Module docstring
{"# Inverse and multiplication as order isomorphisms in ordered groups
"}
{"# Inverse and multiplication as order isomorphisms in ordered groups
"}
OrderIso.inv
definition
: α ≃o αᵒᵈ
/-- `x ↦ x⁻¹` as an order-reversing equivalence. -/
@[to_additive (attr := simps!) "`x ↦ -x` as an order-reversing equivalence."]
def OrderIso.inv : α ≃o αᵒᵈ where
toEquiv := (Equiv.inv α).trans OrderDual.toDual
map_rel_iff' {_ _} := inv_le_inv_iff (α := α)
inv_le'
theorem
: a⁻¹ ≤ b ↔ b⁻¹ ≤ a
@[to_additive neg_le]
theorem inv_le' : a⁻¹a⁻¹ ≤ b ↔ b⁻¹ ≤ a :=
(OrderIso.inv α).symm_apply_le
le_inv'
theorem
: a ≤ b⁻¹ ↔ b ≤ a⁻¹
@[to_additive le_neg]
theorem le_inv' : a ≤ b⁻¹ ↔ b ≤ a⁻¹ :=
(OrderIso.inv α).le_symm_apply
OrderIso.divLeft
definition
(a : α) : α ≃o αᵒᵈ
/-- `x ↦ a / x` as an order-reversing equivalence. -/
@[to_additive (attr := simps!) "`x ↦ a - x` as an order-reversing equivalence."]
def OrderIso.divLeft (a : α) : α ≃o αᵒᵈ where
toEquiv := (Equiv.divLeft a).trans OrderDual.toDual
map_rel_iff' {_ _} := div_le_div_iff_left (α := α) _
OrderIso.mulRight
definition
(a : α) : α ≃o α
/-- `Equiv.mulRight` as an `OrderIso`. See also `OrderEmbedding.mulRight`. -/
@[to_additive (attr := simps! +simpRhs toEquiv apply)
"`Equiv.addRight` as an `OrderIso`. See also `OrderEmbedding.addRight`."]
def OrderIso.mulRight (a : α) : α ≃o α where
map_rel_iff' {_ _} := mul_le_mul_iff_right a
toEquiv := Equiv.mulRight a
OrderIso.mulRight_symm
theorem
(a : α) : (OrderIso.mulRight a).symm = OrderIso.mulRight a⁻¹
@[to_additive (attr := simp)]
theorem OrderIso.mulRight_symm (a : α) : (OrderIso.mulRight a).symm = OrderIso.mulRight a⁻¹ := by
ext x
rfl
OrderIso.divRight
definition
(a : α) : α ≃o α
/-- `x ↦ x / a` as an order isomorphism. -/
@[to_additive (attr := simps!) "`x ↦ x - a` as an order isomorphism."]
def OrderIso.divRight (a : α) : α ≃o α where
toEquiv := Equiv.divRight a
map_rel_iff' {_ _} := div_le_div_iff_right a
OrderIso.mulLeft
definition
(a : α) : α ≃o α
/-- `Equiv.mulLeft` as an `OrderIso`. See also `OrderEmbedding.mulLeft`. -/
@[to_additive (attr := simps! +simpRhs toEquiv apply)
"`Equiv.addLeft` as an `OrderIso`. See also `OrderEmbedding.addLeft`."]
def OrderIso.mulLeft (a : α) : α ≃o α where
map_rel_iff' {_ _} := mul_le_mul_iff_left a
toEquiv := Equiv.mulLeft a
OrderIso.mulLeft_symm
theorem
(a : α) : (OrderIso.mulLeft a).symm = OrderIso.mulLeft a⁻¹
@[to_additive (attr := simp)]
theorem OrderIso.mulLeft_symm (a : α) : (OrderIso.mulLeft a).symm = OrderIso.mulLeft a⁻¹ := by
ext x
rfl