doc-next-gen

Mathlib.LinearAlgebra.TensorProduct.Tower

Module docstring

{"# The A-module structure on M ⊗[R] N

When M is both an R-module and an A-module, and Algebra R A, then many of the morphisms preserve the actions by A.

The Module instance itself is provided elsewhere as TensorProduct.leftModule. This file provides more general versions of the definitions already in LinearAlgebra/TensorProduct.

In this file, we use the convention that M, N, P, Q are all R-modules, but only M and P are simultaneously A-modules.

Main definitions

  • TensorProduct.AlgebraTensorModule.curry
  • TensorProduct.AlgebraTensorModule.uncurry
  • TensorProduct.AlgebraTensorModule.lcurry
  • TensorProduct.AlgebraTensorModule.lift
  • TensorProduct.AlgebraTensorModule.lift.equiv
  • TensorProduct.AlgebraTensorModule.mk
  • TensorProduct.AlgebraTensorModule.map
  • TensorProduct.AlgebraTensorModule.mapBilinear
  • TensorProduct.AlgebraTensorModule.congr
  • TensorProduct.AlgebraTensorModule.rid
  • TensorProduct.AlgebraTensorModule.homTensorHomMap
  • TensorProduct.AlgebraTensorModule.assoc
  • TensorProduct.AlgebraTensorModule.leftComm
  • TensorProduct.AlgebraTensorModule.rightComm
  • TensorProduct.AlgebraTensorModule.tensorTensorTensorComm

Implementation notes

We could thus consider replacing the less general definitions with these ones. If we do this, we probably should still implement the less general ones as abbreviations to the more general ones with fewer type arguments. "}

TensorProduct.AlgebraTensorModule.smul_eq_lsmul_rTensor theorem
(a : A) (x : M ⊗[R] N) : a • x = (lsmul R R M a).rTensor N x
Full source
theorem smul_eq_lsmul_rTensor (a : A) (x : M ⊗[R] N) : a • x = (lsmul R R M a).rTensor N x :=
  rfl
Scalar multiplication as right tensor product of left scalar multiplication
Informal description
For any element $a \in A$ and any tensor $x \in M \otimes_R N$, the scalar multiplication $a \cdot x$ is equal to the right tensor product of the left scalar multiplication map $\text{lsmul}_R^M(a)$ with $N$ applied to $x$.
TensorProduct.AlgebraTensorModule.restrictScalars_curry theorem
(f : M ⊗[R] N →ₗ[A] P) : restrictScalars R (curry f) = TensorProduct.curry (f.restrictScalars R)
Full source
theorem restrictScalars_curry (f : M ⊗[R] NM ⊗[R] N →ₗ[A] P) :
    restrictScalars R (curry f) = TensorProduct.curry (f.restrictScalars R) :=
  rfl
Compatibility of Restriction of Scalars with Currying for Tensor Product Modules
Informal description
For any $A$-linear map $f: M \otimes_R N \to P$, the restriction of scalars of the curried form of $f$ equals the curried form of the restriction of scalars of $f$. In other words, the following diagram commutes: \[ \begin{tikzcd} (M \otimes_R N \to_A P) \arrow[r, "\text{curry}"] \arrow[d, "\text{restrictScalars}"] & (M \to_A N \to_R P) \arrow[d, "\text{restrictScalars}"] \\ (M \otimes_R N \to_R P) \arrow[r, "\text{curry}"] & (M \to_R N \to_R P) \end{tikzcd} \] where $\to_A$ denotes $A$-linear maps and $\to_R$ denotes $R$-linear maps.
TensorProduct.AlgebraTensorModule.curry_injective theorem
: Function.Injective (curry : (M ⊗ N →ₗ[A] P) → M →ₗ[A] N →ₗ[R] P)
Full source
/-- Just as `TensorProduct.ext` is marked `ext` instead of `TensorProduct.ext'`, this is
a better `ext` lemma than `TensorProduct.AlgebraTensorModule.ext` below.

See note [partially-applied ext lemmas]. -/
@[ext high]
nonrec theorem curry_injective : Function.Injective (curry : (M ⊗ NM ⊗ N →ₗ[A] P) → M →ₗ[A] N →ₗ[R] P) :=
  fun _ _ h =>
  LinearMap.restrictScalars_injective R <|
    curry_injective <| (congr_arg (LinearMap.restrictScalars R) h :)
Injectivity of Currying for $A$-Linear Tensor Product Maps
Informal description
The currying operation for $A$-linear maps from the tensor product $M \otimes_R N$ to $P$ is injective. That is, if two $A$-linear maps $f, g \colon M \otimes_R N \to P$ induce the same $A$-linear map $M \to \text{Hom}_R(N, P)$ via currying, then $f = g$.
TensorProduct.AlgebraTensorModule.ext theorem
{g h : M ⊗[R] N →ₗ[A] P} (H : ∀ x y, g (x ⊗ₜ y) = h (x ⊗ₜ y)) : g = h
Full source
theorem ext {g h : M ⊗[R] NM ⊗[R] N →ₗ[A] P} (H : ∀ x y, g (x ⊗ₜ y) = h (x ⊗ₜ y)) : g = h :=
  curry_injective <| LinearMap.ext₂ H
Extensionality of $A$-Linear Maps on Tensor Products via Simple Tensors
Informal description
Let $R$ be a commutative ring, $A$ an $R$-algebra, and $M$, $N$, $P$ be $R$-modules with $M$ and $P$ also being $A$-modules. For any two $A$-linear maps $g, h \colon M \otimes_R N \to P$, if $g(x \otimes y) = h(x \otimes y)$ for all $x \in M$ and $y \in N$, then $g = h$.
TensorProduct.AlgebraTensorModule.lift_apply theorem
(f : M →ₗ[A] N →ₗ[R] P) (a : M ⊗[R] N) : AlgebraTensorModule.lift f a = TensorProduct.lift (LinearMap.restrictScalars R f) a
Full source
@[simp]
theorem lift_apply (f : M →ₗ[A] N →ₗ[R] P) (a : M ⊗[R] N) :
    AlgebraTensorModule.lift f a = TensorProduct.lift (LinearMap.restrictScalars R f) a :=
  rfl
Equality of Lifted Tensor Map and Scalar-Restricted Lift
Informal description
Let $R$ be a commutative ring, $A$ an $R$-algebra, and $M$, $N$, $P$ be $R$-modules with $M$ and $P$ also being $A$-modules. For any $A$-linear map $f : M \to \text{Hom}_R(N, P)$ and any element $a \in M \otimes_R N$, the action of the lifted map $\text{lift}(f)$ on $a$ equals the action of the $R$-linear extension of $f$ on $a$. That is, \[ \text{lift}(f)(a) = \text{TensorProduct.lift}(\text{LinearMap.restrictScalars}_R f)(a). \]
TensorProduct.AlgebraTensorModule.lift_tmul theorem
(f : M →ₗ[A] N →ₗ[R] P) (x : M) (y : N) : lift f (x ⊗ₜ y) = f x y
Full source
@[simp]
theorem lift_tmul (f : M →ₗ[A] N →ₗ[R] P) (x : M) (y : N) : lift f (x ⊗ₜ y) = f x y :=
  rfl
Action of Lifted Tensor Map on Simple Tensors
Informal description
Let $R$ be a commutative ring, $A$ an $R$-algebra, and $M$, $N$, $P$ be $R$-modules with $M$ and $P$ also being $A$-modules. For any $A$-linear map $f : M \to \text{Hom}_R(N, P)$ and any elements $x \in M$, $y \in N$, the action of the lifted map $\text{lift}(f)$ on the simple tensor $x \otimes y$ is given by $\text{lift}(f)(x \otimes y) = f(x)(y)$.
