doc-next-gen

Mathlib.Analysis.NormedSpace.OperatorNorm.Mul

Module docstring

{"# Results about operator norms in normed algebras

This file (split off from OperatorNorm.lean) contains results about the operator norm of multiplication and scalar-multiplication operations in normed algebras and normed modules. "}

ContinuousLinearMap.mul_apply' theorem
(x y : R) : mul π•œ R x y = x * y
Full source
@[simp]
theorem mul_apply' (x y : R) : mul π•œ R x y = x * y :=
  rfl
Multiplication Operator Application: $\mathrm{mul}_{\mathbb{K}} R\, x\, y = x * y$
Informal description
For any elements $x$ and $y$ in a normed algebra $R$ over a field $\mathbb{K}$, the operator `mul π•œ R x y` (representing the multiplication operator applied to $x$ and $y$) equals the product $x * y$.
ContinuousLinearMap.opNorm_mul_apply_le theorem
(x : R) : β€–mul π•œ R xβ€– ≀ β€–xβ€–
Full source
@[simp]
theorem opNorm_mul_apply_le (x : R) : β€–mul π•œ R xβ€– ≀ β€–xβ€– :=
  opNorm_le_bound _ (norm_nonneg x) (norm_mul_le x)
Operator Norm Bound for Left Multiplication in Normed Algebras
Informal description
For any element $x$ in a normed algebra $R$ over a field $\mathbb{K}$, the operator norm of the left multiplication operator $\mathrm{mul}_{\mathbb{K}} R\, x$ is bounded by the norm of $x$, i.e., $\|\mathrm{mul}_{\mathbb{K}} R\, x\| \leq \|x\|$.
ContinuousLinearMap.opNorm_mul_le theorem
: β€–mul π•œ Rβ€– ≀ 1
Full source
theorem opNorm_mul_le : β€–mul π•œ Rβ€– ≀ 1 :=
  LinearMap.mkContinuousβ‚‚_norm_le _ zero_le_one _
Operator Norm Bound for Multiplication in Normed Algebras: $\|\mathrm{mul}_{\mathbb{K}} R\| \leq 1$
Informal description
The operator norm of the multiplication operator $\mathrm{mul}_{\mathbb{K}} R$ in a normed algebra $R$ over a field $\mathbb{K}$ is bounded by $1$, i.e., $\|\mathrm{mul}_{\mathbb{K}} R\| \leq 1$.
NonUnitalAlgHom.coe_Lmul theorem
: ⇑(NonUnitalAlgHom.Lmul π•œ R) = mul π•œ R
Full source
@[simp]
theorem _root_.NonUnitalAlgHom.coe_Lmul : ⇑(NonUnitalAlgHom.Lmul π•œ R) = mul π•œ R :=
  rfl
Coefficient of Left Multiplication Homomorphism Equals Multiplication Operator
Informal description
The underlying function of the non-unital algebra homomorphism `Lmul π•œ R` (left multiplication by elements of `R` over the field `π•œ`) is equal to the multiplication operator `mul π•œ R`.
ContinuousLinearMap.mulLeftRight_apply theorem
(x y z : R) : mulLeftRight π•œ R x y z = x * z * y
Full source
@[simp]
theorem mulLeftRight_apply (x y z : R) : mulLeftRight π•œ R x y z = x * z * y :=
  rfl
Action of Left-Right Multiplication Operator: $\mathrm{mulLeftRight}_{\mathbb{K}} R\, x\, y\, z = x z y$
Informal description
For any elements $x, y, z$ in a normed algebra $R$ over a field $\mathbb{K}$, the operator `mulLeftRight` satisfies the identity $\mathrm{mulLeftRight}_{\mathbb{K}} R\, x\, y\, z = x * z * y$.
