Module docstring
{"# Convergence to ±infinity in ordered commutative groups "}
{"# Convergence to ±infinity in ordered commutative groups "}
Filter.tendsto_atTop_mul_left_of_le'
theorem
(C : G) (hf : ∀ᶠ x in l, C ≤ f x) (hg : Tendsto g l atTop) : Tendsto (fun x => f x * g x) l atTop
@[to_additive]
theorem tendsto_atTop_mul_left_of_le' (C : G) (hf : ∀ᶠ x in l, C ≤ f x) (hg : Tendsto g l atTop) :
Tendsto (fun x => f x * g x) l atTop :=
.atTop_of_isBoundedUnder_le_mul (f := f⁻¹) ⟨C⁻¹, by simpa⟩ (by simpa)
Filter.tendsto_atBot_mul_left_of_ge'
theorem
(C : G) (hf : ∀ᶠ x in l, f x ≤ C) (hg : Tendsto g l atBot) : Tendsto (fun x => f x * g x) l atBot
@[to_additive]
theorem tendsto_atBot_mul_left_of_ge' (C : G) (hf : ∀ᶠ x in l, f x ≤ C) (hg : Tendsto g l atBot) :
Tendsto (fun x => f x * g x) l atBot :=
tendsto_atTop_mul_left_of_le' (G := Gᵒᵈ) _ C hf hg
Filter.tendsto_atTop_mul_left_of_le
theorem
(C : G) (hf : ∀ x, C ≤ f x) (hg : Tendsto g l atTop) : Tendsto (fun x => f x * g x) l atTop
@[to_additive]
theorem tendsto_atTop_mul_left_of_le (C : G) (hf : ∀ x, C ≤ f x) (hg : Tendsto g l atTop) :
Tendsto (fun x => f x * g x) l atTop :=
tendsto_atTop_mul_left_of_le' l C (univ_mem' hf) hg
Filter.tendsto_atBot_mul_left_of_ge
theorem
(C : G) (hf : ∀ x, f x ≤ C) (hg : Tendsto g l atBot) : Tendsto (fun x => f x * g x) l atBot
@[to_additive]
theorem tendsto_atBot_mul_left_of_ge (C : G) (hf : ∀ x, f x ≤ C) (hg : Tendsto g l atBot) :
Tendsto (fun x => f x * g x) l atBot :=
tendsto_atTop_mul_left_of_le (G := Gᵒᵈ) _ C hf hg
Filter.tendsto_atTop_mul_right_of_le'
theorem
(C : G) (hf : Tendsto f l atTop) (hg : ∀ᶠ x in l, C ≤ g x) : Tendsto (fun x => f x * g x) l atTop
@[to_additive]
theorem tendsto_atTop_mul_right_of_le' (C : G) (hf : Tendsto f l atTop) (hg : ∀ᶠ x in l, C ≤ g x) :
Tendsto (fun x => f x * g x) l atTop :=
.atTop_of_mul_isBoundedUnder_le (g := g⁻¹) ⟨C⁻¹, by simpa⟩ (by simpa)
Filter.tendsto_atBot_mul_right_of_ge'
theorem
(C : G) (hf : Tendsto f l atBot) (hg : ∀ᶠ x in l, g x ≤ C) : Tendsto (fun x => f x * g x) l atBot
@[to_additive]
theorem tendsto_atBot_mul_right_of_ge' (C : G) (hf : Tendsto f l atBot) (hg : ∀ᶠ x in l, g x ≤ C) :
Tendsto (fun x => f x * g x) l atBot :=
tendsto_atTop_mul_right_of_le' (G := Gᵒᵈ) _ C hf hg
Filter.tendsto_atTop_mul_right_of_le
theorem
(C : G) (hf : Tendsto f l atTop) (hg : ∀ x, C ≤ g x) : Tendsto (fun x => f x * g x) l atTop
@[to_additive]
theorem tendsto_atTop_mul_right_of_le (C : G) (hf : Tendsto f l atTop) (hg : ∀ x, C ≤ g x) :
Tendsto (fun x => f x * g x) l atTop :=
tendsto_atTop_mul_right_of_le' l C hf (univ_mem' hg)
Filter.tendsto_atBot_mul_right_of_ge
theorem
(C : G) (hf : Tendsto f l atBot) (hg : ∀ x, g x ≤ C) : Tendsto (fun x => f x * g x) l atBot
@[to_additive]
theorem tendsto_atBot_mul_right_of_ge (C : G) (hf : Tendsto f l atBot) (hg : ∀ x, g x ≤ C) :
Tendsto (fun x => f x * g x) l atBot :=
tendsto_atTop_mul_right_of_le (G := Gᵒᵈ) _ C hf hg
Filter.tendsto_atTop_mul_const_left
theorem
(C : G) (hf : Tendsto f l atTop) : Tendsto (fun x => C * f x) l atTop
@[to_additive]
theorem tendsto_atTop_mul_const_left (C : G) (hf : Tendsto f l atTop) :
Tendsto (fun x => C * f x) l atTop :=
tendsto_atTop_mul_left_of_le' l C (univ_mem' fun _ => le_refl C) hf
Filter.tendsto_atBot_mul_const_left
theorem
(C : G) (hf : Tendsto f l atBot) : Tendsto (fun x => C * f x) l atBot
@[to_additive]
theorem tendsto_atBot_mul_const_left (C : G) (hf : Tendsto f l atBot) :
Tendsto (fun x => C * f x) l atBot :=
