Informal description
Let $R$ be a commutative semiring, and let $A_1, A_1'$, $A_2, A_2'$, $A_3, A_3'$ be semirings equipped with $R$-algebra structures. Given $R$-algebra isomorphisms $e_1: A_1 \simeq_{alg[R]} A_1'$, $e_2: A_2 \simeq_{alg[R]} A_2'$, and $e_3: A_3 \simeq_{alg[R]} A_3'$, and $R$-algebra homomorphisms $f: A_1 \to_{alg[R]} A_2$ and $g: A_2 \to_{alg[R]} A_3$, the following diagram commutes:
The composition of the induced maps on homomorphism spaces satisfies:
\[ \text{arrowCongr}(e_1, e_3)(g \circ f) = \text{arrowCongr}(e_2, e_3)(g) \circ \text{arrowCongr}(e_1, e_2)(f) \]