ContinuousLinearMap.opNorm_mulLeftRight_apply_apply_le theorem
(x y : R) : β€–mulLeftRight π•œ R x yβ€– ≀ β€–xβ€– * β€–yβ€–
Full source
theorem opNorm_mulLeftRight_apply_apply_le (x y : R) : β€–mulLeftRight π•œ R x yβ€– ≀ β€–xβ€– * β€–yβ€– :=
  (opNorm_comp_le _ _).trans <|
    (mul_comm _ _).trans_le <|
      mul_le_mul (opNorm_mul_apply_le _ _ _)
        (opNorm_le_bound _ (norm_nonneg _) fun _ => (norm_mul_le _ _).trans_eq (mul_comm _ _))
        (norm_nonneg _) (norm_nonneg _)
Operator Norm Bound for Bilinear Multiplication in Normed Algebras: $\|\mathrm{mulLeftRight}_{\mathbb{K}} R\, x\, y\| \leq \|x\| \cdot \|y\|$
Informal description
For any elements $x$ and $y$ in a normed algebra $R$ over a field $\mathbb{K}$, the operator norm of the bilinear operator $\mathrm{mulLeftRight}_{\mathbb{K}} R\, x\, y$ is bounded by the product of the norms of $x$ and $y$, i.e., $\|\mathrm{mulLeftRight}_{\mathbb{K}} R\, x\, y\| \leq \|x\| \cdot \|y\|$.
ContinuousLinearMap.opNorm_mulLeftRight_apply_le theorem
(x : R) : β€–mulLeftRight π•œ R xβ€– ≀ β€–xβ€–
Full source
theorem opNorm_mulLeftRight_apply_le (x : R) : β€–mulLeftRight π•œ R xβ€– ≀ β€–xβ€– :=
  opNorm_le_bound _ (norm_nonneg x) (opNorm_mulLeftRight_apply_apply_le π•œ R x)
Operator Norm Bound for Left-Right Multiplication: $\|\mathrm{mulLeftRight}_{\mathbb{K}} R\, x\| \leq \|x\|$
Informal description
For any element $x$ in a normed algebra $R$ over a field $\mathbb{K}$, the operator norm of the left-right multiplication operator $\mathrm{mulLeftRight}_{\mathbb{K}} R\, x$ is bounded by the norm of $x$, i.e., $\|\mathrm{mulLeftRight}_{\mathbb{K}} R\, x\| \leq \|x\|$.
ContinuousLinearMap.opNorm_mulLeftRight_le theorem
: β€–mulLeftRight π•œ Rβ€– ≀ 1
Full source
theorem opNorm_mulLeftRight_le :
    β€–mulLeftRight π•œ Rβ€– ≀ 1 :=
  opNorm_le_bound _ zero_le_one fun x => (one_mul β€–xβ€–).symm β–Έ opNorm_mulLeftRight_apply_le π•œ R x
Operator Norm Bound for Left-Right Multiplication: $\|\mathrm{mulLeftRight}_{\mathbb{K}} R\| \leq 1$
Informal description
The operator norm of the left-right multiplication operator $\mathrm{mulLeftRight}_{\mathbb{K}} R$ in a normed algebra $R$ over a field $\mathbb{K}$ is bounded by $1$, i.e., $\|\mathrm{mulLeftRight}_{\mathbb{K}} R\| \leq 1$.
RegularNormedAlgebra structure
Full source
/-- This is a mixin class for non-unital normed algebras which states that the left-regular
representation of the algebra on itself is isometric. Every unital normed algebra with `β€–1β€– = 1` is
a regular normed algebra (see `NormedAlgebra.instRegularNormedAlgebra`). In addition, so is every
C⋆-algebra, non-unital included (see `CStarRing.instRegularNormedAlgebra`), but there are yet other
examples. Any algebra with an approximate identity (e.g., $$L^1$$) is also regular.