TensorProduct.AlgebraTensorModule.map_tmul theorem
(f : M →ₗ[A] P) (g : N →ₗ[R] Q) (m : M) (n : N) : map f g (m ⊗ₜ n) = f m ⊗ₜ g n
Full source
@[simp] theorem map_tmul (f : M →ₗ[A] P) (g : N →ₗ[R] Q) (m : M) (n : N) :
    map f g (m ⊗ₜ n) = f m ⊗ₜ g n :=
  rfl
Tensor product map action on simple tensors: $\text{map}(f,g)(m \otimes n) = f(m) \otimes g(n)$
Informal description
Let $R$ be a commutative ring, $A$ an $R$-algebra, and $M$, $N$, $P$, $Q$ be $R$-modules with $M$ and $P$ also being $A$-modules. For any $A$-linear map $f : M \to P$ and any $R$-linear map $g : N \to Q$, the tensor product map $\text{map}(f, g)$ acts on a simple tensor $m \otimes n$ as: \[ \text{map}(f, g)(m \otimes n) = f(m) \otimes g(n). \]
TensorProduct.AlgebraTensorModule.map_id theorem
: map (id : M →ₗ[A] M) (id : N →ₗ[R] N) = .id
Full source
@[simp]
theorem map_id : map (id : M →ₗ[A] M) (id : N →ₗ[R] N) = .id :=
  ext fun _ _ => rfl
Identity Tensor Map is Identity
Informal description
Let $R$ be a commutative ring, $A$ an $R$-algebra, and $M$, $N$ be $R$-modules with $M$ also being an $A$-module. The tensor product map of the identity $A$-linear map on $M$ and the identity $R$-linear map on $N$ is equal to the identity map on $M \otimes_R N$.
TensorProduct.AlgebraTensorModule.map_comp theorem
(f₂ : P →ₗ[A] P') (f₁ : M →ₗ[A] P) (g₂ : Q →ₗ[R] Q') (g₁ : N →ₗ[R] Q) : map (f₂.comp f₁) (g₂.comp g₁) = (map f₂ g₂).comp (map f₁ g₁)
Full source
theorem map_comp (f₂ : P →ₗ[A] P') (f₁ : M →ₗ[A] P) (g₂ : Q →ₗ[R] Q') (g₁ : N →ₗ[R] Q) :
    map (f₂.comp f₁) (g₂.comp g₁) = (map f₂ g₂).comp (map f₁ g₁) :=
  ext fun _ _ => rfl
Composition of Tensor Product Maps
Informal description
Let $R$ be a commutative ring, $A$ an $R$-algebra, and $M$, $N$, $P$, $P'$, $Q$, $Q'$ be $R$-modules with $M$, $P$, $P'$ also being $A$-modules. For any $A$-linear maps $f_1 \colon M \to P$ and $f_2 \colon P \to P'$, and any $R$-linear maps $g_1 \colon N \to Q$ and $g_2 \colon Q \to Q'$, the composition of tensor product maps satisfies: \[ \text{map}(f_2 \circ f_1, g_2 \circ g_1) = \text{map}(f_2, g_2) \circ \text{map}(f_1, g_1). \]
TensorProduct.AlgebraTensorModule.map_one theorem
: map (1 : M →ₗ[A] M) (1 : N →ₗ[R] N) = 1
Full source
@[simp]
protected theorem map_one : map (1 : M →ₗ[A] M) (1 : N →ₗ[R] N) = 1 := map_id
Identity Tensor Map is Identity
Informal description
Let $R$ be a commutative ring, $A$ an $R$-algebra, and $M$, $N$ be $R$-modules with $M$ also being an $A$-module. The tensor product map of the identity $A$-linear map on $M$ and the identity $R$-linear map on $N$ is equal to the identity map on $M \otimes_R N$.
TensorProduct.AlgebraTensorModule.map_mul theorem
(f₁ f₂ : M →ₗ[A] M) (g₁ g₂ : N →ₗ[R] N) : map (f₁ * f₂) (g₁ * g₂) = map f₁ g₁ * map f₂ g₂
Full source
protected theorem map_mul (f₁ f₂ : M →ₗ[A] M) (g₁ g₂ : N →ₗ[R] N) :
    map (f₁ * f₂) (g₁ * g₂) = map f₁ g₁ * map f₂ g₂ := map_comp _ _ _ _
Composition of Tensor Product Maps for Endomorphisms: $\text{map}(f_1 \circ f_2, g_1 \circ g_2) = \text{map}(f_1, g_1) \circ \text{map}(f_2, g_2)$
Informal description
Let $R$ be a commutative ring, $A$ an $R$-algebra, and $M$, $N$ be $R$-modules with $M$ also being an $A$-module. For any $A$-linear endomorphisms $f_1, f_2$ of $M$ and any $R$-linear endomorphisms $g_1, g_2$ of $N$, the tensor product map satisfies: \[ \text{map}(f_1 \circ f_2, g_1 \circ g_2) = \text{map}(f_1, g_1) \circ \text{map}(f_2, g_2). \]
TensorProduct.AlgebraTensorModule.map_add_left theorem
(f₁ f₂ : M →ₗ[A] P) (g : N →ₗ[R] Q) : map (f₁ + f₂) g = map f₁ g + map f₂ g
Full source
theorem map_add_left (f₁ f₂ : M →ₗ[A] P) (g : N →ₗ[R] Q) :
    map (f₁ + f₂) g = map f₁ g + map f₂ g := by
  ext
  simp_rw [curry_apply, TensorProduct.curry_apply, restrictScalars_apply, add_apply, map_tmul,
    add_apply, add_tmul]
Additivity of Tensor Product Map in First Argument: $\text{map}(f_1 + f_2, g) = \text{map}(f_1, g) + \text{map}(f_2, g)$
Informal description
For any $A$-linear maps $f_1, f_2 \colon M \to P$ and any $R$-linear map $g \colon N \to Q$, the tensor product map satisfies the additive property in the first argument: \[ \text{map}(f_1 + f_2, g) = \text{map}(f_1, g) + \text{map}(f_2, g). \]
TensorProduct.AlgebraTensorModule.map_add_right theorem
(f : M →ₗ[A] P) (g₁ g₂ : N →ₗ[R] Q) : map f (g₁ + g₂) = map f g₁ + map f g₂
Full source
theorem map_add_right (f : M →ₗ[A] P) (g₁ g₂ : N →ₗ[R] Q) :
    map f (g₁ + g₂) = map f g₁ + map f g₂ := by
  ext
  simp_rw [curry_apply, TensorProduct.curry_apply, restrictScalars_apply, add_apply, map_tmul,
    add_apply, tmul_add]
Additivity of Tensor Product Map in Second Argument: $\text{map}(f, g_1 + g_2) = \text{map}(f, g_1) + \text{map}(f, g_2)$
Informal description
For any $A$-linear map $f \colon M \to P$ and any $R$-linear maps $g_1, g_2 \colon N \to Q$, the tensor product map satisfies the additivity property in the second argument: \[ \text{map}(f, g_1 + g_2) = \text{map}(f, g_1) + \text{map}(f, g_2). \]
TensorProduct.AlgebraTensorModule.map_smul_right theorem
