Module docstring
{"# Convex and concave functions
This file defines convex and concave functions in vector spaces and proves the finite Jensen
inequality. The integral version can be found in Analysis.Convex.Integral.
A function f : E β Ξ² is ConvexOn a set s if s is itself a convex set, and for any two
points x y β s, the segment joining (x, f x) to (y, f y) is above the graph of f.
Equivalently, ConvexOn π f s means that the epigraph {p : E Γ Ξ² | p.1 β s β§ f p.1 β€ p.2} is
a convex set.
Main declarations
ConvexOn π s f: The functionfis convex onswith scalarsπ.ConcaveOn π s f: The functionfis concave onswith scalarsπ.StrictConvexOn π s f: The functionfis strictly convex onswith scalarsπ.StrictConcaveOn π s f: The functionfis strictly concave onswith scalarsπ. "}