Informal description
For any semiring $R$, module $M$ over $R$, and submodule $p$ of $M$, if there are scalar multiplication operations of types $S$ and $S'$ on $R$ and $M$ such that:
1. $S'$ forms a scalar tower with $R$ and $M$ (i.e., $(s' \cdot r) \cdot m = s' \cdot (r \cdot m)$ for all $s' \in S'$, $r \in R$, $m \in M$),
2. $S$ forms a scalar tower with $S'$ and $M$ (i.e., $(s \cdot s') \cdot m = s \cdot (s' \cdot m)$ for all $s \in S$, $s' \in S'$, $m \in M$), and
3. $S$ forms a scalar tower with $R$ and $M$ (i.e., $(s \cdot r) \cdot m = s \cdot (r \cdot m)$ for all $s \in S$, $r \in R$, $m \in M$),
then $S$ forms a scalar tower with $S'$ and $p$ (i.e., $(s \cdot s') \cdot x = s \cdot (s' \cdot x)$ for all $s \in S$, $s' \in S'$, $x \in p$).