doc-next-gen

Mathlib.Analysis.Normed.Operator.BoundedLinearMaps

Module docstring

{"# Bounded linear maps

This file defines a class stating that a map between normed vector spaces is (bi)linear and continuous. Instead of asking for continuity, the definition takes the equivalent condition (because the space is normed) that ‖f x‖ is bounded by a multiple of ‖x‖. Hence the \"bounded\" in the name refers to ‖f x‖/‖x‖ rather than ‖f x‖ itself.

Main definitions

  • IsBoundedLinearMap: Class stating that a map f : E → F is linear and has ‖f x‖ bounded by a multiple of ‖x‖.
  • IsBoundedBilinearMap: Class stating that a map f : E × F → G is bilinear and continuous, but through the simpler to provide statement that ‖f (x, y)‖ is bounded by a multiple of ‖x‖ * ‖y‖
  • IsBoundedBilinearMap.linearDeriv: Derivative of a continuous bilinear map as a linear map.
  • IsBoundedBilinearMap.deriv: Derivative of a continuous bilinear map as a continuous linear map. The proof that it is indeed the derivative is IsBoundedBilinearMap.hasFDerivAt in Analysis.Calculus.FDeriv.

Main theorems

  • IsBoundedBilinearMap.continuous: A bounded bilinear map is continuous.
  • ContinuousLinearEquiv.isOpen: The continuous linear equivalences are an open subset of the set of continuous linear maps between a pair of Banach spaces. Placed in this file because its proof uses IsBoundedBilinearMap.continuous.

Notes

The main use of this file is IsBoundedBilinearMap. The file Analysis.NormedSpace.Multilinear.Basic already expounds the theory of multilinear maps, but the 2-variables case is sufficiently simpler to currently deserve its own treatment.

IsBoundedLinearMap is effectively an unbundled version of ContinuousLinearMap (defined in Topology.Algebra.Module.Basic, theory over normed spaces developed in Analysis.NormedSpace.OperatorNorm), albeit the name disparity. A bundled ContinuousLinearMap is to be preferred over an IsBoundedLinearMap hypothesis. Historical artifact, really. ","We prove some computation rules for continuous (semi-)bilinear maps in their first argument. If f is a continuous bilinear map, to use the corresponding rules for the second argument, use (f _).map_add and similar.

We have to assume that F and G are normed spaces in this section, to use ContinuousLinearMap.toNormedAddCommGroup, but we don't need to assume this for the first argument of f. ","### The set of continuous linear equivalences between two Banach spaces is open

In this section we establish that the set of continuous linear equivalences between two Banach spaces is an open subset of the space of linear maps between them. "}

IsBoundedLinearMap structure
(𝕜 : Type*) [NormedField 𝕜] {E : Type*} [SeminormedAddCommGroup E] [NormedSpace 𝕜 E] {F : Type*} [SeminormedAddCommGroup F] [NormedSpace 𝕜 F] (f : E → F) : Prop extends IsLinearMap 𝕜 f
Full source
/-- A function `f` satisfies `IsBoundedLinearMap 𝕜 f` if it is linear and satisfies the
inequality `‖f x‖ ≤ M * ‖x‖` for some positive constant `M`. -/
structure IsBoundedLinearMap (𝕜 : Type*) [NormedField 𝕜] {E : Type*} [SeminormedAddCommGroup E]
    [NormedSpace 𝕜 E] {F : Type*} [SeminormedAddCommGroup F] [NormedSpace 𝕜 F] (f : E → F) : Prop
    extends IsLinearMap 𝕜 f where
  bound : ∃ M, 0 < M ∧ ∀ x : E, ‖f x‖ ≤ M * ‖x‖
Bounded Linear Map
Informal description
A function \( f : E \to F \) between seminormed vector spaces over a normed field \( \mathbb{K} \) is called a *bounded linear map* if it is linear and there exists a positive constant \( M \) such that for all \( x \in E \), the inequality \( \|f(x)\| \leq M \cdot \|x\| \) holds.
isBoundedLinearMap_iff theorem
{f : E → F} : IsBoundedLinearMap 𝕜 f ↔ IsLinearMap 𝕜 f ∧ ∃ M, 0 < M ∧ ∀ x : E, ‖f x‖ ≤ M * ‖x‖
Full source
lemma isBoundedLinearMap_iff {f : E → F} :
    IsBoundedLinearMapIsBoundedLinearMap 𝕜 f ↔ IsLinearMap 𝕜 f ∧ ∃ M, 0 < M ∧ ∀ x : E, ‖f x‖ ≤ M * ‖x‖ :=
  ⟨fun hf ↦ ⟨hf.toIsLinearMap, hf.bound⟩, fun ⟨hl, hm⟩ ↦ ⟨hl, hm⟩⟩
Characterization of Bounded Linear Maps via Norm Bounds
Informal description
A function \( f : E \to F \) between seminormed vector spaces over a normed field \( \mathbb{K} \) is a bounded linear map if and only if it is linear and there exists a positive constant \( M \) such that for all \( x \in E \), the inequality \( \|f(x)\| \leq M \|x\| \) holds.
IsLinearMap.with_bound theorem
{f : E → F} (hf : IsLinearMap 𝕜 f) (M : ℝ) (h : ∀ x : E, ‖f x‖ ≤ M * ‖x‖) : IsBoundedLinearMap 𝕜 f
Full source
theorem IsLinearMap.with_bound {f : E → F} (hf : IsLinearMap 𝕜 f) (M : )
    (h : ∀ x : E, ‖f x‖ ≤ M * ‖x‖) : IsBoundedLinearMap 𝕜 f :=
  ⟨hf,
    by_cases
      (fun (this : M ≤ 0) =>
        ⟨1, zero_lt_one, fun x =>
          (h x).trans <| mul_le_mul_of_nonneg_right (this.trans zero_le_one) (norm_nonneg x)⟩)
      fun (this : ¬M ≤ 0) => ⟨M, lt_of_not_ge this, h⟩⟩
Boundedness Criterion for Linear Maps: $\|f(x)\| \leq M\|x\| \implies$ Boundedness
Informal description
Let $E$ and $F$ be seminormed vector spaces over a normed field $\mathbb{K}$. Given a linear map $f \colon E \to F$ and a constant $M \in \mathbb{R}$, if for every $x \in E$ the norm $\|f(x)\|$ is bounded by $M\|x\|$, then $f$ is a bounded linear map.
ContinuousLinearMap.isBoundedLinearMap theorem
(f : E →L[𝕜] F) : IsBoundedLinearMap 𝕜 f
Full source
/-- A continuous linear map satisfies `IsBoundedLinearMap` -/
theorem ContinuousLinearMap.isBoundedLinearMap (f : E →L[𝕜] F) : IsBoundedLinearMap 𝕜 f :=
  { f.toLinearMap.isLinear with bound := f.bound }
Continuous Linear Maps are Bounded
Informal description
Let $E$ and $F$ be seminormed vector spaces over a normed field $\mathbb{K}$. Every continuous linear map $f \colon E \to F$ is a bounded linear map, meaning there exists a constant $M > 0$ such that for all $x \in E$, the inequality $\|f(x)\| \leq M \|x\|$ holds.
IsBoundedLinearMap.toLinearMap definition
(f : E → F) (h : IsBoundedLinearMap 𝕜 f) : E →ₗ[𝕜] F
Full source
/-- Construct a linear map from a function `f` satisfying `IsBoundedLinearMap 𝕜 f`. -/
def toLinearMap (f : E → F) (h : IsBoundedLinearMap 𝕜 f) : E →ₗ[𝕜] F :=
  IsLinearMap.mk' _ h.toIsLinearMap
Linear map associated to a bounded linear map
Informal description
Given a function \( f : E \to F \) between seminormed vector spaces over a normed field \( \mathbb{K} \) that is a bounded linear map, this constructs the corresponding linear map \( E \to F \) in the algebraic sense (without the norm information).
IsBoundedLinearMap.toContinuousLinearMap definition
{f : E → F} (hf : IsBoundedLinearMap 𝕜 f) : E →L[𝕜] F
Full source
/-- Construct a continuous linear map from `IsBoundedLinearMap`. -/
def toContinuousLinearMap {f : E → F} (hf : IsBoundedLinearMap 𝕜 f) : E →L[𝕜] F :=
  { toLinearMap f hf with
    cont :=
      let ⟨C, _, hC⟩ := hf.bound
      AddMonoidHomClass.continuous_of_bound (toLinearMap f hf) C hC }
Continuous linear map associated to a bounded linear map
Informal description
Given a function \( f : E \to F \) between seminormed vector spaces over a normed field \( \mathbb{K} \) that is a bounded linear map (i.e., linear and satisfies \( \|f(x)\| \leq M \cdot \|x\| \) for some constant \( M > 0 \)), this constructs the corresponding continuous linear map \( E \to F \).