This is a useful class because it gives rise to a nice norm on the unitization; in particular it is
a C⋆-norm when the norm on `A` is a C⋆-norm. -/
class _root_.RegularNormedAlgebra : Prop where
  /-- The left regular representation of the algebra on itself is an isometry. -/
  isometry_mul' : Isometry (mul π•œ R)
Regular Normed Algebra
Informal description
A non-unital normed algebra \( A \) is called *regular* if the left-regular representation of \( A \) on itself is isometric. This means that for every element \( x \in A \), the operator norm of left multiplication by \( x \) equals the norm of \( x \). This property holds for: 1. Any unital normed algebra with \( \|1\| = 1 \) 2. Any C⋆-algebra (including non-unital ones) 3. Any algebra with an approximate identity (e.g., \( L^1 \) spaces) This class is particularly useful because it induces a natural norm on the unitization of \( A \), which becomes a C⋆-norm when \( A \) itself has a C⋆-norm.
ContinuousLinearMap.isometry_mul theorem
: Isometry (mul π•œ R)
Full source
lemma isometry_mul : Isometry (mul π•œ R) :=
  RegularNormedAlgebra.isometry_mul'
Isometry of Left Multiplication in Regular Normed Algebras
Informal description
For a regular normed algebra $R$ over a field $\mathbb{K}$, the left multiplication operator $\text{mul}_{\mathbb{K}} R : R \to \mathcal{L}(R)$ is an isometry. That is, for any $x \in R$, the operator norm of left multiplication by $x$ equals the norm of $x$: $\|\text{mul}_{\mathbb{K}} R(x)\| = \|x\|$.
ContinuousLinearMap.opNorm_mul_apply theorem
(x : R) : β€–mul π•œ R xβ€– = β€–xβ€–
Full source
@[simp]
lemma opNorm_mul_apply (x : R) : β€–mul π•œ R xβ€– = β€–xβ€– :=
  (AddMonoidHomClass.isometry_iff_norm (mul π•œ R)).mp (isometry_mul π•œ R) x
Operator Norm of Left Multiplication in Regular Normed Algebra Equals Element Norm
Informal description
For any element $x$ in a regular normed algebra $R$ over a field $\mathbb{K}$, the operator norm of left multiplication by $x$ equals the norm of $x$, i.e., $\|\text{mul}_{\mathbb{K}} R(x)\| = \|x\|$.
ContinuousLinearMap.opNNNorm_mul_apply theorem
(x : R) : β€–mul π•œ R xβ€–β‚Š = β€–xβ€–β‚Š
Full source
@[simp]
lemma opNNNorm_mul_apply (x : R) : β€–mul π•œ R xβ€–β‚Š = β€–xβ€–β‚Š :=
  Subtype.ext <| opNorm_mul_apply π•œ R x
Operator Seminorm of Left Multiplication in Regular Normed Algebra Equals Element Seminorm
Informal description
For any element $x$ in a regular normed algebra $R$ over a field $\mathbb{K}$, the operator seminorm of left multiplication by $x$ equals the seminorm of $x$, i.e., $\|\text{mul}_{\mathbb{K}} R(x)\|_+ = \|x\|_+$.
ContinuousLinearMap.coe_mulβ‚—α΅’ theorem
: ⇑(mulβ‚—α΅’ π•œ R) = mul π•œ R
Full source
@[simp]
theorem coe_mulβ‚—α΅’ : ⇑(mulβ‚—α΅’ π•œ R) = mul π•œ R :=
  rfl
Underlying Function of Left Multiplication Isometry Equals Left Multiplication Map
Informal description
The underlying function of the linear isometry `mulβ‚—α΅’ π•œ R` (left multiplication in the regular normed algebra $R$ over the field $\mathbb{K}$) is equal to the continuous linear map `mul π•œ R`.
ContinuousLinearMap.flip_mul theorem
: (ContinuousLinearMap.mul π•œ R).flip = .mul π•œ R
Full source
@[simp] lemma flip_mul : (ContinuousLinearMap.mul π•œ R).flip = .mul π•œ R := by ext; simp [mul_comm]
Flip of Multiplication Map Equals Itself
Informal description
The flip of the continuous linear multiplication map $\text{mul}_{\mathbb{K}} R$ is equal to the continuous linear multiplication map $\text{mul}_{\mathbb{K}} R$ itself.
