doc-next-gen

Mathlib.Topology.Algebra.Order.Field

Module docstring

{"# Topologies on linear ordered fields

In this file we prove that a linear ordered field with order topology has continuous multiplication and division (apart from zero in the denominator). We also prove theorems like Filter.Tendsto.mul_atTop: if f tends to a positive number and g tends to positive infinity, then f * g tends to positive infinity. "}

IsStrictOrderedRing.topologicalRing instance
: IsTopologicalRing ๐•œ
Full source
instance (priority := 100) IsStrictOrderedRing.topologicalRing : IsTopologicalRing ๐•œ :=
  .of_norm abs abs_nonneg (fun _ _ โ†ฆ (abs_mul _ _).le) <| by
    simpa using nhds_basis_abs_sub_lt (0 : ๐•œ)
Strict Ordered Rings are Topological Rings
Informal description
Every strict ordered ring $\mathbb{K}$ with the order topology is a topological ring, meaning that the operations of addition, multiplication, and negation are continuous with respect to the order topology.
Filter.Tendsto.atTop_mul_pos theorem
{C : ๐•œ} (hC : 0 < C) (hf : Tendsto f l atTop) (hg : Tendsto g l (๐“ C)) : Tendsto (fun x => f x * g x) l atTop
Full source
/-- In a linearly ordered field with the order topology, if `f` tends to `Filter.atTop` and `g`
tends to a positive constant `C` then `f * g` tends to `Filter.atTop`. -/
theorem Filter.Tendsto.atTop_mul_pos {C : ๐•œ} (hC : 0 < C) (hf : Tendsto f l atTop)
    (hg : Tendsto g l (๐“ C)) : Tendsto (fun x => f x * g x) l atTop := by
  refine tendsto_atTop_mono' _ ?_ (hf.atTop_mul_const (half_pos hC))
  filter_upwards [hg.eventually (lt_mem_nhds (half_lt_self hC)), hf.eventually_ge_atTop 0] with x hg
    hf using mul_le_mul_of_nonneg_left hg.le hf
Product of a Function Tending to Infinity and a Positive Function Tending to a Positive Constant Tends to Infinity
Informal description
Let $\mathbb{K}$ be a linearly ordered field with the order topology, and let $f, g : \alpha \to \mathbb{K}$ be functions. If $f$ tends to $+\infty$ along a filter $l$ and $g$ tends to a positive constant $C$ along $l$, then the product function $x \mapsto f(x) \cdot g(x)$ tends to $+\infty$ along $l$.
Filter.Tendsto.pos_mul_atTop theorem
{C : ๐•œ} (hC : 0 < C) (hf : Tendsto f l (๐“ C)) (hg : Tendsto g l atTop) : Tendsto (fun x => f x * g x) l atTop
Full source
/-- In a linearly ordered field with the order topology, if `f` tends to a positive constant `C` and
`g` tends to `Filter.atTop` then `f * g` tends to `Filter.atTop`. -/
theorem Filter.Tendsto.pos_mul_atTop {C : ๐•œ} (hC : 0 < C) (hf : Tendsto f l (๐“ C))
    (hg : Tendsto g l atTop) : Tendsto (fun x => f x * g x) l atTop := by
  simpa only [mul_comm] using hg.atTop_mul_pos hC hf
Product of a Positive Limit and an Unbounded Function Tends to Infinity ($C > 0 \implies C \cdot \infty = \infty$)
Informal description
Let $\mathbb{K}$ be a linearly ordered field with the order topology, and let $f, g : \alpha \to \mathbb{K}$ be functions. If $f$ tends to a positive constant $C$ along a filter $l$ and $g$ tends to $+\infty$ along $l$, then the product function $x \mapsto f(x) \cdot g(x)$ tends to $+\infty$ along $l$.
Filter.Tendsto.atTop_mul_neg theorem
{C : ๐•œ} (hC : C < 0) (hf : Tendsto f l atTop) (hg : Tendsto g l (๐“ C)) : Tendsto (fun x => f x * g x) l atBot
Full source
/-- In a linearly ordered field with the order topology, if `f` tends to `Filter.atTop` and `g`
tends to a negative constant `C` then `f * g` tends to `Filter.atBot`. -/
theorem Filter.Tendsto.atTop_mul_neg {C : ๐•œ} (hC : C < 0) (hf : Tendsto f l atTop)
    (hg : Tendsto g l (๐“ C)) : Tendsto (fun x => f x * g x) l atBot := by
  have := hf.atTop_mul_pos (neg_pos.2 hC) hg.neg
  simpa only [Function.comp_def, neg_mul_eq_mul_neg, neg_neg] using
    tendsto_neg_atTop_atBot.comp this
Product of a Function Tending to Infinity and a Negative Function Tending to a Negative Constant Tends to Negative Infinity
Informal description
Let $\mathbb{K}$ be a linearly ordered field with the order topology, and let $f, g : \alpha \to \mathbb{K}$ be functions. If $f$ tends to $+\infty$ along a filter $l$ and $g$ tends to a negative constant $C$ along $l$, then the product function $x \mapsto f(x) \cdot g(x)$ tends to $-\infty$ along $l$.
Filter.Tendsto.neg_mul_atTop theorem
{C : ๐•œ} (hC : C < 0) (hf : Tendsto f l (๐“ C)) (hg : Tendsto g l atTop) : Tendsto (fun x => f x * g x) l atBot
Full source
/-- In a linearly ordered field with the order topology, if `f` tends to a negative constant `C` and
`g` tends to `Filter.atTop` then `f * g` tends to `Filter.atBot`. -/
theorem Filter.Tendsto.neg_mul_atTop {C : ๐•œ} (hC : C < 0) (hf : Tendsto f l (๐“ C))
    (hg : Tendsto g l atTop) : Tendsto (fun x => f x * g x) l atBot := by
  simpa only [mul_comm] using hg.atTop_mul_neg hC hf
Product of a Negative Limit and an Unbounded Function Tends to Negative Infinity ($C < 0 \implies C \cdot \infty = -\infty$)
Informal description
Let $\mathbb{K}$ be a linearly ordered field with the order topology, and let $f, g : \alpha \to \mathbb{K}$ be functions. If $f$ tends to a negative constant $C$ along a filter $l$ and $g$ tends to $+\infty$ along $l$, then the product function $x \mapsto f(x) \cdot g(x)$ tends to $-\infty$ along $l$.
