathbb{R}_{\geq 0}}^n$.
enorm_pow theorem
(a : α) (n : ℕ) : ‖a ^ n‖ₑ = ‖a‖ₑ ^ n
Full source
@[simp] lemma enorm_pow (a : α) (n : ) : ‖a ^ n‖ₑ = ‖a‖ₑ ^ n := by simp [enorm]
Extended Norm Power Identity: $\|a^n\|_e = \|a\|_e^n$
Informal description
For any element $a$ in a seminormed ring $\alpha$ and any natural number $n$, the extended norm of $a^n$ equals the $n$-th power of the extended norm of $a$, i.e., $\|a^n\|_e = \|a\|_e^n$.
List.norm_prod theorem
(l : List α) : ‖l.prod‖ = (l.map norm).prod
Full source
protected theorem List.norm_prod (l : List α) : ‖l.prod‖ = (l.map norm).prod :=
  map_list_prod (normHom.toMonoidHom : α →* ℝ) _
Norm of Product Equals Product of Norms for Lists in Seminormed Rings
Informal description
For any list $l$ of elements in a seminormed ring $\alpha$, the norm of the product of the elements in $l$ is equal to the product of the norms of the elements in $l$, i.e., \[ \left\| \prod_{x \in l} x \right\| = \prod_{x \in l} \|x\|. \]
List.nnnorm_prod theorem
(l : List α) : ‖l.prod‖₊ = (l.map nnnorm).prod
Full source
protected theorem List.nnnorm_prod (l : List α) : ‖l.prod‖₊ = (l.map nnnorm).prod :=
  map_list_prod (nnnormHom.toMonoidHom : α →* ℝ≥0) _
Product Norm Identity: $\| \prod x \| = \prod \|x\|$ for Lists
Informal description
For any list $l$ of elements in a seminormed ring $\alpha$, the non-negative norm of the product of the elements in $l$ is equal to the product of the non-negative norms of the elements in $l$, i.e., \[ \left\| \prod_{x \in l} x \right\|_{\mathbb{R}_{\geq 0}} = \prod_{x \in l} \|x\|_{\mathbb{R}_{\geq 0}}. \]
norm_prod theorem
(s : Finset β) (f : β → α) : ‖∏ b ∈ s, f b‖ = ∏ b ∈ s, ‖f b‖
Full source
@[simp]
theorem norm_prod (s : Finset β) (f : β → α) : ‖∏ b ∈ s, f b‖ = ∏ b ∈ s, ‖f b‖ :=
  map_prod normHom.toMonoidHom f s
Norm of Product Equals Product of Norms in Seminormed Commutative Rings
Informal description
For any finite set $s$ and any function $f \colon \beta \to \alpha$ from a seminormed commutative ring $\alpha$, the norm of the product $\prod_{b \in s} f(b)$ is equal to the product of the norms $\prod_{b \in s} \|f(b)\|$.
nnnorm_prod theorem
(s : Finset β) (f : β → α) : ‖∏ b ∈ s, f b‖₊ = ∏ b ∈ s, ‖f b‖₊
Full source
@[simp]
theorem nnnorm_prod (s : Finset β) (f : β → α) : ‖∏ b ∈ s, f b‖₊ = ∏ b ∈ s, ‖f b‖₊ :=
  map_prod nnnormHom.toMonoidHom f s
Multiplicativity of Non-Negative Norm over Finite Products
Informal description
For any finite set $s$ and any function $f \colon \beta \to \alpha$ where $\alpha$ is a normed ring with strictly multiplicative norm, the non-negative norm of the product $\prod_{b \in s} f(b)$ is equal to the product of the non-negative norms of the elements $f(b)$, i.e., \[ \left\| \prod_{b \in s} f(b) \right\|_{\mathbb{R}_{\geq 0}} = \prod_{b \in s} \|f(b)\|_{\mathbb{R}_{\geq 0}}. \]
NormMulClass.toNormOneClass theorem
: NormOneClass α
Full source
/-- Deduce `NormOneClass` from `NormMulClass` under a suitable nontriviality hypothesis. Not
an instance, in order to avoid loops with `NormOneClass.nontrivial`. -/
lemma NormMulClass.toNormOneClass : NormOneClass α where
  norm_one := by
    obtain ⟨u, hu⟩ := exists_ne (0 : α)
    simpa [mul_eq_left₀ (norm_ne_zero_iff.mpr hu)] using (norm_mul u 1).symm
Norm of Identity is One in Nontrivial Normed Multiplicative Structures
Informal description
For any nontrivial type $\alpha$ with a norm and a multiplication operation satisfying $\|a \cdot b\| = \|a\| \cdot \|b\|$ for all $a, b \in \alpha$, the norm of the multiplicative identity is $1$, i.e., $\|1\| = 1$.