ContinuousLinearMap.lsmul_apply theorem
(c : R) (x : E) : lsmul π•œ R c x = c β€’ x
Full source
@[simp]
theorem lsmul_apply (c : R) (x : E) : lsmul π•œ R c x = c β€’ x :=
  rfl
Left Scalar Multiplication Equals Scalar Multiplication
Informal description
For any scalar $c$ in a normed algebra $R$ over a field $\mathbb{K}$ and any element $x$ in a normed space $E$ over $\mathbb{K}$, the application of the left scalar multiplication operator $\text{lsmul}_{\mathbb{K}} R$ to $c$ and $x$ equals the scalar multiplication $c \cdot x$.
ContinuousLinearMap.norm_toSpanSingleton theorem
(x : E) : β€–toSpanSingleton π•œ xβ€– = β€–xβ€–
Full source
theorem norm_toSpanSingleton (x : E) : β€–toSpanSingleton π•œ xβ€– = β€–xβ€– := by
  refine opNorm_eq_of_bounds (norm_nonneg _) (fun x => ?_) fun N _ h => ?_
  Β· rw [toSpanSingleton_apply, norm_smul, mul_comm]
  Β· specialize h 1
    rw [toSpanSingleton_apply, norm_smul, mul_comm] at h
    exact (mul_le_mul_right (by simp)).mp h
Operator Norm of Span Singleton Map Equals Element Norm: $\|\text{toSpanSingleton}_{\mathbb{K}} x\| = \|x\|$
Informal description
For any element $x$ in a normed space $E$ over a field $\mathbb{K}$, the operator norm of the linear map $\text{toSpanSingleton}_{\mathbb{K}} x$ (which sends scalars to their scalar multiples of $x$) is equal to the norm of $x$, i.e., $\|\text{toSpanSingleton}_{\mathbb{K}} x\| = \|x\|$.
ContinuousLinearMap.opNorm_lsmul_apply_le theorem
(x : R) : β€–(lsmul π•œ R x : E β†’L[π•œ] E)β€– ≀ β€–xβ€–
Full source
theorem opNorm_lsmul_apply_le (x : R) : β€–(lsmul π•œ R x : E β†’L[π•œ] E)β€– ≀ β€–xβ€– :=
  ContinuousLinearMap.opNorm_le_bound _ (norm_nonneg x) fun y => norm_smul_le x y
Operator Norm Bound for Left Scalar Multiplication: $\|\text{lsmul}_{\mathbb{K}} R x\| \leq \|x\|$
Informal description
Let $R$ be a normed algebra over a field $\mathbb{K}$, and let $E$ be a normed space over $\mathbb{K}$. For any element $x \in R$, the operator norm of the left scalar multiplication map $\text{lsmul}_{\mathbb{K}} R x \colon E \to E$ is bounded by the norm of $x$, i.e., $\|\text{lsmul}_{\mathbb{K}} R x\| \leq \|x\|$.
ContinuousLinearMap.opNorm_lsmul_le theorem
: β€–(lsmul π•œ R : R β†’L[π•œ] E β†’L[π•œ] E)β€– ≀ 1
Full source
/-- The norm of `lsmul` is at most 1 in any semi-normed group. -/
theorem opNorm_lsmul_le : β€–(lsmul π•œ R : R β†’L[π•œ] E β†’L[π•œ] E)β€– ≀ 1 := by
  refine ContinuousLinearMap.opNorm_le_bound _ zero_le_one fun x => ?_
  simp_rw [one_mul]
  exact opNorm_lsmul_apply_le _
Operator Norm Bound for Left Scalar Multiplication: $\|\text{lsmul}_{\mathbb{K}} R\| \leq 1$
Informal description
Let $R$ be a normed algebra over a field $\mathbb{K}$ and $E$ be a normed space over $\mathbb{K}$. The operator norm of the left scalar multiplication map $\text{lsmul}_{\mathbb{K}} R \colon R \to \mathcal{L}(E, E)$ is bounded by $1$, i.e., $\|\text{lsmul}_{\mathbb{K}} R\| \leq 1$.