IsBoundedLinearMap.zero theorem
: IsBoundedLinearMap 𝕜 fun _ : E => (0 : F)
Full source
theorem zero : IsBoundedLinearMap 𝕜 fun _ : E => (0 : F) :=
  (0 : E →ₗ[𝕜] F).isLinear.with_bound 0 <| by simp [le_refl]
Boundedness of the Zero Linear Map
Informal description
The zero map from a seminormed vector space $E$ to a seminormed vector space $F$ over a normed field $\mathbb{K}$, defined by $x \mapsto 0$ for all $x \in E$, is a bounded linear map.
IsBoundedLinearMap.id theorem
: IsBoundedLinearMap 𝕜 fun x : E => x
Full source
theorem id : IsBoundedLinearMap 𝕜 fun x : E => x :=
  LinearMap.id.isLinear.with_bound 1 <| by simp [le_refl]
Boundedness of the Identity Map: $\|\operatorname{id}(x)\| \leq \|x\|$
Informal description
The identity map $\operatorname{id} \colon E \to E$ on a seminormed vector space $E$ over a normed field $\mathbb{K}$ is a bounded linear map. That is, $\operatorname{id}$ is linear and satisfies $\|\operatorname{id}(x)\| \leq 1 \cdot \|x\|$ for all $x \in E$.
IsBoundedLinearMap.fst theorem
: IsBoundedLinearMap 𝕜 fun x : E × F => x.1
Full source
theorem fst : IsBoundedLinearMap 𝕜 fun x : E × F => x.1 := by
  refine (LinearMap.fst 𝕜 E F).isLinear.with_bound 1 fun x => ?_
  rw [one_mul]
  exact le_max_left _ _
Boundedness of the First Projection Map on Seminormed Vector Spaces
Informal description
The first projection map $(x, y) \mapsto x$ from the product $E \times F$ of two seminormed vector spaces over a normed field $\mathbb{K}$ to $E$ is a bounded linear map.
IsBoundedLinearMap.snd theorem
: IsBoundedLinearMap 𝕜 fun x : E × F => x.2
Full source
theorem snd : IsBoundedLinearMap 𝕜 fun x : E × F => x.2 := by
  refine (LinearMap.snd 𝕜 E F).isLinear.with_bound 1 fun x => ?_
  rw [one_mul]
  exact le_max_right _ _
Boundedness of the Second Projection Map on Seminormed Vector Spaces
Informal description
The second projection map $(x, y) \mapsto y$ from the product $E \times F$ of two seminormed vector spaces over a normed field $\mathbb{K}$ to $F$ is a bounded linear map.
IsBoundedLinearMap.smul theorem
(c : 𝕜) (hf : IsBoundedLinearMap 𝕜 f) : IsBoundedLinearMap 𝕜 (c • f)
Full source
theorem smul (c : 𝕜) (hf : IsBoundedLinearMap 𝕜 f) : IsBoundedLinearMap 𝕜 (c • f) :=
  let ⟨hlf, M, _, hM⟩ := hf
  (c • hlf.mk' f).isLinear.with_bound (‖c‖ * M) fun x =>
    calc
      ‖c • f x‖ = ‖c‖ * ‖f x‖ := norm_smul c (f x)
      _ ≤ ‖c‖ * (M * ‖x‖) := mul_le_mul_of_nonneg_left (hM _) (norm_nonneg _)
      _ = ‖c‖ * M * ‖x‖ := (mul_assoc _ _ _).symm
Scalar Multiplication Preserves Bounded Linear Maps
Informal description
Let $\mathbb{K}$ be a normed field, and let $E$ and $F$ be seminormed vector spaces over $\mathbb{K}$. Given a scalar $c \in \mathbb{K}$ and a bounded linear map $f \colon E \to F$, the scalar multiple $c \cdot f$ is also a bounded linear map from $E$ to $F$.
IsBoundedLinearMap.neg theorem
(hf : IsBoundedLinearMap 𝕜 f) : IsBoundedLinearMap 𝕜 fun e => -f e
Full source
theorem neg (hf : IsBoundedLinearMap 𝕜 f) : IsBoundedLinearMap 𝕜 fun e => -f e := by
  rw [show (fun e => -f e) = fun e => (-1 : 𝕜) • f e by funext; simp]
  exact smul (-1) hf
Negation Preserves Bounded Linear Maps
Informal description
Let $E$ and $F$ be seminormed vector spaces over a normed field $\mathbb{K}$. If $f \colon E \to F$ is a bounded linear map, then the negation $-f$, defined by $(-f)(e) = -f(e)$ for all $e \in E$, is also a bounded linear map.
IsBoundedLinearMap.add theorem
(hf : IsBoundedLinearMap 𝕜 f) (hg : IsBoundedLinearMap 𝕜 g) : IsBoundedLinearMap 𝕜 fun e => f e + g e
Full source
theorem add (hf : IsBoundedLinearMap 𝕜 f) (hg : IsBoundedLinearMap 𝕜 g) :
    IsBoundedLinearMap 𝕜 fun e => f e + g e :=
  let ⟨hlf, Mf, _, hMf⟩ := hf
  let ⟨hlg, Mg, _, hMg⟩ := hg
  (hlf.mk' _ + hlg.mk' _).isLinear.with_bound (Mf + Mg) fun x =>
    calc
      ‖f x + g x‖ ≤ Mf * ‖x‖ + Mg * ‖x‖ := norm_add_le_of_le (hMf x) (hMg x)
      _ ≤ (Mf + Mg) * ‖x‖ := by rw [add_mul]
Sum of Bounded Linear Maps is Bounded
Informal description
Let $E$ and $F$ be seminormed vector spaces over a normed field $\mathbb{K}$. If $f, g \colon E \to F$ are bounded linear maps, then their sum $f + g$, defined by $(f + g)(e) = f(e) + g(e)$ for all $e \in E$, is also a bounded linear map.
IsBoundedLinearMap.sub theorem
(hf : IsBoundedLinearMap 𝕜 f) (hg : IsBoundedLinearMap 𝕜 g) : IsBoundedLinearMap 𝕜 fun e => f e - g e
Full source
theorem sub (hf : IsBoundedLinearMap 𝕜 f) (hg : IsBoundedLinearMap 𝕜 g) :
    IsBoundedLinearMap 𝕜 fun e => f e - g e := by simpa [sub_eq_add_neg] using add hf (neg hg)
Difference of Bounded Linear Maps is Bounded
Informal description
Let $E$ and $F$ be seminormed vector spaces over a normed field $\mathbb{K}$. If $f, g \colon E \to F$ are bounded linear maps, then their difference $f - g$, defined by $(f - g)(e) = f(e) - g(e)$ for all $e \in E$, is also a bounded linear map.
IsBoundedLinearMap.comp theorem
{g : F → G} (hg : IsBoundedLinearMap 𝕜 g) (hf : IsBoundedLinearMap 𝕜 f) : IsBoundedLinearMap 𝕜 (g ∘ f)
Full source
theorem comp {g : F → G} (hg : IsBoundedLinearMap 𝕜 g) (hf : IsBoundedLinearMap 𝕜 f) :
    IsBoundedLinearMap 𝕜 (g ∘ f) :=
  (hg.toContinuousLinearMap.comp hf.toContinuousLinearMap).isBoundedLinearMap
Composition of Bounded Linear Maps is Bounded
Informal description
Let $E$, $F$, and $G$ be seminormed vector spaces over a normed field $\mathbb{K}$. If $f \colon E \to F$ and $g \colon F \to G$ are bounded linear maps, then their composition $g \circ f \colon E \to G$ is also a bounded linear map.
IsBoundedLinearMap.tendsto theorem
(x : E) (hf : IsBoundedLinearMap 𝕜 f) : Tendsto f (𝓝 x) (𝓝 (f x))
Full source
protected theorem tendsto (x : E) (hf : IsBoundedLinearMap 𝕜 f) : Tendsto f (𝓝 x) (𝓝 (f x)) :=
  let ⟨hf, M, _, hM⟩ := hf
  tendsto_iff_norm_sub_tendsto_zero.2 <|
    squeeze_zero (fun _ => norm_nonneg _)
      (fun e =>
        calc
          ‖f e - f x‖ = ‖hf.mk' f (e - x)‖ := by rw [(hf.mk' _).map_sub e x]; rfl
          _ ≤ M * ‖e - x‖ := hM (e - x)
          )
      (suffices Tendsto (fun e : E => M * ‖e - x‖) (𝓝 x) (𝓝 (M * 0)) by simpa
      tendsto_const_nhds.mul (tendsto_norm_sub_self _))
Continuity of Bounded Linear Maps
Informal description
Let $E$ and $F$ be seminormed vector spaces over a normed field $\mathbb{K}$, and let $f : E \to F$ be a bounded linear map. Then for any point $x \in E$, the function $f$ is continuous at $x$, meaning that $f(y)$ tends to $f(x)$ as $y$ tends to $x$.