Filter.Tendsto.atBot_mul_pos theorem
{C : ๐•œ} (hC : 0 < C) (hf : Tendsto f l atBot) (hg : Tendsto g l (๐“ C)) : Tendsto (fun x => f x * g x) l atBot
Full source
/-- In a linearly ordered field with the order topology, if `f` tends to `Filter.atBot` and `g`
tends to a positive constant `C` then `f * g` tends to `Filter.atBot`. -/
theorem Filter.Tendsto.atBot_mul_pos {C : ๐•œ} (hC : 0 < C) (hf : Tendsto f l atBot)
    (hg : Tendsto g l (๐“ C)) : Tendsto (fun x => f x * g x) l atBot := by
  have := (tendsto_neg_atBot_atTop.comp hf).atTop_mul_pos hC hg
  simpa [Function.comp_def] using tendsto_neg_atTop_atBot.comp this
Product of a Function Tending to Negative Infinity and a Positive Function Tending to a Positive Constant Tends to Negative Infinity
Informal description
Let $\mathbb{K}$ be a linearly ordered field with the order topology, and let $f, g : \alpha \to \mathbb{K}$ be functions. If $f$ tends to $-\infty$ along a filter $l$ and $g$ tends to a positive constant $C$ along $l$, then the product function $x \mapsto f(x) \cdot g(x)$ tends to $-\infty$ along $l$.
Filter.Tendsto.atBot_mul_neg theorem
{C : ๐•œ} (hC : C < 0) (hf : Tendsto f l atBot) (hg : Tendsto g l (๐“ C)) : Tendsto (fun x => f x * g x) l atTop
Full source
/-- In a linearly ordered field with the order topology, if `f` tends to `Filter.atBot` and `g`
tends to a negative constant `C` then `f * g` tends to `Filter.atTop`. -/
theorem Filter.Tendsto.atBot_mul_neg {C : ๐•œ} (hC : C < 0) (hf : Tendsto f l atBot)
    (hg : Tendsto g l (๐“ C)) : Tendsto (fun x => f x * g x) l atTop := by
  have := (tendsto_neg_atBot_atTop.comp hf).atTop_mul_neg hC hg
  simpa [Function.comp_def] using tendsto_neg_atBot_atTop.comp this
Product of a Function Tending to Negative Infinity and a Negative Function Tending to a Negative Constant Tends to Positive Infinity
Informal description
Let $\mathbb{K}$ be a linearly ordered field with the order topology, and let $f, g : \alpha \to \mathbb{K}$ be functions. If $f$ tends to $-\infty$ along a filter $l$ and $g$ tends to a negative constant $C$ along $l$, then the product function $x \mapsto f(x) \cdot g(x)$ tends to $+\infty$ along $l$.
Filter.Tendsto.pos_mul_atBot theorem
{C : ๐•œ} (hC : 0 < C) (hf : Tendsto f l (๐“ C)) (hg : Tendsto g l atBot) : Tendsto (fun x => f x * g x) l atBot
Full source
/-- In a linearly ordered field with the order topology, if `f` tends to a positive constant `C` and
`g` tends to `Filter.atBot` then `f * g` tends to `Filter.atBot`. -/
theorem Filter.Tendsto.pos_mul_atBot {C : ๐•œ} (hC : 0 < C) (hf : Tendsto f l (๐“ C))
    (hg : Tendsto g l atBot) : Tendsto (fun x => f x * g x) l atBot := by
  simpa only [mul_comm] using hg.atBot_mul_pos hC hf
Product of a Positive Limit and a Function Tending to Negative Infinity Tends to Negative Infinity
Informal description
Let $\mathbb{K}$ be a linearly ordered field with the order topology, and let $f, g : \alpha \to \mathbb{K}$ be functions. If $f$ tends to a positive constant $C$ along a filter $l$ and $g$ tends to $-\infty$ along $l$, then the product function $x \mapsto f(x) \cdot g(x)$ tends to $-\infty$ along $l$.
Filter.Tendsto.neg_mul_atBot theorem
{C : ๐•œ} (hC : C < 0) (hf : Tendsto f l (๐“ C)) (hg : Tendsto g l atBot) : Tendsto (fun x => f x * g x) l atTop
Full source
/-- In a linearly ordered field with the order topology, if `f` tends to a negative constant `C` and
`g` tends to `Filter.atBot` then `f * g` tends to `Filter.atTop`. -/
theorem Filter.Tendsto.neg_mul_atBot {C : ๐•œ} (hC : C < 0) (hf : Tendsto f l (๐“ C))
    (hg : Tendsto g l atBot) : Tendsto (fun x => f x * g x) l atTop := by
  simpa only [mul_comm] using hg.atBot_mul_neg hC hf
Product of a Negative Limit and a Function Tending to Negative Infinity Tends to Positive Infinity
Informal description
Let $\mathbb{K}$ be a linearly ordered field with the order topology, and let $f, g : \alpha \to \mathbb{K}$ be functions. If $f$ tends to a negative constant $C$ along a filter $l$ and $g$ tends to $-\infty$ along $l$, then the product function $x \mapsto f(x) \cdot g(x)$ tends to $+\infty$ along $l$.