(r : R) (f : M →ₗ[A] P) (g : N →ₗ[R] Q) : map f (r • g) = r • map f g
Full source
theorem map_smul_right (r : R) (f : M →ₗ[A] P) (g : N →ₗ[R] Q) : map f (r • g) = r • map f g := by
  ext
  simp_rw [curry_apply, TensorProduct.curry_apply, restrictScalars_apply, smul_apply, map_tmul,
    smul_apply, tmul_smul]
Scalar multiplication commutes with tensor product map on the right: $\text{map}(f, r \cdot g) = r \cdot \text{map}(f, g)$
Informal description
Let $R$ be a commutative semiring, $A$ an $R$-algebra, and $M$, $P$ be $A$-modules while $N$, $Q$ are $R$-modules. For any scalar $r \in R$ and linear maps $f \colon M \to P$ (which is $A$-linear) and $g \colon N \to Q$ (which is $R$-linear), the following equality holds in the space of $R$-linear maps from $M \otimes_R N$ to $P \otimes_R Q$: \[ \text{map}(f, r \cdot g) = r \cdot \text{map}(f, g). \]
TensorProduct.AlgebraTensorModule.map_smul_left theorem
(b : B) (f : M →ₗ[A] P) (g : N →ₗ[R] Q) : map (b • f) g = b • map f g
Full source
theorem map_smul_left (b : B) (f : M →ₗ[A] P) (g : N →ₗ[R] Q) : map (b • f) g = b • map f g := by
  ext
  simp_rw [curry_apply, TensorProduct.curry_apply, restrictScalars_apply, smul_apply, map_tmul,
    smul_apply, smul_tmul']
Scalar Multiplication Commutes with Tensor Product Map on the Left
Informal description
For any scalar $b \in B$, any $A$-linear map $f \colon M \to P$, and any $R$-linear map $g \colon N \to Q$, the tensor product map satisfies the scalar multiplication property: \[ \text{map}(b \cdot f, g) = b \cdot \text{map}(f, g). \]
TensorProduct.AlgebraTensorModule.coe_lTensor theorem
(f : N →ₗ[R] Q) : (lTensor A M f : M ⊗[R] N → M ⊗[R] Q) = f.lTensor M
Full source
@[simp]
lemma coe_lTensor (f : N →ₗ[R] Q) :
    (lTensor A M f : M ⊗[R] NM ⊗[R] Q) = f.lTensor M := rfl
Equality of Left Tensor Product Maps
Informal description
For any $R$-linear map $f \colon N \to Q$, the linear map $\mathrm{lTensor}_A M f \colon M \otimes_R N \to M \otimes_R Q$ (where $M$ is an $A$-module and $N,Q$ are $R$-modules) coincides with the standard left tensor product map $f.\mathrm{lTensor} M$.
TensorProduct.AlgebraTensorModule.restrictScalars_lTensor theorem
(f : N →ₗ[R] Q) : (lTensor A M f).restrictScalars R = f.lTensor M
Full source
@[simp]
lemma restrictScalars_lTensor (f : N →ₗ[R] Q) :
    (lTensor A M f).restrictScalars R = f.lTensor M := rfl
Restriction of Scalars Commutes with Left Tensor Product
Informal description
For any $R$-linear map $f : N \to Q$, the restriction of scalars of the left tensor product map $A \otimes M f$ to $R$ is equal to the left tensor product map $f \otimes M$ over $R$.
TensorProduct.AlgebraTensorModule.lTensor_tmul theorem
(f : N →ₗ[R] Q) (m : M) (n : N) : lTensor A M f (m ⊗ₜ[R] n) = m ⊗ₜ f n
Full source
@[simp] lemma lTensor_tmul (f : N →ₗ[R] Q) (m : M) (n : N) :
    lTensor A M f (m ⊗ₜ[R] n) = m ⊗ₜ f n :=
  rfl
Action of Left Tensor Product on Simple Tensors
Informal description
Let $R$ be a commutative ring, $A$ an $R$-algebra, and $M$ an $A$-module that is also an $R$-module. For any $R$-linear map $f : N \to Q$ between $R$-modules $N$ and $Q$, the action of the linear map $\text{lTensor}_A^M f$ on a simple tensor $m \otimes n \in M \otimes_R N$ is given by $(\text{lTensor}_A^M f)(m \otimes n) = m \otimes f(n)$.
TensorProduct.AlgebraTensorModule.lTensor_id theorem
: lTensor A M (id : N →ₗ[R] N) = .id
Full source
@[simp] lemma lTensor_id : lTensor A M (id : N →ₗ[R] N) = .id :=
  ext fun _ _ => rfl
Left Tensor Product Preserves Identity Map
Informal description
Let $R$ be a commutative ring, $A$ an $R$-algebra, and $M$ an $A$-module that is also an $R$-module. The left tensor product map $\text{lTensor}_A^M$ applied to the identity $R$-linear map $\text{id} : N \to N$ is equal to the identity map on $M \otimes_R N$.
TensorProduct.AlgebraTensorModule.lTensor_comp theorem
(f₂ : Q →ₗ[R] Q') (f₁ : N →ₗ[R] Q) : lTensor A M (f₂.comp f₁) = (lTensor A M f₂).comp (lTensor A M f₁)
Full source
lemma lTensor_comp (f₂ : Q →ₗ[R] Q') (f₁ : N →ₗ[R] Q) :
    lTensor A M (f₂.comp f₁) = (lTensor A M f₂).comp (lTensor A M f₁) :=
  ext fun _ _ => rfl
Composition of Linear Maps Preserved by Left Tensor Product Functor
Informal description
Let $R$ be a commutative ring, $A$ an $R$-algebra, and $M$ an $A$-module that is also an $R$-module. For any $R$-linear maps $f_1 \colon N \to Q$ and $f_2 \colon Q \to Q'$ between $R$-modules $N$, $Q$, and $Q'$, the left tensor product functor $\text{lTensor}_A^M$ satisfies: \[ \text{lTensor}_A^M (f_2 \circ f_1) = (\text{lTensor}_A^M f_2) \circ (\text{lTensor}_A^M f_1) \]
TensorProduct.AlgebraTensorModule.lTensor_one theorem
: lTensor A M (1 : N →ₗ[R] N) = 1
Full source
@[simp]
lemma lTensor_one : lTensor A M (1 : N →ₗ[R] N) = 1 := map_id
Left Tensor Product Functor Preserves Identity Map
Informal description
Let $R$ be a commutative ring, $A$ an $R$-algebra, and $M$ an $A$-module that is also an $R$-module. The left tensor product functor $\text{lTensor}_A^M$ applied to the identity $R$-linear map $1 \colon N \to N$ is equal to the identity map on $M \otimes_R N$.