tendsto_atTop_mul_const_left (G := Gᵒᵈ) _ C hf
Filter.tendsto_atTop_mul_const_right
theorem
(C : G) (hf : Tendsto f l atTop) : Tendsto (fun x => f x * C) l atTop
@[to_additive]
theorem tendsto_atTop_mul_const_right (C : G) (hf : Tendsto f l atTop) :
Tendsto (fun x => f x * C) l atTop :=
tendsto_atTop_mul_right_of_le' l C hf (univ_mem' fun _ => le_refl C)
Filter.tendsto_atBot_mul_const_right
theorem
(C : G) (hf : Tendsto f l atBot) : Tendsto (fun x => f x * C) l atBot
@[to_additive]
theorem tendsto_atBot_mul_const_right (C : G) (hf : Tendsto f l atBot) :
Tendsto (fun x => f x * C) l atBot :=
tendsto_atTop_mul_const_right (G := Gᵒᵈ) _ C hf
Filter.map_inv_atBot
theorem
: map (Inv.inv : G → G) atBot = atTop
@[to_additive]
theorem map_inv_atBot : map (Inv.inv : G → G) atBot = atTop :=
(OrderIso.inv G).map_atBot
Filter.map_inv_atTop
theorem
: map (Inv.inv : G → G) atTop = atBot
@[to_additive]
theorem map_inv_atTop : map (Inv.inv : G → G) atTop = atBot :=
(OrderIso.inv G).map_atTop
Filter.comap_inv_atBot
theorem
: comap (Inv.inv : G → G) atBot = atTop
@[to_additive]
theorem comap_inv_atBot : comap (Inv.inv : G → G) atBot = atTop :=
(OrderIso.inv G).comap_atTop
Filter.comap_inv_atTop
theorem
: comap (Inv.inv : G → G) atTop = atBot
@[to_additive]
theorem comap_inv_atTop : comap (Inv.inv : G → G) atTop = atBot :=
(OrderIso.inv G).comap_atBot
Filter.tendsto_inv_atTop_atBot
theorem
: Tendsto (Inv.inv : G → G) atTop atBot
@[to_additive]
theorem tendsto_inv_atTop_atBot : Tendsto (Inv.inv : G → G) atTop atBot :=
(OrderIso.inv G).tendsto_atTop
Filter.tendsto_inv_atBot_atTop
theorem
: Tendsto (Inv.inv : G → G) atBot atTop
@[to_additive]
theorem tendsto_inv_atBot_atTop : Tendsto (Inv.inv : G → G) atBot atTop :=
tendsto_inv_atTop_atBot (G := Gᵒᵈ)
Filter.tendsto_inv_atTop_iff
theorem
: Tendsto (fun x => (f x)⁻¹) l atTop ↔ Tendsto f l atBot
@[to_additive (attr := simp)]
theorem tendsto_inv_atTop_iff : TendstoTendsto (fun x => (f x)⁻¹) l atTop ↔ Tendsto f l atBot :=
(OrderIso.inv G).tendsto_atBot_iff
Filter.tendsto_inv_atBot_iff
theorem
: Tendsto (fun x => (f x)⁻¹) l atBot ↔ Tendsto f l atTop
@[to_additive (attr := simp)]
theorem tendsto_inv_atBot_iff : TendstoTendsto (fun x => (f x)⁻¹) l atBot ↔ Tendsto f l atTop :=
(OrderIso.inv G).tendsto_atTop_iff
Filter.tendsto_mabs_atTop_atTop
theorem
: Tendsto (mabs : G → G) atTop atTop
/-- $\lim_{x\to+\infty}|x|_m=+\infty$ -/
@[to_additive r"$\lim_{x\to+\infty}|x|=+\infty$"]
theorem tendsto_mabs_atTop_atTop : Tendsto (mabs : G → G) atTop atTop :=
tendsto_atTop_mono le_mabs_self tendsto_id
Filter.tendsto_mabs_atBot_atTop
theorem
[IsOrderedMonoid G] : Tendsto (mabs : G → G) atBot atTop
/-- $\lim_{x\to\infty^{-1}|x|_m=+\infty$ -/
@[to_additive r"$\lim_{x\to-\infty}|x|=+\infty$"]
theorem tendsto_mabs_atBot_atTop [IsOrderedMonoid G] : Tendsto (mabs : G → G) atBot atTop :=
tendsto_atTop_mono inv_le_mabs tendsto_inv_atBot_atTop
Filter.comap_mabs_atTop
theorem
[IsOrderedMonoid G] : comap (mabs : G → G) atTop = atBot ⊔ atTop
@[to_additive (attr := simp)]
theorem comap_mabs_atTop [IsOrderedMonoid G] : comap (mabs : G → G) atTop = atBotatBot ⊔ atTop := by
refine
le_antisymm (((atTop_basis.comap _).le_basis_iff (atBot_basis.sup atTop_basis)).2 ?_)
(sup_le tendsto_mabs_atBot_atTop.le_comap tendsto_mabs_atTop_atTop.le_comap)
rintro ⟨a, b⟩ -
refine ⟨max (a⁻¹) b, trivial, fun x hx => ?_⟩
rw [mem_preimage, mem_Ici, le_mabs', max_le_iff, ← min_inv_inv', le_min_iff, inv_inv] at hx
exact hx.imp And.left And.right