inv_atTopโ‚€ theorem
: (atTop : Filter ๐•œ)โปยน = ๐“[>] 0
Full source
@[simp]
lemma inv_atTopโ‚€ : (atTop : Filter ๐•œ)โปยน = ๐“[>] 0 :=
  (((atTop_basis_Ioi' (0 : ๐•œ)).map _).comp_surjective inv_surjective).eq_of_same_basis <|
    (nhdsGT_basis _).congr (by simp) fun a ha โ†ฆ by simp [inv_Ioiโ‚€ (inv_pos.2 ha)]
Inverse of Positive Infinity Filter Equals Right Neighborhood at Zero
Informal description
The inverse of the filter `atTop` (representing limits tending to positive infinity) on a linearly ordered field $\mathbb{K}$ is equal to the right neighborhood filter at zero, i.e., $(atTop)^{-1} = \mathcal{N}_{>}(0)$.
inv_atBotโ‚€ theorem
: (atBot : Filter ๐•œ)โปยน = ๐“[<] 0
Full source
@[simp]
lemma inv_atBotโ‚€ : (atBot : Filter ๐•œ)โปยน = ๐“[<] 0 :=
  (((atBot_basis_Iio' (0 : ๐•œ)).map _).comp_surjective inv_surjective).eq_of_same_basis <|
    (nhdsLT_basis _).congr (by simp) fun a ha โ†ฆ by simp [inv_Iioโ‚€ (inv_neg''.2 ha)]
Inverse of Negative Infinity Filter Equals Left Neighborhood at Zero
Informal description
The inverse of the filter `atBot` (representing limits tending to negative infinity) on a linearly ordered field $\mathbb{K}$ is equal to the left neighborhood filter at zero, i.e., $(atBot)^{-1} = \mathcal{N}_{<}(0)$.
inv_nhdsGT_zero theorem
: (๐“[>] (0 : ๐•œ))โปยน = atTop
Full source
@[simp]
lemma inv_nhdsGT_zero : (๐“[>] (0 : ๐•œ))โปยน = atTop := by rw [โ† inv_atTopโ‚€, inv_inv]
Inverse of Right Neighborhood at Zero Equals Filter at Positive Infinity
Informal description
The inverse of the right neighborhood filter at zero in a linearly ordered field $\mathbb{K}$ is equal to the filter at positive infinity, i.e., $(\mathcal{N}_{>}(0))^{-1} = \text{atTop}$.
inv_nhdsLT_zero theorem
: (๐“[<] (0 : ๐•œ))โปยน = atBot
Full source
@[simp]
lemma inv_nhdsLT_zero : (๐“[<] (0 : ๐•œ))โปยน = atBot := by
  rw [โ† inv_atBotโ‚€, inv_inv]
Inverse of Left Neighborhood at Zero Equals Filter at Negative Infinity
Informal description
In a linearly ordered field $\mathbb{K}$ with the order topology, the inverse of the left neighborhood filter at zero is equal to the filter at negative infinity. That is, $(\mathcal{N}_{<}(0))^{-1} = \text{atBot}$.
tendsto_inv_nhdsGT_zero theorem
: Tendsto (fun x : ๐•œ => xโปยน) (๐“[>] (0 : ๐•œ)) atTop
Full source
/-- The function `x โ†ฆ xโปยน` tends to `+โˆž` on the right of `0`. -/
theorem tendsto_inv_nhdsGT_zero : Tendsto (fun x : ๐•œ => xโปยน) (๐“[>] (0 : ๐•œ)) atTop :=
  inv_nhdsGT_zero.le
Right Limit of Inverse at Zero: $\lim_{x \to 0^+} x^{-1} = +\infty$
Informal description
The function $x \mapsto x^{-1}$ tends to $+\infty$ as $x$ approaches $0$ from the right in a linearly ordered field $\mathbb{K}$ with the order topology. That is, for any neighborhood $V$ of $+\infty$ in $\mathbb{K}$, there exists a right neighborhood $U$ of $0$ such that for all $x \in U$ with $x > 0$, $x^{-1} \in V$.
tendsto_inv_atTop_nhdsGT_zero theorem
: Tendsto (fun r : ๐•œ => rโปยน) atTop (๐“[>] (0 : ๐•œ))
Full source
/-- The function `r โ†ฆ rโปยน` tends to `0` on the right as `r โ†’ +โˆž`. -/
theorem tendsto_inv_atTop_nhdsGT_zero : Tendsto (fun r : ๐•œ => rโปยน) atTop (๐“[>] (0 : ๐•œ)) :=
  inv_atTopโ‚€.le
Right Limit of Inverse at Infinity: $\lim_{r \to +\infty} r^{-1} = 0^+$
Informal description
The function $r \mapsto r^{-1}$ tends to $0$ from the right as $r$ tends to positive infinity in a linearly ordered field $\mathbb{K}$ with the order topology. That is, for any neighborhood $U$ of $0$ in $\mathbb{K}$ restricted to positive elements, there exists $M > 0$ such that for all $r > M$, $r^{-1} \in U$.
tendsto_inv_atTop_zero theorem
: Tendsto (fun r : ๐•œ => rโปยน) atTop (๐“ 0)
Full source
theorem tendsto_inv_atTop_zero : Tendsto (fun r : ๐•œ => rโปยน) atTop (๐“ 0) :=
  tendsto_inv_atTop_nhdsGT_zero.mono_right inf_le_left
Limit of Inverse at Infinity: $\lim_{r \to +\infty} r^{-1} = 0$
Informal description
The function $r \mapsto r^{-1}$ tends to $0$ as $r$ tends to positive infinity in a linearly ordered field $\mathbb{K}$ with the order topology. That is, for any neighborhood $U$ of $0$ in $\mathbb{K}$, there exists $M > 0$ such that for all $r > M$, $r^{-1} \in U$.