NormMulClass.isAbsoluteValue_norm instance
: IsAbsoluteValue (norm : α → ℝ)
Full source
instance NormMulClass.isAbsoluteValue_norm : IsAbsoluteValue (norm : α → ) where
  abv_nonneg' := norm_nonneg
  abv_eq_zero' := norm_eq_zero
  abv_add' := norm_add_le
  abv_mul' := norm_mul
Norm is an Absolute Value in `NormMulClass` Structures
Informal description
For any type $\alpha$ with a norm and multiplication operation satisfying `NormMulClass`, the norm function $\|\cdot\| : \alpha \to \mathbb{R}$ is an absolute value. That is, it satisfies: 1. Nonnegativity: $\|x\| \geq 0$ for all $x \in \alpha$. 2. Definiteness: $\|x\| = 0$ if and only if $x = 0$. 3. Subadditivity: $\|x + y\| \leq \|x\| + \|y\|$ for all $x, y \in \alpha$. 4. Multiplicativity: $\|xy\| = \|x\| \|y\|$ for all $x, y \in \alpha$.
NormMulClass.toNoZeroDivisors instance
: NoZeroDivisors α
Full source
instance NormMulClass.toNoZeroDivisors : NoZeroDivisors α where
  eq_zero_or_eq_zero_of_mul_eq_zero h := by
    simpa only [← norm_eq_zero (E := α), norm_mul, mul_eq_zero] using h
Normed Multiplicative Structures Have No Zero Divisors
Informal description
For any type $\alpha$ with a norm and multiplication operation satisfying `NormMulClass`, $\alpha$ has no zero divisors. That is, for any $x, y \in \alpha$, if $x \cdot y = 0$ then either $x = 0$ or $y = 0$.
NonUnitalSeminormedRing.induced abbrev
[NonUnitalRing R] [NonUnitalSeminormedRing S] [NonUnitalRingHomClass F R S] (f : F) : NonUnitalSeminormedRing R
Full source
/-- A non-unital ring homomorphism from a `NonUnitalRing` to a `NonUnitalSeminormedRing`
induces a `NonUnitalSeminormedRing` structure on the domain.

See note [reducible non-instances] -/
abbrev NonUnitalSeminormedRing.induced [NonUnitalRing R] [NonUnitalSeminormedRing S]
    [NonUnitalRingHomClass F R S] (f : F) : NonUnitalSeminormedRing R :=
  { SeminormedAddCommGroup.induced R S f, ‹NonUnitalRing R› with
    norm_mul_le x y := show ‖f _‖ ≤ _ from (map_mul f x y).symmnorm_mul_le (f x) (f y) }
Induced Non-Unital Seminormed Ring Structure via Homomorphism
Informal description
Given a non-unital ring $R$, a non-unital seminormed ring $S$, and a non-unital ring homomorphism $f \colon R \to S$, the ring $R$ can be equipped with a non-unital seminormed ring structure induced by $f$. Specifically, the norm on $R$ is defined by $\|x\|_R = \|f(x)\|_S$ for all $x \in R$.
NonUnitalNormedRing.induced abbrev
[NonUnitalRing R] [NonUnitalNormedRing S] [NonUnitalRingHomClass F R S] (f : F) (hf : Function.Injective f) : NonUnitalNormedRing R
Full source
/-- An injective non-unital ring homomorphism from a `NonUnitalRing` to a
`NonUnitalNormedRing` induces a `NonUnitalNormedRing` structure on the domain.

See note [reducible non-instances] -/
abbrev NonUnitalNormedRing.induced [NonUnitalRing R] [NonUnitalNormedRing S]
    [NonUnitalRingHomClass F R S] (f : F) (hf : Function.Injective f) : NonUnitalNormedRing R :=
  { NonUnitalSeminormedRing.induced R S f, NormedAddCommGroup.induced R S f hf with }
Induced Non-Unital Normed Ring Structure via Injective Homomorphism
Informal description
Given a non-unital ring $R$, a non-unital normed ring $S$, and an injective non-unital ring homomorphism $f \colon R \to S$, the ring $R$ can be equipped with a non-unital normed ring structure induced by $f$. Specifically, the norm on $R$ is defined by $\|x\|_R = \|f(x)\|_S$ for all $x \in R$.