IsBoundedLinearMap.continuous theorem
(hf : IsBoundedLinearMap 𝕜 f) : Continuous f
Full source
theorem continuous (hf : IsBoundedLinearMap 𝕜 f) : Continuous f :=
  continuous_iff_continuousAt.2 fun _ => hf.tendsto _
Continuity of Bounded Linear Maps
Informal description
Let $E$ and $F$ be seminormed vector spaces over a normed field $\mathbb{K}$, and let $f : E \to F$ be a bounded linear map. Then $f$ is continuous.
IsBoundedLinearMap.isLinearMap_and_continuous_iff_isBoundedLinearMap theorem
(f : E → F) : IsLinearMap 𝕜 f ∧ Continuous f ↔ IsBoundedLinearMap 𝕜 f
Full source
/-- A map between normed spaces is linear and continuous if and only if it is bounded. -/
theorem isLinearMap_and_continuous_iff_isBoundedLinearMap (f : E → F) :
    IsLinearMapIsLinearMap 𝕜 f ∧ Continuous fIsLinearMap 𝕜 f ∧ Continuous f ↔ IsBoundedLinearMap 𝕜 f :=
  ⟨fun ⟨hlin, hcont⟩ ↦ ContinuousLinearMap.isBoundedLinearMap
      ⟨⟨⟨f, IsLinearMap.map_add hlin⟩, IsLinearMap.map_smul hlin⟩, hcont⟩,
        fun h_bdd ↦ ⟨h_bdd.toIsLinearMap, h_bdd.continuous⟩⟩
Characterization of Bounded Linear Maps: Linearity and Continuity $\iff$ Boundedness
Informal description
Let $E$ and $F$ be seminormed vector spaces over a normed field $\mathbb{K}$. A function $f : E \to F$ is linear and continuous if and only if it is a bounded linear map, i.e., there exists a constant $M > 0$ such that $\|f(x)\| \leq M \|x\|$ for all $x \in E$.
IsBoundedLinearMap.lim_zero_bounded_linear_map theorem
(hf : IsBoundedLinearMap 𝕜 f) : Tendsto f (𝓝 0) (𝓝 0)
Full source
theorem lim_zero_bounded_linear_map (hf : IsBoundedLinearMap 𝕜 f) : Tendsto f (𝓝 0) (𝓝 0) :=
  (hf.1.mk' _).map_zerocontinuous_iff_continuousAt.1 hf.continuous 0
Bounded Linear Maps Preserve Limits at Zero
Informal description
Let $E$ and $F$ be seminormed vector spaces over a normed field $\mathbb{K}$, and let $f : E \to F$ be a bounded linear map. Then $f$ tends to $0$ as $x$ tends to $0$, i.e., $\lim_{x \to 0} f(x) = 0$.
IsBoundedLinearMap.isBigO_id theorem
{f : E → F} (h : IsBoundedLinearMap 𝕜 f) (l : Filter E) : f =O[l] fun x => x
Full source
theorem isBigO_id {f : E → F} (h : IsBoundedLinearMap 𝕜 f) (l : Filter E) : f =O[l] fun x => x :=
  let ⟨_, _, hM⟩ := h.bound
  IsBigO.of_bound _ (mem_of_superset univ_mem fun x _ => hM x)
Bounded Linear Maps are Asymptotically Dominated by the Identity Function
Informal description
Let $E$ and $F$ be seminormed vector spaces over a normed field $\mathbb{K}$, and let $f : E \to F$ be a bounded linear map. Then for any filter $l$ on $E$, the function $f$ is asymptotically bounded by the identity function, i.e., $f(x) = O(\|x\|)$ as $x$ tends along $l$.
IsBoundedLinearMap.isBigO_comp theorem
{E : Type*} {g : F → G} (hg : IsBoundedLinearMap 𝕜 g) {f : E → F} (l : Filter E) : (fun x' => g (f x')) =O[l] f
Full source
theorem isBigO_comp {E : Type*} {g : F → G} (hg : IsBoundedLinearMap 𝕜 g) {f : E → F}
    (l : Filter E) : (fun x' => g (f x')) =O[l] f :=
  (hg.isBigO_id ).comp_tendsto le_top
Composition with Bounded Linear Map Preserves Asymptotic Boundedness
Informal description
Let $E$, $F$, and $G$ be seminormed vector spaces over a normed field $\mathbb{K}$, and let $g : F \to G$ be a bounded linear map. Then for any function $f : E \to F$ and any filter $l$ on $E$, the composition $g \circ f$ is asymptotically bounded by $f$, i.e., $\|g(f(x))\| = O(\|f(x)\|)$ as $x$ tends along $l$.
IsBoundedLinearMap.isBigO_sub theorem
{f : E → F} (h : IsBoundedLinearMap 𝕜 f) (l : Filter E) (x : E) : (fun x' => f (x' - x)) =O[l] fun x' => x' - x
Full source
theorem isBigO_sub {f : E → F} (h : IsBoundedLinearMap 𝕜 f) (l : Filter E) (x : E) :
    (fun x' => f (x' - x)) =O[l] fun x' => x' - x :=
  isBigO_comp h l
Asymptotic Bound for Bounded Linear Maps under Translation
Informal description
Let $E$ and $F$ be seminormed vector spaces over a normed field $\mathbb{K}$, and let $f : E \to F$ be a bounded linear map. Then for any filter $l$ on $E$ and any point $x \in E$, the function $x' \mapsto f(x' - x)$ is asymptotically bounded by $x' \mapsto x' - x$ as $x'$ tends along $l$, i.e., $\|f(x' - x)\| = O(\|x' - x\|)$.
isBoundedLinearMap_prod_multilinear theorem
{E : ι → Type*} [∀ i, SeminormedAddCommGroup (E i)] [∀ i, NormedSpace 𝕜 (E i)] : IsBoundedLinearMap 𝕜 fun p : ContinuousMultilinearMap 𝕜 E F × ContinuousMultilinearMap 𝕜 E G => p.1.prod p.2
Full source
/-- Taking the cartesian product of two continuous multilinear maps is a bounded linear
operation. -/
theorem isBoundedLinearMap_prod_multilinear {E : ι → Type*} [∀ i, SeminormedAddCommGroup (E i)]
    [∀ i, NormedSpace 𝕜 (E i)] :
    IsBoundedLinearMap 𝕜 fun p : ContinuousMultilinearMapContinuousMultilinearMap 𝕜 E F × ContinuousMultilinearMap 𝕜 E G =>
      p.1.prod p.2 :=
  (ContinuousMultilinearMap.prodL 𝕜 E F G).toContinuousLinearEquiv
    |>.toContinuousLinearMap.isBoundedLinearMap
Bounded Linearity of the Cartesian Product Operation on Continuous Multilinear Maps
Informal description
Let $\mathbb{K}$ be a normed field, and let $E_i$ be a family of seminormed vector spaces over $\mathbb{K}$ indexed by $\iota$. For any two continuous multilinear maps $f \colon \prod_{i \in \iota} E_i \to F$ and $g \colon \prod_{i \in \iota} E_i \to G$, the operation that takes the pair $(f, g)$ to the continuous multilinear map $f \times g \colon \prod_{i \in \iota} E_i \to F \times G$ defined by $(f \times g)(x) = (f(x), g(x))$ is a bounded linear map.
isBoundedLinearMap_continuousMultilinearMap_comp_linear theorem
(g : G →L[𝕜] E) : IsBoundedLinearMap 𝕜 fun f : ContinuousMultilinearMap 𝕜 (fun _ : ι => E) F => f.compContinuousLinearMap fun _ => g
Full source
/-- Given a fixed continuous linear map `g`, associating to a continuous multilinear map `f` the
continuous multilinear map `f (g m₁, ..., g mₙ)` is a bounded linear operation. -/
theorem isBoundedLinearMap_continuousMultilinearMap_comp_linear (g : G →L[𝕜] E) :
    IsBoundedLinearMap 𝕜 fun f : ContinuousMultilinearMap 𝕜 (fun _ : ι => E) F =>
      f.compContinuousLinearMap fun _ => g :=
  (ContinuousMultilinearMap.compContinuousLinearMapL (ι := ι) (G := F) (fun _ ↦ g))
    |>.isBoundedLinearMap
Bounded Linearity of Precomposition with a Fixed Continuous Linear Map in Multilinear Maps
Informal description
Let $\mathbb{K}$ be a normed field, $G$ and $E$ be normed vector spaces over $\mathbb{K}$, and $F$ be a seminormed vector space over $\mathbb{K}$. Given a fixed continuous linear map $g \colon G \to E$, the operation that associates to each continuous multilinear map $f \colon \prod_{i \in \iota} E \to F$ the composition $f \circ (g \times \cdots \times g)$ is a bounded linear map from the space of continuous multilinear maps $\prod_{i \in \iota} E \to F$ to the space of continuous multilinear maps $\prod_{i \in \iota} G \to F$.