tendsto_inv_zero_atBot theorem
: Tendsto (fun x : ๐•œ => xโปยน) (๐“[<] (0 : ๐•œ)) atBot
Full source
/-- The function `x โ†ฆ xโปยน` tends to `-โˆž` on the left of `0`. -/
theorem tendsto_inv_zero_atBot : Tendsto (fun x : ๐•œ => xโปยน) (๐“[<] (0 : ๐•œ)) atBot :=
  inv_nhdsLT_zero.le
Left Limit of Inverse at Zero: $\lim_{x \to 0^-} \frac{1}{x} = -\infty$
Informal description
In a linearly ordered field $\mathbb{K}$ with the order topology, the function $x \mapsto x^{-1}$ tends to $-\infty$ as $x$ approaches $0$ from the left. That is, $\lim_{x \to 0^-} \frac{1}{x} = -\infty$.
tendsto_inv_atBot_zero' theorem
: Tendsto (fun r : ๐•œ => rโปยน) atBot (๐“[<] (0 : ๐•œ))
Full source
/-- The function `r โ†ฆ rโปยน` tends to `0` on the left as `r โ†’ -โˆž`. -/
theorem tendsto_inv_atBot_zero' : Tendsto (fun r : ๐•œ => rโปยน) atBot (๐“[<] (0 : ๐•œ)) :=
  inv_atBotโ‚€.le
Left Limit of Inverse at Negative Infinity: $\lim_{r \to -\infty} \frac{1}{r} = 0^-$
Informal description
The function $r \mapsto r^{-1}$ tends to $0$ from the left as $r$ tends to $-\infty$ in a linearly ordered field $\mathbb{K}$. That is, $\lim_{r \to -\infty} \frac{1}{r} = 0^-$.
tendsto_inv_atBot_zero theorem
: Tendsto (fun r : ๐•œ => rโปยน) atBot (๐“ 0)
Full source
theorem tendsto_inv_atBot_zero : Tendsto (fun r : ๐•œ => rโปยน) atBot (๐“ 0) :=
  tendsto_inv_atBot_zero'.mono_right inf_le_left
Limit of Inverse at Negative Infinity: $\lim_{r \to -\infty} \frac{1}{r} = 0$
Informal description
The function $r \mapsto r^{-1}$ tends to $0$ as $r$ tends to $-\infty$ in a linearly ordered field $\mathbb{K}$. That is, $\lim_{r \to -\infty} \frac{1}{r} = 0$.
Filter.Tendsto.div_atTop theorem
{a : ๐•œ} (h : Tendsto f l (๐“ a)) (hg : Tendsto g l atTop) : Tendsto (fun x => f x / g x) l (๐“ 0)
Full source
theorem Filter.Tendsto.div_atTop {a : ๐•œ} (h : Tendsto f l (๐“ a)) (hg : Tendsto g l atTop) :
    Tendsto (fun x => f x / g x) l (๐“ 0) := by
  simp only [div_eq_mul_inv]
  exact mul_zero a โ–ธ h.mul (tendsto_inv_atTop_zero.comp hg)
Limit of Quotient with Divergent Denominator: $\lim_{x \to l} \frac{f(x)}{g(x)} = 0$ when $f(x) \to a$ and $g(x) \to +\infty$
Informal description
Let $\mathbb{K}$ be a linearly ordered field with the order topology. Given functions $f, g : \alpha \to \mathbb{K}$ and a filter $l$ on $\alpha$, if $f$ tends to $a \in \mathbb{K}$ along $l$ and $g$ tends to $+\infty$ along $l$, then the function $x \mapsto f(x) / g(x)$ tends to $0$ along $l$. In symbols: \[ \left(f \underset{l}{\to} a \text{ and } g \underset{l}{\to} +\infty\right) \implies \left(\frac{f}{g} \underset{l}{\to} 0\right) \]
Filter.Tendsto.div_atBot theorem
{a : ๐•œ} (h : Tendsto f l (๐“ a)) (hg : Tendsto g l atBot) : Tendsto (fun x => f x / g x) l (๐“ 0)
Full source
theorem Filter.Tendsto.div_atBot {a : ๐•œ} (h : Tendsto f l (๐“ a)) (hg : Tendsto g l atBot) :
    Tendsto (fun x => f x / g x) l (๐“ 0) := by
  simp only [div_eq_mul_inv]
  exact mul_zero a โ–ธ h.mul (tendsto_inv_atBot_zero.comp hg)
Limit of Quotient with Divergent Denominator: $\lim_{x \to l} \frac{f(x)}{g(x)} = 0$ when $f(x) \to a$ and $g(x) \to -\infty$
Informal description
Let $\mathbb{K}$ be a linearly ordered field with the order topology. Given functions $f, g : \alpha \to \mathbb{K}$ and a filter $l$ on $\alpha$, if $f$ tends to $a \in \mathbb{K}$ along $l$ and $g$ tends to $-\infty$ along $l$, then the function $x \mapsto f(x) / g(x)$ tends to $0$ along $l$. In symbols: \[ \left(f \underset{l}{\to} a \text{ and } g \underset{l}{\to} -\infty\right) \implies \left(\frac{f}{g} \underset{l}{\to} 0\right) \]
Filter.Tendsto.const_div_atTop theorem
(hg : Tendsto g l atTop) (r : ๐•œ) : Tendsto (fun n โ†ฆ r / g n) l (๐“ 0)
Full source
lemma Filter.Tendsto.const_div_atTop (hg : Tendsto g l atTop) (r : ๐•œ)  :
    Tendsto (fun n โ†ฆ r / g n) l (๐“ 0) :=