TensorProduct.AlgebraTensorModule.lTensor_mul theorem
(f₁ f₂ : N →ₗ[R] N) : lTensor A M (f₁ * f₂) = lTensor A M f₁ * lTensor A M f₂
Full source
lemma lTensor_mul (f₁ f₂ : N →ₗ[R] N) :
    lTensor A M (f₁ * f₂) = lTensor A M f₁ * lTensor A M f₂ := lTensor_comp _ _
Left Tensor Product Functor Preserves Composition of Linear Endomorphisms
Informal description
Let $R$ be a commutative ring, $A$ an $R$-algebra, and $M$ an $A$-module that is also an $R$-module. For any $R$-linear endomorphisms $f_1, f_2 \colon N \to N$ of an $R$-module $N$, the left tensor product functor $\text{lTensor}_A^M$ satisfies: \[ \text{lTensor}_A^M (f_1 \circ f_2) = (\text{lTensor}_A^M f_1) \circ (\text{lTensor}_A^M f_2) \]
TensorProduct.AlgebraTensorModule.coe_rTensor theorem
(f : M →ₗ[A] P) : (rTensor R N f : M ⊗[R] N → P ⊗[R] N) = f.rTensor N
Full source
@[simp]
lemma coe_rTensor (f : M →ₗ[A] P) :
    (rTensor R N f : M ⊗[R] NP ⊗[R] N) = f.rTensor N := rfl
Right Tensor Product Map Coincides with Tensor Product of Map and Identity
Informal description
For any $A$-linear map $f \colon M \to P$, the map $\operatorname{rTensor}_R N f \colon M \otimes_R N \to P \otimes_R N$ coincides with the right tensor product map $f \otimes_R \operatorname{id}_N$.
TensorProduct.AlgebraTensorModule.restrictScalars_rTensor theorem
(f : M →ₗ[A] P) : (rTensor R N f).restrictScalars R = f.rTensor N
Full source
@[simp]
lemma restrictScalars_rTensor (f : M →ₗ[A] P) :
    (rTensor R N f).restrictScalars R = f.rTensor N := rfl
Restriction of Scalars Commutes with Right Tensor Product of Linear Maps
Informal description
Let $R$ be a commutative ring, $A$ be an $R$-algebra, and $M$, $N$, $P$ be $R$-modules where $M$ and $P$ are also $A$-modules. For any $A$-linear map $f : M \to P$, the restriction of scalars of the $R$-linear map $\text{rTensor}_R N f : M \otimes_R N \to P \otimes_R N$ to $R$ is equal to the $R$-linear map $\text{rTensor}_R N f$.
TensorProduct.AlgebraTensorModule.rTensor_tmul theorem
(f : M →ₗ[A] P) (m : M) (n : N) : rTensor R N f (m ⊗ₜ[R] n) = f m ⊗ₜ n
Full source
@[simp] lemma rTensor_tmul (f : M →ₗ[A] P) (m : M) (n : N) :
    rTensor R N f (m ⊗ₜ[R] n) = f m ⊗ₜ n :=
  rfl
Right Tensor Product Action on Pure Tensors
Informal description
Let $R$ and $A$ be rings with an algebra structure from $R$ to $A$, and let $M$, $N$, $P$ be $R$-modules where $M$ and $P$ are also $A$-modules. For any $A$-linear map $f : M \to P$, the right tensor product map $\text{rTensor}_R N f : M \otimes_R N \to P \otimes_R N$ satisfies \[ (\text{rTensor}_R N f)(m \otimes n) = f(m) \otimes n \] for all $m \in M$ and $n \in N$.
TensorProduct.AlgebraTensorModule.rTensor_id theorem
: rTensor R N (id : M →ₗ[A] M) = .id
Full source
@[simp] lemma rTensor_id : rTensor R N (id : M →ₗ[A] M) = .id :=
  ext fun _ _ => rfl
Right Tensor Product of Identity Map is Identity
Informal description
Let $R$ be a commutative ring, $A$ an $R$-algebra, and $M$, $N$ be $R$-modules with $M$ also being an $A$-module. The right tensor product of the identity $A$-linear map $\text{id} : M \to M$ with $N$ over $R$ is equal to the identity map on $M \otimes_R N$.
TensorProduct.AlgebraTensorModule.rTensor_comp theorem
(f₂ : P →ₗ[A] P') (f₁ : M →ₗ[A] P) : rTensor R N (f₂.comp f₁) = (rTensor R N f₂).comp (rTensor R N f₁)
Full source
lemma rTensor_comp (f₂ : P →ₗ[A] P') (f₁ : M →ₗ[A] P) :
    rTensor R N (f₂.comp f₁) = (rTensor R N f₂).comp (rTensor R N f₁) :=
  ext fun _ _ => rfl
Composition Law for Right Tensor Product of $A$-Linear Maps
Informal description
Let $R$ be a commutative ring, $A$ an $R$-algebra, and $M$, $N$, $P$, $P'$ be $R$-modules with $M$, $P$, and $P'$ also being $A$-modules. For any $A$-linear maps $f_1: M \to P$ and $f_2: P \to P'$, the right tensor product map satisfies \[ \text{rTensor}_R N (f_2 \circ f_1) = (\text{rTensor}_R N f_2) \circ (\text{rTensor}_R N f_1) \] where $\circ$ denotes composition of linear maps.
TensorProduct.AlgebraTensorModule.rTensor_one theorem
: rTensor R N (1 : M →ₗ[A] M) = 1
Full source
@[simp]
lemma rTensor_one : rTensor R N (1 : M →ₗ[A] M) = 1 := map_id
Right Tensor Product Preserves Multiplicative Identity
Informal description
Let $R$ be a commutative ring, $A$ an $R$-algebra, and $M$, $N$ be $R$-modules with $M$ also being an $A$-module. The right tensor product of the multiplicative identity $1 : M \to M$ in the $A$-module endomorphisms with $N$ over $R$ is equal to the multiplicative identity on $M \otimes_R N$.
TensorProduct.AlgebraTensorModule.rTensor_mul theorem
(f₁ f₂ : M →ₗ[A] M) : rTensor R M (f₁ * f₂) = rTensor R M f₁ * rTensor R M f₂
Full source
lemma rTensor_mul (f₁ f₂ : M →ₗ[A] M) :
    rTensor R M (f₁ * f₂) = rTensor R M f₁ * rTensor R M f₂ := rTensor_comp _ _
Multiplicativity of Right Tensor Product for $A$-Linear Endomorphisms
Informal description
Let $R$ be a commutative ring, $A$ an $R$-algebra, and $M$ an $R$-module that is also an $A$-module. For any two $A$-linear endomorphisms $f_1, f_2: M \to M$, the right tensor product map satisfies \[ \text{rTensor}_R M (f_1 \circ f_2) = (\text{rTensor}_R M f_1) \circ (\text{rTensor}_R M f_2), \] where $\circ$ denotes composition of linear maps (or equivalently, multiplication in the endomorphism algebra).