SeminormedRing.induced abbrev
[Ring R] [SeminormedRing S] [NonUnitalRingHomClass F R S] (f : F) : SeminormedRing R
Full source
/-- A non-unital ring homomorphism from a `Ring` to a `SeminormedRing` induces a
`SeminormedRing` structure on the domain.

See note [reducible non-instances] -/
abbrev SeminormedRing.induced [Ring R] [SeminormedRing S] [NonUnitalRingHomClass F R S] (f : F) :
    SeminormedRing R :=
  { NonUnitalSeminormedRing.induced R S f, SeminormedAddCommGroup.induced R S f, ‹Ring R› with }
Induced Seminormed Ring Structure via Non-Unital Ring Homomorphism
Informal description
Given a ring $R$, a seminormed ring $S$, and a non-unital ring homomorphism $f \colon R \to S$, the ring $R$ can be equipped with a seminormed ring structure induced by $f$, where the norm on $R$ is defined by $\|x\|_R = \|f(x)\|_S$ for all $x \in R$.
NormedRing.induced abbrev
[Ring R] [NormedRing S] [NonUnitalRingHomClass F R S] (f : F) (hf : Function.Injective f) : NormedRing R
Full source
/-- An injective non-unital ring homomorphism from a `Ring` to a `NormedRing` induces a
`NormedRing` structure on the domain.

See note [reducible non-instances] -/
abbrev NormedRing.induced [Ring R] [NormedRing S] [NonUnitalRingHomClass F R S] (f : F)
    (hf : Function.Injective f) : NormedRing R :=
  { NonUnitalSeminormedRing.induced R S f, NormedAddCommGroup.induced R S f hf, ‹Ring R› with }
Induced Normed Ring Structure via Injective Homomorphism
Informal description
Given a ring $R$, a normed ring $S$, and an injective non-unital ring homomorphism $f \colon R \to S$, the ring $R$ can be equipped with a normed ring structure induced by $f$. Specifically, the norm on $R$ is defined by $\|x\|_R = \|f(x)\|_S$ for all $x \in R$.
NonUnitalSeminormedCommRing.induced abbrev
[NonUnitalCommRing R] [NonUnitalSeminormedCommRing S] [NonUnitalRingHomClass F R S] (f : F) : NonUnitalSeminormedCommRing R
Full source
/-- A non-unital ring homomorphism from a `NonUnitalCommRing` to a `NonUnitalSeminormedCommRing`
induces a `NonUnitalSeminormedCommRing` structure on the domain.

See note [reducible non-instances] -/
abbrev NonUnitalSeminormedCommRing.induced [NonUnitalCommRing R] [NonUnitalSeminormedCommRing S]
    [NonUnitalRingHomClass F R S] (f : F) : NonUnitalSeminormedCommRing R :=
  { NonUnitalSeminormedRing.induced R S f, ‹NonUnitalCommRing R› with }
Induced Non-Unital Seminormed Commutative Ring Structure via Homomorphism
Informal description
Given a non-unital commutative ring $R$, a non-unital seminormed commutative ring $S$, and a non-unital ring homomorphism $f \colon R \to S$, the ring $R$ can be equipped with a non-unital seminormed commutative ring structure induced by $f$. Specifically, the norm on $R$ is defined by $\|x\|_R = \|f(x)\|_S$ for all $x \in R$.
NonUnitalNormedCommRing.induced abbrev
[NonUnitalCommRing R] [NonUnitalNormedCommRing S] [NonUnitalRingHomClass F R S] (f : F) (hf : Function.Injective f) : NonUnitalNormedCommRing R
Full source
/-- An injective non-unital ring homomorphism from a `NonUnitalCommRing` to a
`NonUnitalNormedCommRing` induces a `NonUnitalNormedCommRing` structure on the domain.

See note [reducible non-instances] -/
abbrev NonUnitalNormedCommRing.induced [NonUnitalCommRing R] [NonUnitalNormedCommRing S]
    [NonUnitalRingHomClass F R S] (f : F) (hf : Function.Injective f) : NonUnitalNormedCommRing R :=
  { NonUnitalNormedRing.induced R S f hf, ‹NonUnitalCommRing R› with }
Induced Non-Unital Normed Commutative Ring Structure via Injective Homomorphism
Informal description
Given a non-unital commutative ring $R$, a non-unital normed commutative ring $S$, and an injective non-unital ring homomorphism $f \colon R \to S$, the ring $R$ can be equipped with a non-unital normed commutative ring structure where the norm is defined by $\|x\|_R = \|f(x)\|_S$ for all $x \in R$.