ContinuousLinearMap.map_add₂ theorem
(f : M →SL[ρ₁₂] F →SL[σ₁₂] G') (x x' : M) (y : F) : f (x + x') y = f x y + f x' y
Full source
theorem map_add₂ (f : M →SL[ρ₁₂] F →SL[σ₁₂] G') (x x' : M) (y : F) :
    f (x + x') y = f x y + f x' y := by rw [f.map_add, add_apply]
Additivity in First Argument for Continuous Bilinear Maps
Informal description
Let $M$, $F$, and $G'$ be normed vector spaces over fields with ring homomorphisms $\rho_{12} \colon R \to S$ and $\sigma_{12} \colon S' \to S''$. For any continuous bilinear map $f \colon M \to_{\mathcal{L}} (F \to_{\mathcal{L}} G')$ and vectors $x, x' \in M$, $y \in F$, we have: \[ f(x + x', y) = f(x, y) + f(x', y). \]
ContinuousLinearMap.map_zero₂ theorem
(f : M →SL[ρ₁₂] F →SL[σ₁₂] G') (y : F) : f 0 y = 0
Full source
theorem map_zero₂ (f : M →SL[ρ₁₂] F →SL[σ₁₂] G') (y : F) : f 0 y = 0 := by
  rw [f.map_zero, zero_apply]
Bilinear map vanishes when first argument is zero
Informal description
Let $M$, $F$, and $G'$ be normed vector spaces over fields with ring homomorphisms $\rho_{12} \colon R \to S$ and $\sigma_{12} \colon S' \to S''$. For any continuous bilinear map $f \colon M \to_{\mathcal{L}} (F \to_{\mathcal{L}} G')$ and vector $y \in F$, we have: \[ f(0, y) = 0. \]
ContinuousLinearMap.map_smulₛₗ₂ theorem
(f : M →SL[ρ₁₂] F →SL[σ₁₂] G') (c : R) (x : M) (y : F) : f (c • x) y = ρ₁₂ c • f x y
Full source
theorem map_smulₛₗ₂ (f : M →SL[ρ₁₂] F →SL[σ₁₂] G') (c : R) (x : M) (y : F) :
    f (c • x) y = ρ₁₂ c • f x y := by rw [f.map_smulₛₗ, smul_apply]
Scalar Multiplication Property of Continuous Bilinear Maps
Informal description
Let $M$, $F$, and $G'$ be normed vector spaces over fields with ring homomorphisms $\rho_{12} : R \to S$ and $\sigma_{12} : S' \to S''$. For any continuous bilinear map $f : M \to_{\mathcal{L}} (F \to_{\mathcal{L}} G')$, scalar $c \in R$, and vectors $x \in M$, $y \in F$, we have: \[ f(c \cdot x)(y) = \rho_{12}(c) \cdot f(x)(y) \]
ContinuousLinearMap.map_sub₂ theorem
(f : M →SL[ρ₁₂] F →SL[σ₁₂] G') (x x' : M) (y : F) : f (x - x') y = f x y - f x' y
Full source
theorem map_sub₂ (f : M →SL[ρ₁₂] F →SL[σ₁₂] G') (x x' : M) (y : F) :
    f (x - x') y = f x y - f x' y := by rw [f.map_sub, sub_apply]
Subtraction property of continuous bilinear maps
Informal description
Let $M$, $F$, and $G'$ be normed vector spaces over fields with appropriate ring homomorphisms $\rho_{12}$ and $\sigma_{12}$. For any continuous bilinear map $f: M \to_{\mathcal{L}} (F \to_{\mathcal{L}} G')$ and vectors $x, x' \in M$, $y \in F$, we have: \[ f(x - x')(y) = f(x)(y) - f(x')(y) \]
ContinuousLinearMap.map_neg₂ theorem
(f : M →SL[ρ₁₂] F →SL[σ₁₂] G') (x : M) (y : F) : f (-x) y = -f x y
Full source
theorem map_neg₂ (f : M →SL[ρ₁₂] F →SL[σ₁₂] G') (x : M) (y : F) : f (-x) y = -f x y := by
  rw [f.map_neg, neg_apply]
Negation property of continuous bilinear maps
Informal description
Let $M$, $F$, and $G'$ be normed vector spaces over fields with appropriate ring homomorphisms $\rho_{12}$ and $\sigma_{12}$. For any continuous bilinear map $f: M \to_{\mathcal{L}} (F \to_{\mathcal{L}} G')$, vector $x \in M$, and vector $y \in F$, we have: \[ f(-x)(y) = -f(x)(y) \]
ContinuousLinearMap.map_smul₂ theorem
(f : E →L[𝕜] F →L[𝕜] G) (c : 𝕜) (x : E) (y : F) : f (c • x) y = c • f x y
Full source
theorem map_smul₂ (f : E →L[𝕜] F →L[𝕜] G) (c : 𝕜) (x : E) (y : F) : f (c • x) y = c • f x y := by
  rw [f.map_smul, smul_apply]
Scalar multiplication property of continuous bilinear maps
Informal description
Let $E$, $F$, and $G$ be normed vector spaces over a field $\mathbb{K}$, and let $f: E \to_{\mathcal{L}} (F \to_{\mathcal{L}} G)$ be a continuous bilinear map. Then for any scalar $c \in \mathbb{K}$ and vectors $x \in E$, $y \in F$, we have the scalar multiplication property: \[ f(c \cdot x)(y) = c \cdot f(x)(y) \]
IsBoundedBilinearMap structure
(f : E × F → G)
Full source
/-- A map `f : E × F → G` satisfies `IsBoundedBilinearMap 𝕜 f` if it is bilinear and
continuous. -/
structure IsBoundedBilinearMap (f : E × F → G) : Prop where
  add_left : ∀ (x₁ x₂ : E) (y : F), f (x₁ + x₂, y) = f (x₁, y) + f (x₂, y)
  smul_left : ∀ (c : 𝕜) (x : E) (y : F), f (c • x, y) = c • f (x, y)
  add_right : ∀ (x : E) (y₁ y₂ : F), f (x, y₁ + y₂) = f (x, y₁) + f (x, y₂)
  smul_right : ∀ (c : 𝕜) (x : E) (y : F), f (x, c • y) = c • f (x, y)
  bound : ∃ C > 0, ∀ (x : E) (y : F), ‖f (x, y)‖ ≤ C * ‖x‖ * ‖y‖
Bounded bilinear map
Informal description
A bilinear map \( f : E \times F \to G \) between normed vector spaces is called *bounded* if there exists a constant \( C \) such that for all \( x \in E \) and \( y \in F \), the norm of \( f(x, y) \) is bounded by \( C \|x\| \|y\| \). This condition implies that \( f \) is continuous.
ContinuousLinearMap.isBoundedBilinearMap theorem
(f : E →L[𝕜] F →L[𝕜] G) : IsBoundedBilinearMap 𝕜 fun x : E × F => f x.1 x.2
Full source
theorem ContinuousLinearMap.isBoundedBilinearMap (f : E →L[𝕜] F →L[𝕜] G) :
    IsBoundedBilinearMap 𝕜 fun x : E × F => f x.1 x.2 :=
  { add_left := f.map_add₂
    smul_left := f.map_smul₂
    add_right := fun x => (f x).map_add
    smul_right := fun c x => (f x).map_smul c
    bound :=
      ⟨max ‖f‖ 1, zero_lt_one.trans_le (le_max_right _ _), fun x y =>
        (f.le_opNorm₂ x y).trans <| by
          apply_rules [mul_le_mul_of_nonneg_right, norm_nonneg, le_max_left] ⟩ }
Continuous Bilinear Maps Induce Bounded Bilinear Maps
Informal description
Let $E$, $F$, and $G$ be normed vector spaces over a field $\mathbb{K}$. For any continuous bilinear map $f \colon E \to_{\mathcal{L}} (F \to_{\mathcal{L}} G)$, the associated map $\tilde{f} \colon E \times F \to G$ defined by $\tilde{f}(x,y) = f(x)(y)$ is a bounded bilinear map. That is, there exists a constant $C > 0$ such that for all $x \in E$ and $y \in F$, we have $\|\tilde{f}(x,y)\| \leq C \|x\| \|y\|$.