TensorProduct.AlgebraTensorModule.mapBilinear_apply theorem
(f : M →ₗ[A] P) (g : N →ₗ[R] Q) : mapBilinear R A B M N P Q f g = map f g
Full source
@[simp]
theorem mapBilinear_apply (f : M →ₗ[A] P) (g : N →ₗ[R] Q) :
    mapBilinear R A B M N P Q f g = map f g :=
  rfl
Bilinear Tensor Product Map Evaluation: $\text{mapBilinear}(f,g) = f \otimes g$
Informal description
For any $A$-linear map $f \colon M \to P$ and $R$-linear map $g \colon N \to Q$, the bilinear map `mapBilinear` applied to $f$ and $g$ equals the tensor product map $f \otimes g$.
TensorProduct.AlgebraTensorModule.homTensorHomMap_apply theorem
(f : M →ₗ[A] P) (g : N →ₗ[R] Q) : homTensorHomMap R A B M N P Q (f ⊗ₜ g) = map f g
Full source
@[simp] theorem homTensorHomMap_apply (f : M →ₗ[A] P) (g : N →ₗ[R] Q) :
    homTensorHomMap R A B M N P Q (f ⊗ₜ g) = map f g :=
  rfl
Evaluation of Hom-Tensor-Hom Map: $\text{homTensorHomMap}(f \otimes g) = f \otimes g$
Informal description
For any $A$-linear map $f \colon M \to P$ and $R$-linear map $g \colon N \to Q$, the map $\text{homTensorHomMap}_{R,A,B,M,N,P,Q}$ applied to the tensor product $f \otimes g$ equals the tensor product map $f \otimes g$ from $M \otimes_R N$ to $P \otimes_R Q$.
TensorProduct.AlgebraTensorModule.congr_refl theorem
: congr (.refl A M) (.refl R N) = .refl A _
Full source
@[simp]
theorem congr_refl : congr (.refl A M) (.refl R N) = .refl A _ :=
  LinearEquiv.toLinearMap_injective <| map_id
Tensor Product of Identity Equivalences is Identity
Informal description
The tensor product of the identity $A$-linear equivalence on $M$ and the identity $R$-linear equivalence on $N$ is equal to the identity $A$-linear equivalence on $M \otimes_R N$. That is, $\text{congr}(\text{id}_M, \text{id}_N) = \text{id}_{M \otimes_R N}$.
TensorProduct.AlgebraTensorModule.congr_trans theorem
(f₁ : M ≃ₗ[A] P) (f₂ : P ≃ₗ[A] P') (g₁ : N ≃ₗ[R] Q) (g₂ : Q ≃ₗ[R] Q') : congr (f₁.trans f₂) (g₁.trans g₂) = (congr f₁ g₁).trans (congr f₂ g₂)
Full source
theorem congr_trans (f₁ : M ≃ₗ[A] P) (f₂ : P ≃ₗ[A] P') (g₁ : N ≃ₗ[R] Q) (g₂ : Q ≃ₗ[R] Q') :
    congr (f₁.trans f₂) (g₁.trans g₂) = (congr f₁ g₁).trans (congr f₂ g₂) :=
  LinearEquiv.toLinearMap_injective <| map_comp _ _ _ _
Composition of Tensor Product Equivalences
Informal description
Let $R$ be a commutative ring and $A$ an $R$-algebra. Let $M$, $P$, $P'$ be $A$-modules and $N$, $Q$, $Q'$ be $R$-modules. For any $A$-linear equivalences $f_1: M \simeq P$, $f_2: P \simeq P'$ and $R$-linear equivalences $g_1: N \simeq Q$, $g_2: Q \simeq Q'$, the tensor product of the composed equivalences satisfies: \[ \text{congr}(f_2 \circ f_1, g_2 \circ g_1) = \text{congr}(f_1, g_1) \circ \text{congr}(f_2, g_2) \] where $\text{congr}$ denotes the tensor product of equivalences.
TensorProduct.AlgebraTensorModule.congr_symm theorem
(f : M ≃ₗ[A] P) (g : N ≃ₗ[R] Q) : congr f.symm g.symm = (congr f g).symm
Full source
theorem congr_symm (f : M ≃ₗ[A] P) (g : N ≃ₗ[R] Q) : congr f.symm g.symm = (congr f g).symm := rfl
Inverse of Tensor Product of Equivalences
Informal description
Let $M$ and $P$ be $A$-modules, and $N$ and $Q$ be $R$-modules. For any $A$-linear equivalence $f: M \simeq P$ and $R$-linear equivalence $g: N \simeq Q$, the equivalence obtained by tensoring the inverse equivalences $f^{-1}$ and $g^{-1}$ is equal to the inverse of the tensor product equivalence $f \otimes g$. That is, $(f \otimes g)^{-1} = f^{-1} \otimes g^{-1}$.
TensorProduct.AlgebraTensorModule.congr_one theorem
: congr (1 : M ≃ₗ[A] M) (1 : N ≃ₗ[R] N) = 1
Full source
@[simp]
theorem congr_one : congr (1 : M ≃ₗ[A] M) (1 : N ≃ₗ[R] N) = 1 := congr_refl
Tensor Product of Identity Maps is Identity
Informal description
The tensor product of the identity $A$-linear equivalence on $M$ and the identity $R$-linear equivalence on $N$ is equal to the identity $A$-linear equivalence on $M \otimes_R N$. That is, $\text{congr}(\text{id}_M, \text{id}_N) = \text{id}_{M \otimes_R N}$.
TensorProduct.AlgebraTensorModule.congr_mul theorem
(f₁ f₂ : M ≃ₗ[A] M) (g₁ g₂ : N ≃ₗ[R] N) : congr (f₁ * f₂) (g₁ * g₂) = congr f₁ g₁ * congr f₂ g₂
Full source
theorem congr_mul (f₁ f₂ : M ≃ₗ[A] M) (g₁ g₂ : N ≃ₗ[R] N) :
    congr (f₁ * f₂) (g₁ * g₂) = congr f₁ g₁ * congr f₂ g₂ := congr_trans _ _ _ _
Composition of Tensor Product Equivalences Preserves Multiplication
Informal description
Let $M$ be an $A$-module and $N$ be an $R$-module. For any $A$-linear equivalences $f_1, f_2 : M \simeq M$ and $R$-linear equivalences $g_1, g_2 : N \simeq N$, the tensor product of the composed equivalences satisfies: \[ \text{congr}(f_2 \circ f_1, g_2 \circ g_1) = \text{congr}(f_1, g_1) \circ \text{congr}(f_2, g_2) \] where $\text{congr}$ denotes the tensor product of equivalences.
TensorProduct.AlgebraTensorModule.congr_tmul theorem
(f : M ≃ₗ[A] P) (g : N ≃ₗ[R] Q) (m : M) (n : N) : congr f g (m ⊗ₜ n) = f m ⊗ₜ g n
Full source
@[simp] theorem congr_tmul (f : M ≃ₗ[A] P) (g : N ≃ₗ[R] Q) (m : M) (n : N) :
    congr f g (m ⊗ₜ n) = f m ⊗ₜ g n :=
  rfl
Tensor Product Congruence Preserves Tensor Product Action
Informal description
Let $M$ and $P$ be $A$-modules and $R$-modules, and let $N$ and $Q$ be $R$-modules. For any $A$-linear equivalence $f : M \simeq P$ and $R$-linear equivalence $g : N \simeq Q$, the tensor product congruence map $\text{congr}(f, g)$ satisfies $\text{congr}(f, g)(m \otimes n) = f(m) \otimes g(n)$ for all $m \in M$ and $n \in N$.