  tendsto_const_nhds.div_atTop hg
Limit of Constant Divided by Divergent Function: $\frac{r}{g} \to 0$ as $g \to +\infty$
Informal description
Let $\mathbb{K}$ be a linearly ordered field with the order topology. Given a function $g : \alpha \to \mathbb{K}$ and a filter $l$ on $\alpha$, if $g$ tends to $+\infty$ along $l$, then for any constant $r \in \mathbb{K}$, the function $n \mapsto r / g(n)$ tends to $0$ along $l$. In symbols: \[ g \underset{l}{\to} +\infty \implies \left(\frac{r}{g} \underset{l}{\to} 0\right) \]
Filter.Tendsto.const_div_atBot theorem
(hg : Tendsto g l atBot) (r : ๐•œ) : Tendsto (fun n โ†ฆ r / g n) l (๐“ 0)
Full source
lemma Filter.Tendsto.const_div_atBot (hg : Tendsto g l atBot) (r : ๐•œ)  :
    Tendsto (fun n โ†ฆ r / g n) l (๐“ 0) :=
  tendsto_const_nhds.div_atBot hg
Limit of Constant Divided by Divergent Function: $\frac{r}{g} \to 0$ as $g \to -\infty$
Informal description
Let $\mathbb{K}$ be a linearly ordered field with the order topology. Given a function $g : \alpha \to \mathbb{K}$ and a filter $l$ on $\alpha$, if $g$ tends to $-\infty$ along $l$, then for any constant $r \in \mathbb{K}$, the function $n \mapsto r / g(n)$ tends to $0$ along $l$. In symbols: \[ g \underset{l}{\to} -\infty \implies \left(\frac{r}{g} \underset{l}{\to} 0\right) \]
Filter.Tendsto.inv_tendsto_atTop theorem
(h : Tendsto f l atTop) : Tendsto fโปยน l (๐“ 0)
Full source
theorem Filter.Tendsto.inv_tendsto_atTop (h : Tendsto f l atTop) : Tendsto fโปยน l (๐“ 0) :=
  tendsto_inv_atTop_zero.comp h
Limit of inverse function at infinity: $\lim_{x \to l} f(x) = +\infty \implies \lim_{x \to l} f(x)^{-1} = 0$
Informal description
Let $f$ be a function such that $f$ tends to positive infinity as its argument tends to some limit point (with respect to the filter $l$). Then the inverse function $f^{-1}$ tends to $0$ as the argument tends to the same limit point.
Filter.Tendsto.inv_tendsto_atBot theorem
(h : Tendsto f l atBot) : Tendsto fโปยน l (๐“ 0)
Full source
theorem Filter.Tendsto.inv_tendsto_atBot (h : Tendsto f l atBot) : Tendsto fโปยน l (๐“ 0) :=
  tendsto_inv_atBot_zero.comp h
Limit of reciprocal at negative infinity: $\lim_{x \to -\infty} f(x)^{-1} = 0$
Informal description
Let $f$ be a function from a type $\alpha$ to a linearly ordered field $\mathbb{K}$ with the order topology. If $f$ tends to $-\infty$ (i.e., $\lim_{x \to l} f(x) = -\infty$), then the reciprocal function $f^{-1}$ tends to $0$ (i.e., $\lim_{x \to l} f(x)^{-1} = 0$).
Filter.Tendsto.inv_tendsto_nhdsGT_zero theorem
(h : Tendsto f l (๐“[>] 0)) : Tendsto fโปยน l atTop
Full source
theorem Filter.Tendsto.inv_tendsto_nhdsGT_zero (h : Tendsto f l (๐“[>] 0)) : Tendsto fโปยน l atTop :=
  tendsto_inv_nhdsGT_zero.comp h
Right limit of reciprocal: $\lim_{x \to 0^+} f(x)^{-1} = +\infty$ when $\lim_{x \to l} f(x) = 0^+$
Informal description
Let $f$ be a function from a type $\alpha$ to a linearly ordered field $\mathbb{K}$ with the order topology. If $f$ tends to $0$ from the right (i.e., $\lim_{x \to l} f(x) = 0^+$), then the reciprocal function $f^{-1}$ tends to $+\infty$ (i.e., $\lim_{x \to l} f(x)^{-1} = +\infty$).
Filter.Tendsto.inv_tendsto_nhdsLT_zero theorem
(h : Tendsto f l (๐“[<] 0)) : Tendsto fโปยน l atBot
Full source
theorem Filter.Tendsto.inv_tendsto_nhdsLT_zero (h : Tendsto f l (๐“[<] 0)) : Tendsto fโปยน l atBot :=
  tendsto_inv_zero_atBot.comp h
Left limit of reciprocal: $\lim_{x \to 0^-} f(x)^{-1} = -\infty$ when $\lim_{x \to l} f(x) = 0^-$
Informal description
Let $\mathbb{K}$ be a linearly ordered field with the order topology, and let $f : \alpha \to \mathbb{K}$ be a function. If $f$ tends to $0$ from the left along a filter $l$ (i.e., $\lim_{x \to l} f(x) = 0^-$), then the reciprocal function $f^{-1}$ tends to $-\infty$ along $l$ (i.e., $\lim_{x \to l} f(x)^{-1} = -\infty$).