SeminormedCommRing.induced abbrev
[CommRing R] [SeminormedRing S] [NonUnitalRingHomClass F R S] (f : F) : SeminormedCommRing R
Full source
/-- A non-unital ring homomorphism from a `CommRing` to a `SeminormedRing` induces a
`SeminormedCommRing` structure on the domain.

See note [reducible non-instances] -/
abbrev SeminormedCommRing.induced [CommRing R] [SeminormedRing S] [NonUnitalRingHomClass F R S]
    (f : F) : SeminormedCommRing R :=
  { NonUnitalSeminormedRing.induced R S f, SeminormedAddCommGroup.induced R S f, ‹CommRing R› with }
Induced Seminormed Commutative Ring Structure via Homomorphism
Informal description
Given a commutative ring $R$, a seminormed ring $S$, and a non-unital ring homomorphism $f \colon R \to S$, the ring $R$ can be equipped with a seminormed commutative ring structure induced by $f$. Specifically, the norm on $R$ is defined by $\|x\|_R = \|f(x)\|_S$ for all $x \in R$.
NormedCommRing.induced abbrev
[CommRing R] [NormedRing S] [NonUnitalRingHomClass F R S] (f : F) (hf : Function.Injective f) : NormedCommRing R
Full source
/-- An injective non-unital ring homomorphism from a `CommRing` to a `NormedRing` induces a
`NormedCommRing` structure on the domain.

See note [reducible non-instances] -/
abbrev NormedCommRing.induced [CommRing R] [NormedRing S] [NonUnitalRingHomClass F R S] (f : F)
    (hf : Function.Injective f) : NormedCommRing R :=
  { SeminormedCommRing.induced R S f, NormedAddCommGroup.induced R S f hf with }
Induced Normed Commutative Ring Structure via Injective Homomorphism
Informal description
Given a commutative ring $R$, a normed ring $S$, and an injective non-unital ring homomorphism $f \colon R \to S$, the ring $R$ can be equipped with a normed commutative ring structure induced by $f$. Specifically, the norm on $R$ is defined by $\|x\|_R = \|f(x)\|_S$ for all $x \in R$.
NormOneClass.induced theorem
{F : Type*} (R S : Type*) [Ring R] [SeminormedRing S] [NormOneClass S] [FunLike F R S] [RingHomClass F R S] (f : F) : @NormOneClass R (SeminormedRing.induced R S f).toNorm _
Full source
/-- A ring homomorphism from a `Ring R` to a `SeminormedRing S` which induces the norm structure
`SeminormedRing.induced` makes `R` satisfy `‖(1 : R)‖ = 1` whenever `‖(1 : S)‖ = 1`. -/
theorem NormOneClass.induced {F : Type*} (R S : Type*) [Ring R] [SeminormedRing S]
    [NormOneClass S] [FunLike F R S] [RingHomClass F R S] (f : F) :
    @NormOneClass R (SeminormedRing.induced R S f).toNorm _ :=
  let _ : SeminormedRing R := SeminormedRing.induced R S f
  { norm_one := (congr_arg norm (map_one f)).trans norm_one }
Preservation of Norm-One Property under Induced Seminormed Ring Structure
Informal description
Let $R$ be a ring and $S$ a seminormed ring with $\|1_S\| = 1$. Given a ring homomorphism $f \colon R \to S$, the induced seminormed ring structure on $R$ satisfies $\|1_R\| = 1$.
NormMulClass.induced theorem
{F : Type*} (R S : Type*) [Ring R] [SeminormedRing S] [NormMulClass S] [FunLike F R S] [RingHomClass F R S] (f : F) : @NormMulClass R (SeminormedRing.induced R S f).toNorm _
Full source
/-- A ring homomorphism from a `Ring R` to a `SeminormedRing S` which induces the norm structure
`SeminormedRing.induced` makes `R` satisfy `‖(1 : R)‖ = 1` whenever `‖(1 : S)‖ = 1`. -/
theorem NormMulClass.induced {F : Type*} (R S : Type*) [Ring R] [SeminormedRing S]
    [NormMulClass S] [FunLike F R S] [RingHomClass F R S] (f : F) :
    @NormMulClass R (SeminormedRing.induced R S f).toNorm _ :=
  let _ : SeminormedRing R := SeminormedRing.induced R S f
  { norm_mul x y := (congr_arg norm (map_mul f x y)).trans <| norm_mul _ _ }
Strictly Multiplicative Norm is Preserved under Induced Seminormed Ring Structure
Informal description
Let $R$ be a ring and $S$ a seminormed ring with a strictly multiplicative norm (i.e., $\|x y\| = \|x\| \|y\|$ for all $x, y \in S$). Given a ring homomorphism $f \colon R \to S$, the induced seminormed ring structure on $R$ (where $\|x\|_R = \|f(x)\|_S$) also satisfies the strictly multiplicative norm property, i.e., $\|x y\|_R = \|x\|_R \|y\|_R$ for all $x, y \in R$.
