Module docstring
{"# The A-module structure on M ⊗[R] N
When M is both an R-module and an A-module, and Algebra R A, then many of the morphisms
preserve the actions by A.
The Module instance itself is provided elsewhere as TensorProduct.leftModule. This file provides
more general versions of the definitions already in LinearAlgebra/TensorProduct.
In this file, we use the convention that M, N, P, Q are all R-modules, but only M and
P are simultaneously A-modules.
Main definitions
TensorProduct.AlgebraTensorModule.curryTensorProduct.AlgebraTensorModule.uncurryTensorProduct.AlgebraTensorModule.lcurryTensorProduct.AlgebraTensorModule.liftTensorProduct.AlgebraTensorModule.lift.equivTensorProduct.AlgebraTensorModule.mkTensorProduct.AlgebraTensorModule.mapTensorProduct.AlgebraTensorModule.mapBilinearTensorProduct.AlgebraTensorModule.congrTensorProduct.AlgebraTensorModule.ridTensorProduct.AlgebraTensorModule.homTensorHomMapTensorProduct.AlgebraTensorModule.assocTensorProduct.AlgebraTensorModule.leftCommTensorProduct.AlgebraTensorModule.rightCommTensorProduct.AlgebraTensorModule.tensorTensorTensorComm
Implementation notes
We could thus consider replacing the less general definitions with these ones. If we do this, we probably should still implement the less general ones as abbreviations to the more general ones with fewer type arguments. "}