TensorProduct.AlgebraTensorModule.congr_symm_tmul theorem
(f : M ≃ₗ[A] P) (g : N ≃ₗ[R] Q) (p : P) (q : Q) : (congr f g).symm (p ⊗ₜ q) = f.symm p ⊗ₜ g.symm q
Full source
@[simp] theorem congr_symm_tmul (f : M ≃ₗ[A] P) (g : N ≃ₗ[R] Q) (p : P) (q : Q) :
    (congr f g).symm (p ⊗ₜ q) = f.symm p ⊗ₜ g.symm q :=
  rfl
Inverse Tensor Congruence Map on Pure Tensors
Informal description
Let $f : M \simeq_A P$ and $g : N \simeq_R Q$ be linear equivalences of modules, where $M$ and $P$ are $A$-modules and $N$ and $Q$ are $R$-modules. For any $p \in P$ and $q \in Q$, the inverse of the tensor product congruence map $\text{congr}(f, g)$ satisfies $$(\text{congr}(f, g))^{-1}(p \otimes q) = f^{-1}(p) \otimes g^{-1}(q).$$
TensorProduct.AlgebraTensorModule.rid_eq_rid theorem
: AlgebraTensorModule.rid R R M = TensorProduct.rid R M
Full source
theorem rid_eq_rid : AlgebraTensorModule.rid R R M = TensorProduct.rid R M :=
  LinearEquiv.toLinearMap_injective <| TensorProduct.ext' fun _ _ => rfl
Equality of Right Identity Isomorphisms for Tensor Product Modules
Informal description
The module isomorphism `AlgebraTensorModule.rid R R M` from $M \otimes_R R$ to $M$ is equal to the standard right identity isomorphism `TensorProduct.rid R M`.
TensorProduct.AlgebraTensorModule.rid_tmul theorem
(r : R) (m : M) : AlgebraTensorModule.rid R A M (m ⊗ₜ r) = r • m
Full source
@[simp]
theorem rid_tmul (r : R) (m : M) : AlgebraTensorModule.rid R A M (m ⊗ₜ r) = r • m := rfl
Right identity isomorphism maps tensor product to scalar multiplication
Informal description
For any element $r$ in the ring $R$ and any element $m$ in the $A$-module $M$, the right identity isomorphism $\text{rid}_{R,A,M}$ applied to the tensor product $m \otimes r$ equals the scalar multiplication $r \cdot m$.
TensorProduct.AlgebraTensorModule.rid_symm_apply theorem
(m : M) : (AlgebraTensorModule.rid R A M).symm m = m ⊗ₜ 1
Full source
@[simp]
theorem rid_symm_apply (m : M) : (AlgebraTensorModule.rid R A M).symm m = m ⊗ₜ 1 := rfl
Inverse of Right Identity Isomorphism for Tensor Product Modules
Informal description
For any element $m$ in the $A$-module $M$, the inverse of the right identity isomorphism $\text{rid}_{R,A,M}$ maps $m$ to the tensor product $m \otimes 1$ in $M \otimes_R A$.
TensorProduct.AlgebraTensorModule.assoc_tmul theorem
(m : M) (p : P) (q : Q) : assoc R A B M P Q ((m ⊗ₜ p) ⊗ₜ q) = m ⊗ₜ (p ⊗ₜ q)
Full source
@[simp]
theorem assoc_tmul (m : M) (p : P) (q : Q) :
    assoc R A B M P Q ((m ⊗ₜ p) ⊗ₜ q) = m ⊗ₜ (p ⊗ₜ q) :=
  rfl
Associativity of Tensor Product: $(m \otimes p) \otimes q = m \otimes (p \otimes q)$
Informal description
For any elements $m \in M$, $p \in P$, and $q \in Q$, the associativity isomorphism $\text{assoc}_{R,A,B,M,P,Q}$ maps the tensor product $(m \otimes p) \otimes q$ in $(M \otimes_R P) \otimes_R Q$ to $m \otimes (p \otimes q)$ in $M \otimes_R (P \otimes_R Q)$.
TensorProduct.AlgebraTensorModule.assoc_symm_tmul theorem
(m : M) (p : P) (q : Q) : (assoc R A B M P Q).symm (m ⊗ₜ (p ⊗ₜ q)) = (m ⊗ₜ p) ⊗ₜ q
Full source
@[simp]
theorem assoc_symm_tmul (m : M) (p : P) (q : Q) :
    (assoc R A B M P Q).symm (m ⊗ₜ (p ⊗ₜ q)) = (m ⊗ₜ p) ⊗ₜ q :=
  rfl
Inverse Associator Isomorphism for Tensor Product Modules
Informal description
Let $R$, $A$, and $B$ be rings, and let $M$, $P$, and $Q$ be modules over $R$ where $M$ and $P$ are also $A$-modules. For any elements $m \in M$, $p \in P$, and $q \in Q$, the inverse of the associator isomorphism $\text{assoc}_{R,A,B,M,P,Q}$ maps the tensor product $m \otimes (p \otimes q)$ in $M \otimes_R (P \otimes_R Q)$ to the tensor product $(m \otimes p) \otimes q$ in $(M \otimes_R P) \otimes_R Q$.
TensorProduct.AlgebraTensorModule.rTensor_tensor theorem
[Module R P'] [IsScalarTower R A P'] (g : P →ₗ[A] P') : g.rTensor (M ⊗[R] N) = assoc R A A P' M N ∘ₗ map (g.rTensor M) id ∘ₗ (assoc R A A P M N).symm.toLinearMap
Full source
theorem rTensor_tensor [Module R P'] [IsScalarTower R A P'] (g : P →ₗ[A] P') :
    g.rTensor (M ⊗[R] N) =
      assocassoc R A A P' M N ∘ₗ map (g.rTensor M) id ∘ₗ (assoc R A A P M N).symm.toLinearMap :=
  TensorProduct.ext <| LinearMap.ext fun _ ↦ ext fun _ _ ↦ rfl
Right Tensor Product Map Decomposition via Associator Isomorphisms
Informal description
Let $R$ be a commutative ring, $A$ an $R$-algebra, and $M$, $N$, $P$, $P'$ be $R$-modules with $P$ and $P'$ also being $A$-modules. Suppose $P'$ is an $R$-module and the scalar multiplication satisfies the compatibility condition $[IsScalarTower R A P']$. For any $A$-linear map $g \colon P \to P'$, the right tensor product map $g \otimes_{R} (M \otimes_{R} N)$ is equal to the composition of the following three maps: 1. The inverse of the associator isomorphism $(P \otimes_{R} M) \otimes_{R} N \to P \otimes_{R} (M \otimes_{R} N)$, 2. The tensor product of the right tensor product map $g \otimes_{R} M$ with the identity map on $N$, 3. The associator isomorphism $P' \otimes_{R} (M \otimes_{R} N) \to (P' \otimes_{R} M) \otimes_{R} N$.