IsBoundedBilinearMap.toContinuousLinearMap definition
(hf : IsBoundedBilinearMap 𝕜 f) : E →L[𝕜] F →L[𝕜] G
Full source
/-- A bounded bilinear map `f : E × F → G` defines a continuous linear map
`f : E →L[𝕜] F →L[𝕜] G`. -/
def IsBoundedBilinearMap.toContinuousLinearMap (hf : IsBoundedBilinearMap 𝕜 f) :
    E →L[𝕜] F →L[𝕜] G :=
  LinearMap.mkContinuousOfExistsBound₂
    (LinearMap.mk₂ _ f.curry hf.add_left hf.smul_left hf.add_right hf.smul_right) <|
    hf.bound.imp fun _ ↦ And.right
Continuous linear map induced by a bounded bilinear map
Informal description
Given a bounded bilinear map \( f : E \times F \to G \) between normed vector spaces over a field \(\mathbb{K}\), the function `IsBoundedBilinearMap.toContinuousLinearMap` constructs a continuous linear map \( E \to_{L[\mathbb{K}]} (F \to_{L[\mathbb{K}]} G) \). This map sends each \( x \in E \) to the continuous linear map \( f(x, \cdot) : F \to G \), and similarly for \( y \in F \).
IsBoundedBilinearMap.isBigO theorem
(h : IsBoundedBilinearMap 𝕜 f) : f =O[⊤] fun p : E × F => ‖p.1‖ * ‖p.2‖
Full source
protected theorem IsBoundedBilinearMap.isBigO (h : IsBoundedBilinearMap 𝕜 f) :
    f =O[⊤] fun p : E × F => ‖p.1‖ * ‖p.2‖ :=
  let ⟨C, _, hC⟩ := h.bound
  Asymptotics.IsBigO.of_bound C <|
    Filter.Eventually.of_forall fun ⟨x, y⟩ => by simpa [mul_assoc] using hC x y
Norm Bound for Bounded Bilinear Maps
Informal description
Let $E$, $F$, and $G$ be normed vector spaces over a field $\mathbb{K}$, and let $f : E \times F \to G$ be a bounded bilinear map. Then there exists a constant $C > 0$ such that for all $(x, y) \in E \times F$, the norm of $f(x, y)$ satisfies $\|f(x, y)\| \leq C \|x\| \|y\|$.
IsBoundedBilinearMap.isBigO_comp theorem
{α : Type*} (H : IsBoundedBilinearMap 𝕜 f) {g : α → E} {h : α → F} {l : Filter α} : (fun x => f (g x, h x)) =O[l] fun x => ‖g x‖ * ‖h x‖
Full source
theorem IsBoundedBilinearMap.isBigO_comp {α : Type*} (H : IsBoundedBilinearMap 𝕜 f) {g : α → E}
    {h : α → F} {l : Filter α} : (fun x => f (g x, h x)) =O[l] fun x => ‖g x‖ * ‖h x‖ :=
  H.isBigO.comp_tendsto le_top
Asymptotic bound for composition with bounded bilinear map
Informal description
Let $E$, $F$, and $G$ be normed vector spaces over a field $\mathbb{K}$, and let $f : E \times F \to G$ be a bounded bilinear map. For any type $\alpha$ and functions $g : \alpha \to E$, $h : \alpha \to F$, the composition $(x \mapsto f(g(x), h(x)))$ is asymptotically bounded by $(x \mapsto \|g(x)\| \cdot \|h(x)\|)$ with respect to any filter $l$ on $\alpha$.
IsBoundedBilinearMap.isBigO' theorem
(h : IsBoundedBilinearMap 𝕜 f) : f =O[⊤] fun p : E × F => ‖p‖ * ‖p‖
Full source
protected theorem IsBoundedBilinearMap.isBigO' (h : IsBoundedBilinearMap 𝕜 f) :
    f =O[⊤] fun p : E × F => ‖p‖ * ‖p‖ :=
  h.isBigO.trans <|
    (@Asymptotics.isBigO_fst_prod' _ E F _ _ _ _).norm_norm.mul
      (@Asymptotics.isBigO_snd_prod' _ E F _ _ _ _).norm_norm
Norm Bound for Bounded Bilinear Maps in Terms of Product Norm
Informal description
Let $E$, $F$, and $G$ be normed vector spaces over a field $\mathbb{K}$, and let $f : E \times F \to G$ be a bounded bilinear map. Then there exists a constant $C > 0$ such that for all $(x, y) \in E \times F$, the norm of $f(x, y)$ satisfies $\|f(x, y)\| \leq C \|(x, y)\|^2$.
IsBoundedBilinearMap.map_sub_left theorem
(h : IsBoundedBilinearMap 𝕜 f) {x y : E} {z : F} : f (x - y, z) = f (x, z) - f (y, z)
Full source
theorem IsBoundedBilinearMap.map_sub_left (h : IsBoundedBilinearMap 𝕜 f) {x y : E} {z : F} :
    f (x - y, z) = f (x, z) - f (y, z) :=
  (h.toContinuousLinearMap.flip z).map_sub x y
Linearity in the first argument for bounded bilinear maps: $f(x - y, z) = f(x, z) - f(y, z)$
Informal description
Let $E$, $F$, and $G$ be normed vector spaces over a field $\mathbb{K}$, and let $f : E \times F \to G$ be a bounded bilinear map. Then for any $x, y \in E$ and $z \in F$, the map $f$ satisfies the linearity condition in its first argument: \[ f(x - y, z) = f(x, z) - f(y, z). \]
IsBoundedBilinearMap.map_sub_right theorem
(h : IsBoundedBilinearMap 𝕜 f) {x : E} {y z : F} : f (x, y - z) = f (x, y) - f (x, z)
Full source
theorem IsBoundedBilinearMap.map_sub_right (h : IsBoundedBilinearMap 𝕜 f) {x : E} {y z : F} :
    f (x, y - z) = f (x, y) - f (x, z) :=
  (h.toContinuousLinearMap x).map_sub y z
Linearity in the second argument for bounded bilinear maps: $f(x, y - z) = f(x, y) - f(x, z)$
Informal description
Let $E$, $F$, and $G$ be normed vector spaces over a field $\mathbb{K}$, and let $f : E \times F \to G$ be a bounded bilinear map. Then for any $x \in E$ and $y, z \in F$, the map $f$ satisfies the linearity condition in its second argument: \[ f(x, y - z) = f(x, y) - f(x, z). \]
IsBoundedBilinearMap.continuous theorem
(h : IsBoundedBilinearMap 𝕜 f) : Continuous f
Full source
/-- Useful to use together with `Continuous.comp₂`. -/
theorem IsBoundedBilinearMap.continuous (h : IsBoundedBilinearMap 𝕜 f) : Continuous f := by
  refine continuous_iff_continuousAt.2 fun x ↦ tendsto_sub_nhds_zero_iff.1 ?_
  suffices Tendsto (fun y : E × F ↦ f (y.1 - x.1, y.2) + f (x.1, y.2 - x.2)) (𝓝 x) (𝓝 (0 + 0)) by
    simpa only [h.map_sub_left, h.map_sub_right, sub_add_sub_cancel, zero_add] using this
  apply Tendsto.add
  · rw [← isLittleO_one_iff , ← one_mul 1]
    refine h.isBigO_comp.trans_isLittleO ?_
    refine (IsLittleO.norm_left ?_).mul_isBigO (IsBigO.norm_left ?_)
    · exact (isLittleO_one_iff _).2 (tendsto_sub_nhds_zero_iff.2 (continuous_fst.tendsto _))
    · exact (continuous_snd.tendsto _).isBigO_one 
  · refine Continuous.tendsto' ?_ _ _ (by rw [h.map_sub_right, sub_self])
    exact ((h.toContinuousLinearMap x.1).continuous).comp (continuous_snd.sub continuous_const)
Continuity of bounded bilinear maps
Informal description
Let $E$, $F$, and $G$ be normed vector spaces over a field $\mathbb{K}$, and let $f : E \times F \to G$ be a bounded bilinear map. Then $f$ is continuous.
IsBoundedBilinearMap.continuous_left theorem
(h : IsBoundedBilinearMap 𝕜 f) {e₂ : F} : Continuous fun e₁ => f (e₁, e₂)
Full source
theorem IsBoundedBilinearMap.continuous_left (h : IsBoundedBilinearMap 𝕜 f) {e₂ : F} :
    Continuous fun e₁ => f (e₁, e₂) :=
  h.continuous.comp (continuous_id.prodMk continuous_const)
Continuity in first argument for bounded bilinear maps
Informal description
Let $E$, $F$, and $G$ be normed vector spaces over a field $\mathbb{K}$, and let $f : E \times F \to G$ be a bounded bilinear map. Then for any fixed $e_2 \in F$, the function $e_1 \mapsto f(e_1, e_2)$ is continuous as a function from $E$ to $G$.