bdd_le_mul_tendsto_zero' theorem
{f g : ฮฑ โ†’ ๐•œ} (C : ๐•œ) (hf : โˆ€แถ  x in l, |f x| โ‰ค C) (hg : Tendsto g l (๐“ 0)) : Tendsto (fun x โ†ฆ f x * g x) l (๐“ 0)
Full source
/-- If `g` tends to zero and there exists a constant `C : ๐•œ` such that eventually `|f x| โ‰ค C`,
  then the product `f * g` tends to zero. -/
theorem bdd_le_mul_tendsto_zero' {f g : ฮฑ โ†’ ๐•œ} (C : ๐•œ) (hf : โˆ€แถ  x in l, |f x| โ‰ค C)
    (hg : Tendsto g l (๐“ 0)) : Tendsto (fun x โ†ฆ f x * g x) l (๐“ 0) := by
  rw [tendsto_zero_iff_abs_tendsto_zero]
  have hC : Tendsto (fun x โ†ฆ |C * g x|) l (๐“ 0) := by
    convert (hg.const_mul C).abs
    simp_rw [mul_zero, abs_zero]
  apply tendsto_of_tendsto_of_tendsto_of_le_of_le' tendsto_const_nhds hC
  ยท filter_upwards [hf] with x _ using abs_nonneg _
  ยท filter_upwards [hf] with x hx
    simp only [comp_apply, abs_mul]
    exact mul_le_mul_of_nonneg_right (hx.trans (le_abs_self C)) (abs_nonneg _)
Bounded function multiplied by zero-tending function tends to zero
Informal description
Let $\mathbb{K}$ be a linearly ordered field with order topology, and let $f, g : \alpha \to \mathbb{K}$ be functions. If there exists a constant $C \in \mathbb{K}$ such that eventually $|f(x)| \leq C$ for all $x$ in a filter $l$ on $\alpha$, and $g$ tends to $0$ along $l$, then the product function $f \cdot g$ tends to $0$ along $l$.
bdd_le_mul_tendsto_zero theorem
{f g : ฮฑ โ†’ ๐•œ} {b B : ๐•œ} (hb : โˆ€แถ  x in l, b โ‰ค f x) (hB : โˆ€แถ  x in l, f x โ‰ค B) (hg : Tendsto g l (๐“ 0)) : Tendsto (fun x โ†ฆ f x * g x) l (๐“ 0)
Full source
/-- If `g` tends to zero and there exist constants `b B : ๐•œ` such that eventually `b โ‰ค f x| โ‰ค B`,
  then the product `f * g` tends to zero. -/
theorem bdd_le_mul_tendsto_zero {f g : ฮฑ โ†’ ๐•œ} {b B : ๐•œ} (hb : โˆ€แถ  x in l, b โ‰ค f x)
    (hB : โˆ€แถ  x in l, f x โ‰ค B) (hg : Tendsto g l (๐“ 0)) :
    Tendsto (fun x โ†ฆ f x * g x) l (๐“ 0) := by
  set C := max |b| |B|
  have hbC : -C โ‰ค b := neg_le.mpr (le_max_of_le_left (neg_le_abs b))
  have hBC : B โ‰ค C := le_max_of_le_right (le_abs_self B)
  apply bdd_le_mul_tendsto_zero' C _ hg
  filter_upwards [hb, hB]
  exact fun x hbx hBx โ†ฆ abs_le.mpr โŸจhbC.trans hbx, hBx.trans hBCโŸฉ
Bounded function multiplied by zero-tending function tends to zero
Informal description
Let $\mathbb{K}$ be a linearly ordered field with order topology, and let $f, g : \alpha \to \mathbb{K}$ be functions. If there exist constants $b, B \in \mathbb{K}$ such that eventually $b \leq f(x) \leq B$ for all $x$ in a filter $l$ on $\alpha$, and $g$ tends to $0$ along $l$, then the product function $f \cdot g$ tends to $0$ along $l$.
tendsto_bdd_div_atTop_nhds_zero theorem
{f g : ฮฑ โ†’ ๐•œ} {b B : ๐•œ} (hb : โˆ€แถ  x in l, b โ‰ค f x) (hB : โˆ€แถ  x in l, f x โ‰ค B) (hg : Tendsto g l atTop) : Tendsto (fun x => f x / g x) l (๐“ 0)
Full source
/-- If `g` tends to `atTop` and there exist constants `b B : ๐•œ` such that eventually
  `b โ‰ค f x| โ‰ค B`, then the quotient `f / g` tends to zero. -/
theorem tendsto_bdd_div_atTop_nhds_zero {f g : ฮฑ โ†’ ๐•œ} {b B : ๐•œ}
    (hb : โˆ€แถ  x in l, b โ‰ค f x) (hB : โˆ€แถ  x in l, f x โ‰ค B) (hg : Tendsto g l atTop) :
    Tendsto (fun x => f x / g x) l (๐“ 0) := by
  simp only [div_eq_mul_inv]
  exact bdd_le_mul_tendsto_zero hb hB hg.inv_tendsto_atTop
Bounded function divided by infinity-tending function tends to zero
Informal description
Let $\mathbb{K}$ be a linearly ordered field with order topology, and let $f, g : \alpha \to \mathbb{K}$ be functions. If there exist constants $b, B \in \mathbb{K}$ such that eventually $b \leq f(x) \leq B$ for all $x$ in a filter $l$ on $\alpha$, and $g$ tends to $+\infty$ along $l$, then the quotient function $f / g$ tends to $0$ along $l$.
tendsto_pow_neg_atTop theorem
{n : โ„•} (hn : n โ‰  0) : Tendsto (fun x : ๐•œ => x ^ (-(n : โ„ค))) atTop (๐“ 0)
Full source
/-- The function `x^(-n)` tends to `0` at `+โˆž` for any positive natural `n`.