TensorProduct.AlgebraTensorModule.cancelBaseChange_tmul theorem
(m : M) (n : N) (a : A) : cancelBaseChange R A B M N (m ⊗ₜ (a ⊗ₜ n)) = (a • m) ⊗ₜ n
Full source
@[simp]
theorem cancelBaseChange_tmul (m : M) (n : N) (a : A) :
    cancelBaseChange R A B M N (m ⊗ₜ (a ⊗ₜ n)) = (a • m) ⊗ₜ n :=
  rfl
Base Change Cancellation for Tensor Product: $m \otimes (a \otimes n) \mapsto (a \cdot m) \otimes n$
Informal description
Let $R$, $A$, and $B$ be rings, and let $M$ and $N$ be $R$-modules with $M$ also being an $A$-module. For any elements $m \in M$, $n \in N$, and $a \in A$, the map $\text{cancelBaseChange}_{R,A,B,M,N}$ applied to the tensor product $m \otimes (a \otimes n)$ in $M \otimes_R (A \otimes_R N)$ equals the tensor product $(a \cdot m) \otimes n$ in $M \otimes_R N$.
TensorProduct.AlgebraTensorModule.cancelBaseChange_symm_tmul theorem
(m : M) (n : N) : (cancelBaseChange R A B M N).symm (m ⊗ₜ n) = m ⊗ₜ (1 ⊗ₜ n)
Full source
@[simp]
theorem cancelBaseChange_symm_tmul (m : M) (n : N) :
    (cancelBaseChange R A B M N).symm (m ⊗ₜ n) = m ⊗ₜ (1 ⊗ₜ n) :=
  rfl
Inverse Base Change Cancellation on Tensor Product: $(cancelBaseChange)^{-1}(m \otimes n) = m \otimes (1 \otimes n)$
Informal description
For any elements $m \in M$ and $n \in N$, the inverse of the base change cancellation map applied to the tensor product $m \otimes n$ equals the tensor product $m \otimes (1 \otimes n)$, where $1$ is the multiplicative identity in $A$.
TensorProduct.AlgebraTensorModule.lTensor_comp_cancelBaseChange theorem
(f : N →ₗ[R] Q) : lTensor _ _ f ∘ₗ cancelBaseChange R A B M N = (cancelBaseChange R A B M Q).toLinearMap ∘ₗ lTensor _ _ (lTensor _ _ f)
Full source
theorem lTensor_comp_cancelBaseChange (f : N →ₗ[R] Q) :
    lTensorlTensor _ _ f ∘ₗ cancelBaseChange R A B M N =
      (cancelBaseChange R A B M Q).toLinearMap ∘ₗ lTensor _ _ (lTensor _ _ f) := by
  ext; simp
Commutation of Left Tensor Product with Base Change Cancellation
Informal description
Let $R$, $A$, $B$ be rings, and let $M$, $N$, $Q$ be $R$-modules where $M$ is also an $A$-module. For any $R$-linear map $f \colon N \to Q$, the following diagram commutes: \[ \begin{CD} M \otimes_R (A \otimes_R N) @>{f \otimes \text{id}}>> M \otimes_R (A \otimes_R Q) \\ @V{\text{cancelBaseChange}}VV @VV{\text{cancelBaseChange}}V \\ A \otimes_R (M \otimes_R N) @>{f \otimes \text{id}}>> A \otimes_R (M \otimes_R Q) \end{CD} \] where the horizontal maps are the left tensor product of $f$ and the vertical maps are the base change cancellation isomorphisms.
TensorProduct.AlgebraTensorModule.leftComm_tmul theorem
(m : M) (p : P) (q : Q) : leftComm R A M P Q (m ⊗ₜ (p ⊗ₜ q)) = p ⊗ₜ (m ⊗ₜ q)
Full source
@[simp]
theorem leftComm_tmul (m : M) (p : P) (q : Q) :
    leftComm R A M P Q (m ⊗ₜ (p ⊗ₜ q)) = p ⊗ₜ (m ⊗ₜ q) :=
  rfl
Left Commutativity Isomorphism for Tensor Products: $m \otimes (p \otimes q) \mapsto p \otimes (m \otimes q)$
Informal description
For any elements $m \in M$, $p \in P$, and $q \in Q$, the left commutativity isomorphism $\text{leftComm}_{R,A,M,P,Q}$ satisfies \[ \text{leftComm}_{R,A,M,P,Q} (m \otimes (p \otimes q)) = p \otimes (m \otimes q). \]
TensorProduct.AlgebraTensorModule.leftComm_symm_tmul theorem
(m : M) (p : P) (q : Q) : (leftComm R A M P Q).symm (p ⊗ₜ (m ⊗ₜ q)) = m ⊗ₜ (p ⊗ₜ q)
Full source
@[simp]
theorem leftComm_symm_tmul (m : M) (p : P) (q : Q) :
    (leftComm R A M P Q).symm (p ⊗ₜ (m ⊗ₜ q)) = m ⊗ₜ (p ⊗ₜ q) :=
  rfl
Inverse Left Commutativity Isomorphism for Tensor Products: $p \otimes (m \otimes q) \mapsto m \otimes (p \otimes q)$
Informal description
Let $R$ be a commutative ring, $A$ an $R$-algebra, and $M$, $P$, $Q$ be $R$-modules with $M$ also an $A$-module. For any elements $m \in M$, $p \in P$, and $q \in Q$, the inverse of the left commutativity isomorphism satisfies \[ (\text{leftComm}_{R,A,M,P,Q})^{-1}(p \otimes (m \otimes q)) = m \otimes (p \otimes q). \]
TensorProduct.AlgebraTensorModule.rightComm_tmul theorem
(m : M) (p : P) (q : Q) : rightComm R A M P Q ((m ⊗ₜ p) ⊗ₜ q) = (m ⊗ₜ q) ⊗ₜ p
Full source
@[simp]
theorem rightComm_tmul (m : M) (p : P) (q : Q) :
    rightComm R A M P Q ((m ⊗ₜ p) ⊗ₜ q) = (m ⊗ₜ q) ⊗ₜ p :=
  rfl
Right Commutativity Isomorphism for Tensor Products: $(m \otimes p) \otimes q \mapsto (m \otimes q) \otimes p$
Informal description
For any elements $m \in M$, $p \in P$, and $q \in Q$, the right commutativity isomorphism `rightComm` satisfies \[ \text{rightComm}_{R,A,M,P,Q} ((m \otimes p) \otimes q) = (m \otimes q) \otimes p. \]
TensorProduct.AlgebraTensorModule.rightComm_symm_tmul theorem
(m : M) (p : P) (q : Q) : (rightComm R A M P Q).symm ((m ⊗ₜ q) ⊗ₜ p) = (m ⊗ₜ p) ⊗ₜ q
Full source
@[simp]
theorem rightComm_symm_tmul (m : M) (p : P) (q : Q) :
    (rightComm R A M P Q).symm ((m ⊗ₜ q) ⊗ₜ p) = (m ⊗ₜ p) ⊗ₜ q :=
  rfl
Inverse Right Commutativity Isomorphism for Tensor Products of Modules
Informal description
Let $M$, $P$, and $Q$ be modules over a commutative ring $R$, with $M$ also being a module over an $R$-algebra $A$. For any elements $m \in M$, $p \in P$, and $q \in Q$, the inverse of the right commutativity isomorphism applied to the tensor product $(m \otimes q) \otimes p$ equals $(m \otimes p) \otimes q$.