IsBoundedBilinearMap.continuous_right theorem
(h : IsBoundedBilinearMap 𝕜 f) {e₁ : E} : Continuous fun e₂ => f (e₁, e₂)
Full source
theorem IsBoundedBilinearMap.continuous_right (h : IsBoundedBilinearMap 𝕜 f) {e₁ : E} :
    Continuous fun e₂ => f (e₁, e₂) :=
  h.continuous.comp (continuous_const.prodMk continuous_id)
Continuity of bounded bilinear maps in the second argument
Informal description
Let $E$, $F$, and $G$ be normed vector spaces over a field $\mathbb{K}$, and let $f : E \times F \to G$ be a bounded bilinear map. For any fixed $e_1 \in E$, the map $e_2 \mapsto f(e_1, e_2)$ is continuous.
ContinuousLinearMap.continuous₂ theorem
(f : E →L[𝕜] F →L[𝕜] G) : Continuous (Function.uncurry fun x y => f x y)
Full source
/-- Useful to use together with `Continuous.comp₂`. -/
theorem ContinuousLinearMap.continuous₂ (f : E →L[𝕜] F →L[𝕜] G) :
    Continuous (Function.uncurry fun x y => f x y) :=
  f.isBoundedBilinearMap.continuous
Continuity of Bilinear Map Associated to Continuous Linear Map
Informal description
Let $E$, $F$, and $G$ be normed vector spaces over a field $\mathbb{K}$. For any continuous bilinear map $f \colon E \to_{\mathcal{L}} (F \to_{\mathcal{L}} G)$, the associated map $\tilde{f} \colon E \times F \to G$ defined by $\tilde{f}(x,y) = f(x)(y)$ is continuous.
IsBoundedBilinearMap.isBoundedLinearMap_left theorem
(h : IsBoundedBilinearMap 𝕜 f) (y : F) : IsBoundedLinearMap 𝕜 fun x => f (x, y)
Full source
theorem IsBoundedBilinearMap.isBoundedLinearMap_left (h : IsBoundedBilinearMap 𝕜 f) (y : F) :
    IsBoundedLinearMap 𝕜 fun x => f (x, y) :=
  (h.toContinuousLinearMap.flip y).isBoundedLinearMap
Left Partial Application of Bounded Bilinear Map is Bounded Linear
Informal description
Let $E$, $F$, and $G$ be normed vector spaces over a normed field $\mathbb{K}$, and let $f : E \times F \to G$ be a bounded bilinear map. For any fixed $y \in F$, the map $x \mapsto f(x, y)$ is a bounded linear map from $E$ to $G$.
IsBoundedBilinearMap.isBoundedLinearMap_right theorem
(h : IsBoundedBilinearMap 𝕜 f) (x : E) : IsBoundedLinearMap 𝕜 fun y => f (x, y)
Full source
theorem IsBoundedBilinearMap.isBoundedLinearMap_right (h : IsBoundedBilinearMap 𝕜 f) (x : E) :
    IsBoundedLinearMap 𝕜 fun y => f (x, y) :=
  (h.toContinuousLinearMap x).isBoundedLinearMap
Right Partial Application of Bounded Bilinear Map is Bounded Linear
Informal description
Let $E$, $F$, and $G$ be normed vector spaces over a normed field $\mathbb{K}$, and let $f : E \times F \to G$ be a bounded bilinear map. For any fixed $x \in E$, the map $y \mapsto f(x, y)$ is a bounded linear map from $F$ to $G$.
isBoundedBilinearMap_smul theorem
{𝕜' : Type*} [NormedField 𝕜'] [NormedAlgebra 𝕜 𝕜'] {E : Type*} [SeminormedAddCommGroup E] [NormedSpace 𝕜 E] [NormedSpace 𝕜' E] [IsScalarTower 𝕜 𝕜' E] : IsBoundedBilinearMap 𝕜 fun p : 𝕜' × E => p.1 • p.2
Full source
theorem isBoundedBilinearMap_smul {𝕜' : Type*} [NormedField 𝕜'] [NormedAlgebra 𝕜 𝕜'] {E : Type*}
    [SeminormedAddCommGroup E] [NormedSpace 𝕜 E] [NormedSpace 𝕜' E] [IsScalarTower 𝕜 𝕜' E] :
    IsBoundedBilinearMap 𝕜 fun p : 𝕜' × E => p.1 • p.2 :=
  (lsmul 𝕜 𝕜' : 𝕜' →L[𝕜] E →L[𝕜] E).isBoundedBilinearMap
Boundedness of Scalar Multiplication in Normed Spaces
Informal description
Let $\mathbb{K}$ and $\mathbb{K}'$ be normed fields with $\mathbb{K}'$ a normed algebra over $\mathbb{K}$. Let $E$ be a seminormed additive commutative group and a normed space over both $\mathbb{K}$ and $\mathbb{K}'$, with the scalar multiplication operations compatible via the scalar tower property. Then the scalar multiplication map $(λ, x) \mapsto λ \cdot x$ from $\mathbb{K}' \times E$ to $E$ is a bounded bilinear map. That is, there exists a constant $C > 0$ such that for all $λ \in \mathbb{K}'$ and $x \in E$, we have $\|λ \cdot x\|_E \leq C \|λ\|_{\mathbb{K}'} \|x\|_E$.
isBoundedBilinearMap_mul theorem
: IsBoundedBilinearMap 𝕜 fun p : 𝕜 × 𝕜 => p.1 * p.2
Full source
theorem isBoundedBilinearMap_mul : IsBoundedBilinearMap 𝕜 fun p : 𝕜 × 𝕜 => p.1 * p.2 := by
  simp_rw [← smul_eq_mul]
  exact isBoundedBilinearMap_smul
Boundedness of Field Multiplication in Normed Fields
Informal description
The multiplication operation $(x, y) \mapsto x * y$ on a normed field $\mathbb{K}$ is a bounded bilinear map. That is, there exists a constant $C > 0$ such that for all $x, y \in \mathbb{K}$, we have $\|x * y\| \leq C \|x\| \|y\|$.
isBoundedBilinearMap_comp theorem
: IsBoundedBilinearMap 𝕜 fun p : (F →L[𝕜] G) × (E →L[𝕜] F) => p.1.comp p.2
Full source
theorem isBoundedBilinearMap_comp :
    IsBoundedBilinearMap 𝕜 fun p : (F →L[𝕜] G) × (E →L[𝕜] F) => p.1.comp p.2 :=
  (compL 𝕜 E F G).isBoundedBilinearMap
Boundedness of Composition of Continuous Linear Maps
Informal description
Let $E$, $F$, and $G$ be normed vector spaces over a field $\mathbb{K}$. The composition map $(g, f) \mapsto g \circ f$ from $(F \to_{\mathcal{L}} G) \times (E \to_{\mathcal{L}} F)$ to $(E \to_{\mathcal{L}} G)$ is a bounded bilinear map. That is, there exists a constant $C > 0$ such that for all continuous linear maps $g \colon F \to G$ and $f \colon E \to F$, we have $\|g \circ f\| \leq C \|g\| \|f\|$.
ContinuousLinearMap.isBoundedLinearMap_comp_left theorem
(g : F →L[𝕜] G) : IsBoundedLinearMap 𝕜 fun f : E →L[𝕜] F => ContinuousLinearMap.comp g f
Full source
theorem ContinuousLinearMap.isBoundedLinearMap_comp_left (g : F →L[𝕜] G) :
    IsBoundedLinearMap 𝕜 fun f : E →L[𝕜] F => ContinuousLinearMap.comp g f :=
  isBoundedBilinearMap_comp.isBoundedLinearMap_right _
Left Composition with Continuous Linear Map is Bounded Linear
Informal description
Let $E$, $F$, and $G$ be normed vector spaces over a normed field $\mathbb{K}$. For any continuous linear map $g \colon F \to G$, the map $f \mapsto g \circ f$ from the space of continuous linear maps $E \to F$ to the space of continuous linear maps $E \to G$ is a bounded linear map. That is, there exists a constant $M > 0$ such that for all $f \colon E \to F$, we have $\|g \circ f\| \leq M \|f\|$.