A version for positive real powers exists as `tendsto_rpow_neg_atTop`. -/
theorem tendsto_pow_neg_atTop {n : โ„•} (hn : n โ‰  0) :
    Tendsto (fun x : ๐•œ => x ^ (-(n : โ„ค))) atTop (๐“ 0) := by
  simpa only [zpow_neg, zpow_natCast] using (tendsto_pow_atTop (ฮฑ := ๐•œ) hn).inv_tendsto_atTop
Limit of Negative Power at Infinity: $x^{-n} \to 0$ as $x \to +\infty$ for $n > 0$
Informal description
For any positive natural number $n$, the function $x \mapsto x^{-n}$ tends to $0$ as $x$ tends to $+\infty$ in a linearly ordered field $\mathbb{K}$.
tendsto_zpow_atTop_zero theorem
{n : โ„ค} (hn : n < 0) : Tendsto (fun x : ๐•œ => x ^ n) atTop (๐“ 0)
Full source
theorem tendsto_zpow_atTop_zero {n : โ„ค} (hn : n < 0) :
    Tendsto (fun x : ๐•œ => x ^ n) atTop (๐“ 0) := by
  lift -n to โ„• using le_of_lt (neg_pos.mpr hn) with N h
  rw [โ† neg_pos, โ† h, Nat.cast_pos] at hn
  simpa only [h, neg_neg] using tendsto_pow_neg_atTop hn.ne'
Limit of Negative Integer Power at Infinity: $x^n \to 0$ as $x \to +\infty$ for $n < 0$
Informal description
For any negative integer $n$ and any linearly ordered field $\mathbb{K}$ with the order topology, the function $x \mapsto x^n$ tends to $0$ as $x$ tends to $+\infty$.
tendsto_const_mul_zpow_atTop_zero theorem
{n : โ„ค} {c : ๐•œ} (hn : n < 0) : Tendsto (fun x => c * x ^ n) atTop (๐“ 0)
Full source
theorem tendsto_const_mul_zpow_atTop_zero {n : โ„ค} {c : ๐•œ} (hn : n < 0) :
    Tendsto (fun x => c * x ^ n) atTop (๐“ 0) :=
  mul_zero c โ–ธ Filter.Tendsto.const_mul c (tendsto_zpow_atTop_zero hn)
Limit of $c \cdot x^n$ at infinity: $c \cdot x^n \to 0$ as $x \to +\infty$ for $n < 0$
Informal description
For any negative integer $n$ and any constant $c$ in a linearly ordered field $\mathbb{K}$ with the order topology, the function $x \mapsto c \cdot x^n$ tends to $0$ as $x$ tends to $+\infty$.
tendsto_const_mul_pow_nhds_iff' theorem
{n : โ„•} {c d : ๐•œ} : Tendsto (fun x : ๐•œ => c * x ^ n) atTop (๐“ d) โ†” (c = 0 โˆจ n = 0) โˆง c = d
Full source
theorem tendsto_const_mul_pow_nhds_iff' {n : โ„•} {c d : ๐•œ} :
    TendstoTendsto (fun x : ๐•œ => c * x ^ n) atTop (๐“ d) โ†” (c = 0 โˆจ n = 0) โˆง c = d := by
  rcases eq_or_ne n 0 with (rfl | hn)
  ยท simp [tendsto_const_nhds_iff]
  rcases lt_trichotomy c 0 with (hc | rfl | hc)
  ยท have := tendsto_const_mul_pow_atBot_iff.2 โŸจhn, hcโŸฉ
    simp [not_tendsto_nhds_of_tendsto_atBot this, hc.ne, hn]
  ยท simp [tendsto_const_nhds_iff]
  ยท have := tendsto_const_mul_pow_atTop_iff.2 โŸจhn, hcโŸฉ
    simp [not_tendsto_nhds_of_tendsto_atTop this, hc.ne', hn]
Limit of $c \cdot x^n$ at Infinity is $d$ iff ($c = 0$ or $n = 0$) and $c = d$
Informal description
Let $\mathbb{K}$ be a linearly ordered field with the order topology, and let $c, d \in \mathbb{K}$. For any natural number $n$, the function $f(x) = c \cdot x^n$ tends to $d$ as $x$ tends to infinity if and only if either $c = 0$ or $n = 0$, and $c = d$.
tendsto_const_mul_pow_nhds_iff theorem
{n : โ„•} {c d : ๐•œ} (hc : c โ‰  0) : Tendsto (fun x : ๐•œ => c * x ^ n) atTop (๐“ d) โ†” n = 0 โˆง c = d
Full source
theorem tendsto_const_mul_pow_nhds_iff {n : โ„•} {c d : ๐•œ} (hc : c โ‰  0) :
    TendstoTendsto (fun x : ๐•œ => c * x ^ n) atTop (๐“ d) โ†” n = 0 โˆง c = d := by
  simp [tendsto_const_mul_pow_nhds_iff', hc]
Limit of $c \cdot x^n$ at Infinity is $d$ iff $n=0$ and $c=d$
Informal description
Let $\mathbb{K}$ be a linearly ordered field with the order topology, and let $c, d \in \mathbb{K}$ with $c \neq 0$. For any natural number $n$, the function $f(x) = c \cdot x^n$ tends to $d$ as $x$ tends to infinity if and only if $n = 0$ and $c = d$.
tendsto_const_mul_zpow_atTop_nhds_iff theorem
{n : โ„ค} {c d : ๐•œ} (hc : c โ‰  0) : Tendsto (fun x : ๐•œ => c * x ^ n) atTop (๐“ d) โ†” n = 0 โˆง c = d โˆจ n < 0 โˆง d = 0
Full source
theorem tendsto_const_mul_zpow_atTop_nhds_iff {n : โ„ค} {c d : ๐•œ} (hc : c โ‰  0) :
    TendstoTendsto (fun x : ๐•œ => c * x ^ n) atTop (๐“ d) โ†” n = 0 โˆง c = d โˆจ n < 0 โˆง d = 0 := by
  refine โŸจfun h => ?_, fun h => ?_โŸฉ
  ยท cases n with
    | ofNat n =>
      left
      simpa [tendsto_const_mul_pow_nhds_iff hc] using h
    | negSucc n =>
      have hn := Int.negSucc_lt_zero n
      exact Or.inr โŸจhn, tendsto_nhds_unique h (tendsto_const_mul_zpow_atTop_zero hn)โŸฉ
  ยท rcases h with h | h
    ยท simp only [h.left, h.right, zpow_zero, mul_one]
      exact tendsto_const_nhds
    ยท exact h.2.symm โ–ธ tendsto_const_mul_zpow_atTop_zero h.1
Limit of $c \cdot x^n$ at Infinity: $c \cdot x^n \to d$ iff ($n=0$ and $c=d$) or ($n<0$ and $d=0$)
Informal description
Let $\mathbb{K}$ be a linearly ordered field with the order topology, and let $c, d \in \mathbb{K}$ with $c \neq 0$. For any integer $n$, the function $f(x) = c \cdot x^n$ tends to $d$ as $x$ tends to infinity if and only if either: 1. $n = 0$ and $c = d$, or 2. $n < 0$ and $d = 0$.