SubringClass.toSeminormedCommRing instance
[SeminormedCommRing R] [_h : SubringClass S R] (s : S) : SeminormedCommRing s
Full source
instance toSeminormedCommRing [SeminormedCommRing R] [_h : SubringClass S R] (s : S) :
    SeminormedCommRing s :=
  { SubringClass.toSeminormedRing s with mul_comm := mul_comm }
Seminormed Commutative Ring Structure on Subrings
Informal description
For any seminormed commutative ring $R$ and a subring $s$ of $R$ (in the sense of `SubringClass`), the subring $s$ inherits a seminormed commutative ring structure from $R$.
SubringClass.toNormedCommRing instance
[NormedCommRing R] [SubringClass S R] (s : S) : NormedCommRing s
Full source
instance toNormedCommRing [NormedCommRing R] [SubringClass S R] (s : S) : NormedCommRing s :=
  { SubringClass.toNormedRing s with mul_comm := mul_comm }
Normed Commutative Ring Structure on Subrings
Informal description
For any normed commutative ring $R$ and a subring $s$ of $R$ (in the sense of `SubringClass`), the subring $s$ inherits a normed commutative ring structure from $R$.
SubringClass.toNormOneClass instance
[SeminormedRing R] [NormOneClass R] [SubringClass S R] (s : S) : NormOneClass s
Full source
instance toNormOneClass [SeminormedRing R] [NormOneClass R] [SubringClass S R] (s : S) :
    NormOneClass s :=
  .induced s R <| SubringClass.subtype _
Norm-One Property Inherited by Subrings
Informal description
For any seminormed ring $R$ with $\|1_R\| = 1$ and any subring $s$ of $R$ (in the sense of `SubringClass`), the subring $s$ inherits the property $\|1_s\| = 1$.
SubringClass.toNormMulClass instance
[SeminormedRing R] [NormMulClass R] [SubringClass S R] (s : S) : NormMulClass s
Full source
instance toNormMulClass [SeminormedRing R] [NormMulClass R] [SubringClass S R] (s : S) :
    NormMulClass s :=
  .induced s R <| SubringClass.subtype _
Strictly Multiplicative Norm on Subrings
Informal description
For any seminormed ring $R$ with a strictly multiplicative norm (i.e., $\|x y\| = \|x\| \|y\|$ for all $x, y \in R$) and any subring $s$ of $R$ (in the sense of `SubringClass`), the subring $s$ inherits the strictly multiplicative norm property.
AbsoluteValue.toNormedRing definition
{R : Type*} [Ring R] (v : AbsoluteValue R ℝ) : NormedRing R
Full source
/-- A real absolute value on a ring determines a `NormedRing` structure. -/
noncomputable def toNormedRing {R : Type*} [Ring R] (v : AbsoluteValue R ) : NormedRing R where
  norm := v
  dist x y := v (x - y)
  dist_eq _ _ := rfl
  dist_self x := by simp only [sub_self, MulHom.toFun_eq_coe, AbsoluteValue.coe_toMulHom, map_zero]
  dist_comm := v.map_sub
  dist_triangle := v.sub_le
  edist_dist x y := rfl
  norm_mul_le x y := (v.map_mul x y).le
  eq_of_dist_eq_zero := by simp only [MulHom.toFun_eq_coe, AbsoluteValue.coe_toMulHom,
    AbsoluteValue.map_sub_eq_zero_iff, imp_self, implies_true]
Normed ring structure induced by an absolute value
Informal description
Given a ring $R$ and a real absolute value $v$ on $R$, this definition constructs a normed ring structure on $R$ where: - The norm is given by $v$, - The distance between two elements $x$ and $y$ is defined as $v(x - y)$, - The distance satisfies the triangle inequality, symmetry, and identity of indiscernibles properties, - The norm satisfies the multiplicative property $\|x y\| \leq \|x\| \|y\|$ for all $x, y \in R$.