Module docstring
{"# Supremum independence
In this file, we define supremum independence of indexed sets. An indexed family f : ι → α is
sup-independent if, for all a, f a and the supremum of the rest are disjoint.
Main definitions
Finset.SupIndep s f: a family of elementsfare supremum independent on the finite sets.sSupIndep s: a set of elements are supremum independent.iSupIndep f: a family of elements are supremum independent.
Main statements
- In a distributive lattice, supremum independence is equivalent to pairwise disjointness:
Finset.supIndep_iff_pairwiseDisjointCompleteLattice.sSupIndep_iff_pairwiseDisjointCompleteLattice.iSupIndep_iff_pairwiseDisjoint
- Otherwise, supremum independence is stronger than pairwise disjointness:
Finset.SupIndep.pairwiseDisjointsSupIndep.pairwiseDisjointiSupIndep.pairwiseDisjoint
Implementation notes
For the finite version, we avoid the \"obvious\" definition
∀ i ∈ s, Disjoint (f i) ((s.erase i).sup f) because erase would require decidable equality on
ι.
","### On lattices with a bottom element, via Finset.sup ","### On complete lattices via sSup "}