Informal description
The bilinear map representing the multiplication operation in a non-unital non-associative algebra $A$ over a semiring $R$. Specifically, it maps each pair $(x, y) \in A \times A$ to their product $x \cdot y \in A$, and satisfies the following properties:
1. Additivity in the first argument: $(x_1 + x_2) \cdot y = x_1 \cdot y + x_2 \cdot y$ for all $x_1, x_2, y \in A$
2. Linearity in the first argument: $(r \cdot x) \cdot y = r \cdot (x \cdot y)$ for all $r \in R$ and $x, y \in A$
3. Additivity in the second argument: $x \cdot (y_1 + y_2) = x \cdot y_1 + x \cdot y_2$ for all $x, y_1, y_2 \in A$
4. Linearity in the second argument: $x \cdot (r \cdot y) = r \cdot (x \cdot y)$ for all $r \in R$ and $x, y \in A$