ContinuousLinearMap.opNorm_mul theorem
: β€–mul π•œ Rβ€– = 1
Full source
@[simp]
theorem opNorm_mul : β€–mul π•œ Rβ€– = 1 :=
  (mulβ‚—α΅’ π•œ R).norm_toContinuousLinearMap
Operator Norm of Multiplication Map: $\|\text{mul}_{\mathbb{K}} R\| = 1$
Informal description
Let $R$ be a normed algebra over a field $\mathbb{K}$. The operator norm of the multiplication map $\text{mul}_{\mathbb{K}} R \colon R \to \mathcal{L}(R)$ is equal to $1$, i.e., $\|\text{mul}_{\mathbb{K}} R\| = 1$.
ContinuousLinearMap.opNNNorm_mul theorem
: β€–mul π•œ Rβ€–β‚Š = 1
Full source
@[simp]
theorem opNNNorm_mul : β€–mul π•œ Rβ€–β‚Š = 1 :=
  Subtype.ext <| opNorm_mul π•œ R
Operator Seminorm of Multiplication Map: $\|\text{mul}_{\mathbb{K}} R\|_+ = 1$
Informal description
For a normed algebra $R$ over a field $\mathbb{K}$, the operator seminorm of the multiplication map $\text{mul}_{\mathbb{K}} R \colon R \to \mathcal{L}(R)$ is equal to $1$, i.e., $\|\text{mul}_{\mathbb{K}} R\|_+ = 1$.
ContinuousLinearMap.opNorm_lsmul theorem
[NormedField R] [NormedAlgebra π•œ R] [NormedSpace R E] [IsScalarTower π•œ R E] [Nontrivial E] : β€–(lsmul π•œ R : R β†’L[π•œ] E β†’L[π•œ] E)β€– = 1
Full source
/-- The norm of `lsmul` equals 1 in any nontrivial normed group.

This is `ContinuousLinearMap.opNorm_lsmul_le` as an equality. -/
@[simp]
theorem opNorm_lsmul [NormedField R] [NormedAlgebra π•œ R] [NormedSpace R E]
    [IsScalarTower π•œ R E] [Nontrivial E] : β€–(lsmul π•œ R : R β†’L[π•œ] E β†’L[π•œ] E)β€– = 1 := by
  refine ContinuousLinearMap.opNorm_eq_of_bounds zero_le_one (fun x => ?_) fun N _ h => ?_
  Β· rw [one_mul]
    apply opNorm_lsmul_apply_le
  obtain ⟨y, hy⟩ := exists_ne (0 : E)
  have := le_of_opNorm_le _ (h 1) y
  simp_rw [lsmul_apply, one_smul, norm_one, mul_one] at this
  refine le_of_mul_le_mul_right ?_ (norm_pos_iff.mpr hy)
  simp_rw [one_mul, this]
Operator Norm of Left Scalar Multiplication in Nontrivial Normed Spaces: $\|\text{lsmul}_{\mathbb{K}} R\| = 1$
Informal description
Let $\mathbb{K}$ be a normed field, $R$ a normed algebra over $\mathbb{K}$, and $E$ a normed space over $\mathbb{K}$ such that $R$ acts on $E$ compatibly with $\mathbb{K}$ (i.e., $[ \mathbb{K}, R, E ]$ forms a scalar tower). If $E$ is nontrivial, then the operator norm of the left scalar multiplication map $\text{lsmul}_{\mathbb{K}} R \colon R \to \mathcal{L}(E)$ equals $1$, i.e., $\|\text{lsmul}_{\mathbb{K}} R\| = 1$.