Module docstring
{"# Simple Modules
Main Definitions
IsSimpleModuleindicates that a module has no proper submodules (the only submodules are⊥and⊤).IsSemisimpleModuleindicates that every submodule has a complement, or equivalently, the module is a direct sum of simple modules.- A 
DivisionRingstructure on the endomorphism ring of a simple module. 
Main Results
- Schur's Lemma: 
bijective_or_eq_zeroshows that a linear map between simple modules is either bijective or 0, leading to aDivisionRingstructure on the endomorphism ring. isSimpleModule_iff_quot_maximal: a module is simple iff it's isomorphic to the quotient of the ring by a maximal left ideal.sSup_simples_eq_top_iff_isSemisimpleModule: a module is semisimple iff it is generated by its simple submodules.IsSemisimpleModule.annihilator_isRadical: the annihilator of a semisimple module over a commutative ring is a radical ideal.IsSemisimpleModule.submodule,IsSemisimpleModule.quotient: any submodule or quotient module of a semisimple module is semisimple.isSemisimpleModule_of_isSemisimpleModule_submodule: a module generated by semisimple submodules is itself semisimple.IsSemisimpleRing.isSemisimpleModule: every module over a semisimple ring is semisimple.instIsSemisimpleRingForAllRing: a finite product of semisimple rings is semisimple.RingHom.isSemisimpleRing_of_surjective: any quotient of a semisimple ring is semisimple.
TODO
- Artin-Wedderburn Theory
 - Unify with the work on Schur's Lemma in a category theory context
 
"}