IsStrictOrderedRing.toHasContinuousInvโ‚€ instance
{๐•œ} [Semifield ๐•œ] [LinearOrder ๐•œ] [IsStrictOrderedRing ๐•œ] [TopologicalSpace ๐•œ] [OrderTopology ๐•œ] [ContinuousMul ๐•œ] : HasContinuousInvโ‚€ ๐•œ
Full source
instance (priority := 100) IsStrictOrderedRing.toHasContinuousInvโ‚€ {๐•œ}
    [Semifield ๐•œ] [LinearOrder ๐•œ] [IsStrictOrderedRing ๐•œ]
    [TopologicalSpace ๐•œ] [OrderTopology ๐•œ] [ContinuousMul ๐•œ] :
    HasContinuousInvโ‚€ ๐•œ := .of_nhds_one <| tendsto_order.2 <| by
  refine โŸจfun x hx => ?_, fun x hx => ?_โŸฉ
  ยท obtain โŸจx', hโ‚€, hxx', hโ‚โŸฉ : โˆƒ x', 0 < x' โˆง x โ‰ค x' โˆง x' < 1 :=
      โŸจmax x (1 / 2), one_half_pos.trans_le (le_max_right _ _), le_max_left _ _,
        max_lt hx one_half_lt_oneโŸฉ
    filter_upwards [Ioo_mem_nhds one_pos ((one_lt_invโ‚€ hโ‚€).2 hโ‚)] with y hy
    exact hxx'.trans_lt <| lt_inv_of_lt_invโ‚€ hy.1 hy.2
  ยท filter_upwards [Ioi_mem_nhds (inv_lt_one_of_one_ltโ‚€ hx)] with y hy
    exact inv_lt_of_inv_ltโ‚€ (by positivity) hy
Continuity of Inversion in Strictly Ordered Semifields
Informal description
For any linearly ordered semifield $\mathbb{K}$ with a strict ordered ring structure and the order topology, if multiplication is continuous, then the inversion operation $x \mapsto x^{-1}$ is continuous at all nonzero points.
IsStrictOrderedRing.toIsTopologicalDivisionRing instance
: IsTopologicalDivisionRing ๐•œ
Full source
instance (priority := 100) IsStrictOrderedRing.toIsTopologicalDivisionRing :
    IsTopologicalDivisionRing ๐•œ := โŸจโŸฉ
Strictly Ordered Semifields as Topological Division Rings
Informal description
Every strictly ordered semifield $\mathbb{K}$ with the order topology is a topological division ring, meaning that the operations of addition, multiplication, and inversion (away from zero) are continuous with respect to the order topology.
comap_mulLeft_nhdsGT_zero theorem
{x : ๐•œ} (hx : 0 < x) : comap (x * ยท) (๐“[>] 0) = ๐“[>] 0
Full source
theorem comap_mulLeft_nhdsGT_zero {x : ๐•œ} (hx : 0 < x) : comap (x * ยท) (๐“[>] 0) = ๐“[>] 0 := by
  rw [nhdsWithin, comap_inf, comap_principal, preimage_const_mul_Ioi _ hx, zero_div]
  congr 1
  refine ((Homeomorph.mulLeftโ‚€ x hx.ne').comap_nhds_eq _).trans ?_
  simp
Preimage of Right-Neighborhood Filter at Zero under Positive Scaling Equals Itself
Informal description
For any positive element $x$ in a linearly ordered semifield $\mathbb{K}$ with the order topology, the preimage of the right-neighborhood filter at zero under the left multiplication map $y \mapsto x \cdot y$ is equal to the right-neighborhood filter at zero itself. That is, $$(x \cdot )^{-1}(\mathcal{N}_{>0}) = \mathcal{N}_{>0}.$$
eventually_nhdsGT_zero_mul_left theorem
{x : ๐•œ} (hx : 0 < x) {p : ๐•œ โ†’ Prop} (h : โˆ€แถ  ฮต in ๐“[>] 0, p ฮต) : โˆ€แถ  ฮต in ๐“[>] 0, p (x * ฮต)
Full source
theorem eventually_nhdsGT_zero_mul_left {x : ๐•œ} (hx : 0 < x) {p : ๐•œ โ†’ Prop}
    (h : โˆ€แถ  ฮต in ๐“[>] 0, p ฮต) : โˆ€แถ  ฮต in ๐“[>] 0, p (x * ฮต) := by
  rw [โ† comap_mulLeft_nhdsGT_zero hx]
  exact h.comap fun ฮต => x * ฮต
Preservation of Eventual Properties under Positive Scaling in Right-Neighborhood Filter at Zero
Informal description
Let $\mathbb{K}$ be a linearly ordered semifield with the order topology. For any positive element $x \in \mathbb{K}$ and any predicate $p : \mathbb{K} \to \text{Prop}$, if $p$ holds eventually in the right-neighborhood filter at zero $\mathcal{N}_{>0}$, then the predicate $p$ also holds eventually in $\mathcal{N}_{>0}$ when composed with the left multiplication map $y \mapsto x \cdot y$. That is, if $\forallแถ  \varepsilon \text{ in } \mathcal{N}_{>0}, p(\varepsilon)$, then $\forallแถ  \varepsilon \text{ in } \mathcal{N}_{>0}, p(x \cdot \varepsilon)$.