Module docstring
{"# The tensor product of R-algebras
This file provides results about the multiplicative structure on A ⊗[R] B when R is a
commutative (semi)ring and A and B are both R-algebras. On these tensor products,
multiplication is characterized by (a₁ ⊗ₜ b₁) * (a₂ ⊗ₜ b₂) = (a₁ * a₂) ⊗ₜ (b₁ * b₂).
Main declarations
LinearMap.baseChange A fis theA-linear mapA ⊗ f, for anR-linear mapf.Algebra.TensorProduct.semiring: the ring structure onA ⊗[R] Bfor twoR-algebrasA,B.Algebra.TensorProduct.leftAlgebra: theS-algebra structure onA ⊗[R] B, for whenAis additionally anSalgebra.- the structure isomorphisms
Algebra.TensorProduct.lid : R ⊗[R] A ≃ₐ[R] AAlgebra.TensorProduct.rid : A ⊗[R] R ≃ₐ[S] A(usually used withS = RorS = A)Algebra.TensorProduct.comm : A ⊗[R] B ≃ₐ[R] B ⊗[R] AAlgebra.TensorProduct.assoc : ((A ⊗[R] B) ⊗[R] C) ≃ₐ[R] (A ⊗[R] (B ⊗[R] C))
 Algebra.TensorProduct.liftEquiv: a universal property for the tensor product of algebras.
References
- [C. Kassel, Quantum Groups (§II.4)][Kassel1995]
 
","### The base-change of a linear map of R-modules to a linear map of A-modules
","### The R-algebra structure on A ⊗[R] B
","We now build the structure maps for the symmetric monoidal category of R-algebras.
"}