ContinuousLinearMap.isBoundedLinearMap_comp_right theorem
(f : E →L[𝕜] F) : IsBoundedLinearMap 𝕜 fun g : F →L[𝕜] G => ContinuousLinearMap.comp g f
Full source
theorem ContinuousLinearMap.isBoundedLinearMap_comp_right (f : E →L[𝕜] F) :
    IsBoundedLinearMap 𝕜 fun g : F →L[𝕜] G => ContinuousLinearMap.comp g f :=
  isBoundedBilinearMap_comp.isBoundedLinearMap_left _
Right Composition with Fixed Continuous Linear Map is Bounded Linear
Informal description
Let $E$, $F$, and $G$ be normed vector spaces over a normed field $\mathbb{K}$. For any fixed continuous linear map $f \colon E \to F$, the map $g \mapsto g \circ f$ from the space of continuous linear maps $F \to G$ to the space of continuous linear maps $E \to G$ is a bounded linear map. That is, there exists a constant $C > 0$ such that for all $g \colon F \to G$, we have $\|g \circ f\| \leq C \|g\|$.
isBoundedBilinearMap_apply theorem
: IsBoundedBilinearMap 𝕜 fun p : (E →L[𝕜] F) × E => p.1 p.2
Full source
theorem isBoundedBilinearMap_apply : IsBoundedBilinearMap 𝕜 fun p : (E →L[𝕜] F) × E => p.1 p.2 :=
  (ContinuousLinearMap.flip (apply 𝕜 F : E →L[𝕜] (E →L[𝕜] F) →L[𝕜] F)).isBoundedBilinearMap
Boundedness of the Evaluation Map for Continuous Linear Operators
Informal description
The evaluation map $(f, x) \mapsto f(x)$ from $(E \to_{\mathcal{L}} F) \times E$ to $F$ is a bounded bilinear map, where $E$ and $F$ are normed vector spaces over a field $\mathbb{K}$. That is, there exists a constant $C > 0$ such that for all $f \in E \to_{\mathcal{L}} F$ and $x \in E$, we have $\|f(x)\| \leq C \|f\| \|x\|$.
isBoundedBilinearMap_smulRight theorem
: IsBoundedBilinearMap 𝕜 fun p => (ContinuousLinearMap.smulRight : (E →L[𝕜] 𝕜) → F → E →L[𝕜] F) p.1 p.2
Full source
/-- The function `ContinuousLinearMap.smulRight`, associating to a continuous linear map
`f : E → 𝕜` and a scalar `c : F` the tensor product `f ⊗ c` as a continuous linear map from `E` to
`F`, is a bounded bilinear map. -/
theorem isBoundedBilinearMap_smulRight :
    IsBoundedBilinearMap 𝕜 fun p =>
      (ContinuousLinearMap.smulRight : (E →L[𝕜] 𝕜) → F → E →L[𝕜] F) p.1 p.2 :=
  (smulRightL 𝕜 E F).isBoundedBilinearMap
Boundedness of the Tensor Product Operation $\mathrm{smulRight}$
Informal description
Let $E$ and $F$ be normed vector spaces over a field $\mathbb{K}$. The operation $\mathrm{smulRight} \colon (E \to_{\mathcal{L}} \mathbb{K}) \times F \to (E \to_{\mathcal{L}} F)$, which associates to a continuous linear map $f \colon E \to \mathbb{K}$ and a vector $c \in F$ the tensor product $f \otimes c$ (interpreted as the continuous linear map $x \mapsto f(x) \cdot c$), is a bounded bilinear map. That is, there exists a constant $C > 0$ such that for all $f \in E \to_{\mathcal{L}} \mathbb{K}$ and $c \in F$, we have $\|\mathrm{smulRight}(f, c)\| \leq C \|f\| \|c\|$.
isBoundedBilinearMap_compMultilinear theorem
{ι : Type*} {E : ι → Type*} [Fintype ι] [∀ i, NormedAddCommGroup (E i)] [∀ i, NormedSpace 𝕜 (E i)] : IsBoundedBilinearMap 𝕜 fun p : (F →L[𝕜] G) × ContinuousMultilinearMap 𝕜 E F => p.1.compContinuousMultilinearMap p.2
Full source
/-- The composition of a continuous linear map with a continuous multilinear map is a bounded
bilinear operation. -/
theorem isBoundedBilinearMap_compMultilinear {ι : Type*} {E : ι → Type*} [Fintype ι]
    [∀ i, NormedAddCommGroup (E i)] [∀ i, NormedSpace 𝕜 (E i)] :
    IsBoundedBilinearMap 𝕜 fun p : (F →L[𝕜] G) × ContinuousMultilinearMap 𝕜 E F =>
      p.1.compContinuousMultilinearMap p.2 :=
  (compContinuousMultilinearMapL 𝕜 E F G).isBoundedBilinearMap
Bounded Bilinearity of Continuous Linear-Multilinear Composition
Informal description
Let $\mathbb{K}$ be a field, and let $E_i$ for $i \in \iota$ and $F$, $G$ be normed vector spaces over $\mathbb{K}$, where $\iota$ is a finite index set. The composition operation \[ (f, g) \mapsto f \circ g \] for $f \in F \to_{\mathcal{L}} G$ (continuous linear maps from $F$ to $G$) and $g \in \text{ContinuousMultilinearMap}_{\mathbb{K}}(E, F)$ (continuous multilinear maps from $\prod_{i \in \iota} E_i$ to $F$) is a bounded bilinear map. That is, there exists a constant $C > 0$ such that for all such $f$ and $g$, \[ \|f \circ g\| \leq C \|f\| \|g\|. \]
IsBoundedBilinearMap.linearDeriv definition
(h : IsBoundedBilinearMap 𝕜 f) (p : E × F) : E × F →ₗ[𝕜] G
Full source
/-- Definition of the derivative of a bilinear map `f`, given at a point `p` by
`q ↦ f(p.1, q.2) + f(q.1, p.2)` as in the standard formula for the derivative of a product.
We define this function here as a linear map `E × F →ₗ[𝕜] G`, then `IsBoundedBilinearMap.deriv`
strengthens it to a continuous linear map `E × F →L[𝕜] G`.
-/
def IsBoundedBilinearMap.linearDeriv (h : IsBoundedBilinearMap 𝕜 f) (p : E × F) : E × FE × F →ₗ[𝕜] G :=
  (h.toContinuousLinearMap.deriv₂ p).toLinearMap
Linear derivative of a bounded bilinear map
Informal description
Given a bounded bilinear map \( f : E \times F \to G \) between normed vector spaces over a field \(\mathbb{K}\) and a point \( p \in E \times F \), the linear derivative of \( f \) at \( p \) is the linear map \( E \times F \to G \) defined by \( (x, y) \mapsto f(p_1, y) + f(x, p_2) \), where \( p = (p_1, p_2) \). This represents the derivative of \( f \) in the sense of linear approximations.
IsBoundedBilinearMap.deriv definition
(h : IsBoundedBilinearMap 𝕜 f) (p : E × F) : E × F →L[𝕜] G
Full source
/-- The derivative of a bounded bilinear map at a point `p : E × F`, as a continuous linear map
from `E × F` to `G`. The statement that this is indeed the derivative of `f` is
`IsBoundedBilinearMap.hasFDerivAt` in `Analysis.Calculus.FDeriv`. -/
def IsBoundedBilinearMap.deriv (h : IsBoundedBilinearMap 𝕜 f) (p : E × F) : E × FE × F →L[𝕜] G :=
  h.toContinuousLinearMap.deriv₂ p
Derivative of a bounded bilinear map
Informal description
Given a bounded bilinear map \( f : E \times F \to G \) between normed vector spaces over a field \(\mathbb{K}\), the derivative of \( f \) at a point \( p \in E \times F \) is the continuous linear map \( E \times F \to_{L[\mathbb{K}]} G \) defined by \( (x, y) \mapsto f(x, p.2) + f(p.1, y) \).
IsBoundedBilinearMap.deriv_apply theorem
(h : IsBoundedBilinearMap 𝕜 f) (p q : E × F) : h.deriv p q = f (p.1, q.2) + f (q.1, p.2)
Full source
@[simp]
theorem IsBoundedBilinearMap.deriv_apply (h : IsBoundedBilinearMap 𝕜 f) (p q : E × F) :
    h.deriv p q = f (p.1, q.2) + f (q.1, p.2) :=
  rfl
Derivative Evaluation Formula for Bounded Bilinear Maps
Informal description
Let $E$, $F$, and $G$ be normed vector spaces over a field $\mathbb{K}$, and let $f \colon E \times F \to G$ be a bounded bilinear map. For any points $p = (p_1, p_2)$ and $q = (q_1, q_2)$ in $E \times F$, the derivative of $f$ at $p$ evaluated at $q$ satisfies \[ h.\mathrm{deriv}\, p\, q = f(p_1, q_2) + f(q_1, p_2), \] where $h$ is the proof that $f$ is a bounded bilinear map.
ContinuousLinearMap.mulLeftRight_isBoundedBilinear theorem
(𝕜' : Type*) [SeminormedRing 𝕜'] [NormedAlgebra 𝕜 𝕜'] : IsBoundedBilinearMap 𝕜 fun p : 𝕜' × 𝕜' => ContinuousLinearMap.mulLeftRight 𝕜 𝕜' p.1 p.2
Full source
/-- The function `ContinuousLinearMap.mulLeftRight : 𝕜' × 𝕜' → (𝕜' →L[𝕜] 𝕜')` is a bounded
bilinear map. -/
theorem ContinuousLinearMap.mulLeftRight_isBoundedBilinear (𝕜' : Type*) [SeminormedRing 𝕜']
    [NormedAlgebra 𝕜 𝕜'] :
    IsBoundedBilinearMap 𝕜 fun p : 𝕜' × 𝕜' => ContinuousLinearMap.mulLeftRight 𝕜 𝕜' p.1 p.2 :=
  (ContinuousLinearMap.mulLeftRight 𝕜 𝕜').isBoundedBilinearMap
Bounded Bilinearity of the Left-Right Multiplication Operator
Informal description
Let $\mathbb{K}$ be a normed field and $\mathbb{K}'$ be a seminormed ring with a normed algebra structure over $\mathbb{K}$. The map $\mathrm{mulLeftRight} \colon \mathbb{K}' \times \mathbb{K}' \to (\mathbb{K}' \to_{\mathcal{L}} \mathbb{K}')$ defined by $\mathrm{mulLeftRight}(a, b)(x) = a \cdot x \cdot b$ is a bounded bilinear map. That is, there exists a constant $C > 0$ such that for all $a, b \in \mathbb{K}'$, the operator norm satisfies $\|\mathrm{mulLeftRight}(a, b)\| \leq C \|a\| \|b\|$.