TensorProduct.AlgebraTensorModule.tensorTensorTensorComm_tmul theorem
(m : M) (n : N) (p : P) (q : Q) : tensorTensorTensorComm R A M N P Q ((m ⊗ₜ n) ⊗ₜ (p ⊗ₜ q)) = (m ⊗ₜ p) ⊗ₜ (n ⊗ₜ q)
Full source
@[simp]
theorem tensorTensorTensorComm_tmul (m : M) (n : N) (p : P) (q : Q) :
    tensorTensorTensorComm R A M N P Q ((m ⊗ₜ n) ⊗ₜ (p ⊗ₜ q)) = (m ⊗ₜ p) ⊗ₜ (n ⊗ₜ q) :=
  rfl
Tensor Tensor Tensor Commutativity Isomorphism: $(m \otimes n) \otimes (p \otimes q) \mapsto (m \otimes p) \otimes (n \otimes q)$
Informal description
Let $R$ be a commutative ring and $A$ an $R$-algebra. Let $M$, $N$, $P$, $Q$ be $R$-modules, with $M$ and $P$ also being $A$-modules. For any elements $m \in M$, $n \in N$, $p \in P$, and $q \in Q$, the tensor tensor tensor commutativity isomorphism satisfies \[ \text{tensorTensorTensorComm}_{R,A,M,N,P,Q} \big((m \otimes n) \otimes (p \otimes q)\big) = (m \otimes p) \otimes (n \otimes q). \]
TensorProduct.AlgebraTensorModule.tensorTensorTensorComm_symm_tmul theorem
(m : M) (n : N) (p : P) (q : Q) : (tensorTensorTensorComm R A M N P Q).symm ((m ⊗ₜ p) ⊗ₜ (n ⊗ₜ q)) = (m ⊗ₜ n) ⊗ₜ (p ⊗ₜ q)
Full source
@[simp]
theorem tensorTensorTensorComm_symm_tmul (m : M) (n : N) (p : P) (q : Q) :
    (tensorTensorTensorComm R A M N P Q).symm ((m ⊗ₜ p) ⊗ₜ (n ⊗ₜ q)) = (m ⊗ₜ n) ⊗ₜ (p ⊗ₜ q) :=
  rfl
Inverse Tensor Commutativity Isomorphism for Quadruple Tensor Products
Informal description
Let $R$ be a commutative ring and $A$ an $R$-algebra. Let $M$, $N$, $P$, $Q$ be $R$-modules, with $M$ and $P$ also being $A$-modules. For any elements $m \in M$, $n \in N$, $p \in P$, $q \in Q$, the inverse of the tensor tensor tensor commutativity isomorphism satisfies \[ (tensorTensorTensorComm\ R\ A\ M\ N\ P\ Q)^{-1}\big((m \otimes p) \otimes (n \otimes q)\big) = (m \otimes n) \otimes (p \otimes q). \]
Submodule.baseChange_bot theorem
: (⊥ : Submodule R M).baseChange A = ⊥
Full source
@[simp]
lemma baseChange_bot : ( : Submodule R M).baseChange A =  := by simp [baseChange]
Base Change Preserves Trivial Submodule
Informal description
For any commutative ring $R$ and $R$-algebra $A$, the base change of the trivial submodule $\bot$ of an $R$-module $M$ is equal to the trivial submodule $\bot$ of $M \otimes_R A$. That is, $(\bot : \text{Submodule}_R M).\text{baseChange} A = \bot$.
Submodule.baseChange_top theorem
: (⊤ : Submodule R M).baseChange A = ⊤
Full source
@[simp]
lemma baseChange_top : ( : Submodule R M).baseChange A =  := by
  rw [baseChange, map_top, eq_top_iff']
  intro x
  refine x.induction_on (by simp) (fun a y ↦ ?_) (fun _ _ ↦ Submodule.add_mem _)
  rw [← mul_one a, ← smul_eq_mul, ← smul_tmul']
  refine smul_mem _ _ (subset_span ?_)
  simp
Base Change Preserves Top Submodule
Informal description
For any $R$-module $M$ and $A$-algebra $R$, the base change of the top submodule of $M$ to $A$ is equal to the top submodule of $M \otimes_R A$. That is, \[ (\top : \text{Submodule } R M).\text{baseChange } A = \top. \]
Submodule.tmul_mem_baseChange_of_mem theorem
(a : A) {m : M} (hm : m ∈ p) : a ⊗ₜ[R] m ∈ p.baseChange A
Full source
lemma tmul_mem_baseChange_of_mem (a : A) {m : M} (hm : m ∈ p) :
    a ⊗ₜ[R] ma ⊗ₜ[R] m ∈ p.baseChange A := by
  rw [← mul_one a, ← smul_eq_mul, ← smul_tmul']
  exact smul_mem (baseChange A p) a (subset_span ⟨m, hm, rfl⟩)
Tensor product element belongs to base change of submodule
Informal description
For any element $a \in A$ and any element $m \in M$ such that $m$ belongs to a submodule $p$ of $M$, the tensor product $a \otimes_R m$ belongs to the base change of $p$ with respect to $A$.
Submodule.baseChange_span theorem
(s : Set M) : (span R s).baseChange A = span A (TensorProduct.mk R A M 1 '' s)
Full source
@[simp]
lemma baseChange_span (s : Set M) :
    (span R s).baseChange A = span A (TensorProduct.mkTensorProduct.mk R A M 1 '' s) := by
  simp only [baseChange, map_coe]
  refine le_antisymm (span_le.mpr ?_) (span_mono <| Set.image_subset _ subset_span)
  rintro - ⟨m : M, hm : m ∈ span R s, rfl⟩
  apply span_induction (p := fun m' _ ↦ (1 : A) ⊗ₜ[R] m'(1 : A) ⊗ₜ[R] m' ∈ span A (TensorProduct.mk R A M 1 '' s))
    (hx := hm)
  · intro m hm
    exact subset_span ⟨m, hm, rfl⟩
  · simp
  · intro m₁ m₂ _ _ hm₁ hm₂
    rw [tmul_add]
    exact Submodule.add_mem _ hm₁ hm₂
  · intro r m' _ hm'
    rw [tmul_smul, ← one_smul A ((1 : A) ⊗ₜ[R] m'), ← smul_assoc]
    exact smul_mem _ (r • 1) hm'
Base Change of Span Equals Span of Base Changed Generators
Informal description
Let $R$ be a commutative semiring, $A$ an $R$-algebra, and $M$ an $R$-module. For any subset $s$ of $M$, the base change of the $R$-linear span of $s$ to $A$ is equal to the $A$-linear span of the image of $s$ under the map $m \mapsto 1 \otimes m$ in $A \otimes_R M$. That is, \[ (\operatorname{span}_R s).\text{baseChange} A = \operatorname{span}_A \{1 \otimes m \mid m \in s\}. \]