IsBoundedBilinearMap.isBoundedLinearMap_deriv theorem
(h : IsBoundedBilinearMap 𝕜 f) : IsBoundedLinearMap 𝕜 fun p : E × F => h.deriv p
Full source
/-- Given a bounded bilinear map `f`, the map associating to a point `p` the derivative of `f` at
`p` is itself a bounded linear map. -/
theorem IsBoundedBilinearMap.isBoundedLinearMap_deriv (h : IsBoundedBilinearMap 𝕜 f) :
    IsBoundedLinearMap 𝕜 fun p : E × F => h.deriv p :=
  h.toContinuousLinearMap.deriv₂.isBoundedLinearMap
Bounded Linearity of the Derivative Map for Bounded Bilinear Maps
Informal description
Let \( E \), \( F \), and \( G \) be normed vector spaces over a normed field \( \mathbb{K} \), and let \( f : E \times F \to G \) be a bounded bilinear map. Then the map that associates to each point \( p \in E \times F \) the derivative \( h.deriv(p) \) of \( f \) at \( p \) is itself a bounded linear map from \( E \times F \) to the space of continuous linear maps \( E \times F \to_{L[\mathbb{K}]} G \).
Continuous.clm_comp theorem
{X} [TopologicalSpace X] {g : X → F →L[𝕜] G} {f : X → E →L[𝕜] F} (hg : Continuous g) (hf : Continuous f) : Continuous fun x => (g x).comp (f x)
Full source
@[continuity, fun_prop]
theorem Continuous.clm_comp {X} [TopologicalSpace X] {g : X → F →L[𝕜] G} {f : X → E →L[𝕜] F}
    (hg : Continuous g) (hf : Continuous f) : Continuous fun x => (g x).comp (f x) :=
  (compL 𝕜 E F G).continuous₂.comp₂ hg hf
Continuity of Composition of Continuous Linear Maps
Informal description
Let $X$ be a topological space, and let $E$, $F$, and $G$ be normed vector spaces over a field $\mathbb{K}$. Given continuous functions $g \colon X \to (F \to_{\mathcal{L}} G)$ and $f \colon X \to (E \to_{\mathcal{L}} F)$, the function $x \mapsto g(x) \circ f(x)$ from $X$ to $(E \to_{\mathcal{L}} G)$ is continuous.
ContinuousOn.clm_comp theorem
{X} [TopologicalSpace X] {g : X → F →L[𝕜] G} {f : X → E →L[𝕜] F} {s : Set X} (hg : ContinuousOn g s) (hf : ContinuousOn f s) : ContinuousOn (fun x => (g x).comp (f x)) s
Full source
theorem ContinuousOn.clm_comp {X} [TopologicalSpace X] {g : X → F →L[𝕜] G} {f : X → E →L[𝕜] F}
    {s : Set X} (hg : ContinuousOn g s) (hf : ContinuousOn f s) :
    ContinuousOn (fun x => (g x).comp (f x)) s :=
  (compL 𝕜 E F G).continuous₂.comp_continuousOn (hg.prodMk hf)
Continuity of composition of continuous linear maps on a subset
Informal description
Let $X$ be a topological space, and let $E$, $F$, and $G$ be normed vector spaces over a field $\mathbb{K}$. Given continuous functions $g \colon X \to (F \to_{\mathcal{L}} G)$ and $f \colon X \to (E \to_{\mathcal{L}} F)$ defined on a subset $s \subseteq X$, the function $x \mapsto (g x) \circ (f x)$ is continuous on $s$.
Continuous.clm_apply theorem
{X} [TopologicalSpace X] {f : X → (E →L[𝕜] F)} {g : X → E} (hf : Continuous f) (hg : Continuous g) : Continuous (fun x ↦ (f x) (g x))
Full source
@[continuity, fun_prop]
theorem Continuous.clm_apply {X} [TopologicalSpace X] {f : X → (E →L[𝕜] F)} {g : X → E}
    (hf : Continuous f) (hg : Continuous g) : Continuous (fun x ↦ (f x) (g x)) :=
  isBoundedBilinearMap_apply.continuous.comp₂ hf hg
Continuity of Pointwise Application of Continuous Linear Maps
Informal description
Let $X$ be a topological space, $E$ and $F$ be normed vector spaces over a field $\mathbb{K}$, and let $f \colon X \to (E \to_{\mathcal{L}} F)$ and $g \colon X \to E$ be continuous functions. Then the function $x \mapsto f(x)(g(x))$ from $X$ to $F$ is continuous.
ContinuousOn.clm_apply theorem
{X} [TopologicalSpace X] {f : X → (E →L[𝕜] F)} {g : X → E} {s : Set X} (hf : ContinuousOn f s) (hg : ContinuousOn g s) : ContinuousOn (fun x ↦ f x (g x)) s
Full source
theorem ContinuousOn.clm_apply {X} [TopologicalSpace X] {f : X → (E →L[𝕜] F)} {g : X → E}
    {s : Set X} (hf : ContinuousOn f s) (hg : ContinuousOn g s) :
    ContinuousOn (fun x ↦ f x (g x)) s :=
  isBoundedBilinearMap_apply.continuous.comp_continuousOn (hf.prodMk hg)
Continuity of the evaluation map on a subset
Informal description
Let $X$ be a topological space, and let $f \colon X \to (E \to_{\mathcal{L}} F)$ and $g \colon X \to E$ be functions. If $f$ is continuous on a subset $s \subseteq X$ and $g$ is continuous on $s$, then the function $x \mapsto f(x)(g(x))$ is continuous on $s$.
ContinuousLinearEquiv.isOpen theorem
[CompleteSpace E] : IsOpen (range ((↑) : (E ≃L[𝕜] F) → E →L[𝕜] F))
Full source
protected theorem isOpen [CompleteSpace E] : IsOpen (range ((↑) : (E ≃L[𝕜] F) → E →L[𝕜] F)) := by
  rw [isOpen_iff_mem_nhds, forall_mem_range]
  refine fun e => IsOpen.mem_nhds ?_ (mem_range_self _)
  let O : (E →L[𝕜] F) → E →L[𝕜] E := fun f => (e.symm : F →L[𝕜] E).comp f
  have h_O : Continuous O := isBoundedBilinearMap_comp.continuous_right
  convert show IsOpen (O ⁻¹' { x | IsUnit x }) from Units.isOpen.preimage h_O using 1
  ext f'
  constructor
  · rintro ⟨e', rfl⟩
    exact ⟨(e'.trans e.symm).toUnit, rfl⟩
  · rintro ⟨w, hw⟩
    use (unitsEquiv 𝕜 E w).trans e
    ext x
    simp [O, hw]
Openness of Continuous Linear Equivalences Between Banach Spaces
Informal description
Let $E$ and $F$ be Banach spaces over a field $\mathbb{K}$. The set of continuous linear equivalences from $E$ to $F$, considered as a subset of the space of continuous linear maps from $E$ to $F$, is open in the operator norm topology.
ContinuousLinearEquiv.nhds theorem
[CompleteSpace E] (e : E ≃L[𝕜] F) : range ((↑) : (E ≃L[𝕜] F) → E →L[𝕜] F) ∈ 𝓝 (e : E →L[𝕜] F)
Full source
protected theorem nhds [CompleteSpace E] (e : E ≃L[𝕜] F) :
    rangerange ((↑) : (E ≃L[𝕜] F) → E →L[𝕜] F) ∈ 𝓝 (e : E →L[𝕜] F) :=
  IsOpen.mem_nhds ContinuousLinearEquiv.isOpen (by simp)
Continuous Linear Equivalences Form a Neighborhood in Operator Space
Informal description
Let $E$ and $F$ be Banach spaces over a field $\mathbb{K}$. For any continuous linear equivalence $e \colon E \simeq_{\mathcal{L}} F$, the set of all continuous linear equivalences from $E$ to $F$ is a neighborhood of $e$ in the space of continuous linear maps from $E$ to $F$ with the operator norm topology.