doc-next-gen

Mathlib.Analysis.Convex.EGauge

Module docstring

{"# The Minkowski functional, normed field version

In this file we define (egauge π•œ s Β·) to be the Minkowski functional (gauge) of the set s in a topological vector space E over a normed field π•œ, as a function E β†’ ℝβ‰₯0∞.

It is defined as the infimum of the norms of c : π•œ such that x ∈ c β€’ s. In particular, for π•œ = ℝβ‰₯0 this definition gives an ℝβ‰₯0∞-valued version of gauge defined in Mathlib/Analysis/Convex/Gauge.lean.

This definition can be used to generalize the notion of FrΓ©chet derivative to maps between topological vector spaces without norms.

Currently, we can't reuse results about egauge for gauge, because we lack a theory of normed semifields. "}

egauge definition
(π•œ : Type*) [ENorm π•œ] {E : Type*} [SMul π•œ E] (s : Set E) (x : E) : ℝβ‰₯0∞
Full source
/-- The Minkowski functional for vector spaces over normed fields.
Given a set `s` in a vector space over a normed field `π•œ`,
`egauge s` is the functional which sends `x : E`
to the infimum of `β€–cβ€–β‚‘` over `c` such that `x` belongs to `s` scaled by `c`.

The definition only requires `π•œ` to have a `ENorm` instance
and `(Β· β€’ Β·) : π•œ β†’ E β†’ E` to be defined.
This way the definition applies, e.g., to `π•œ = ℝβ‰₯0`.
For `π•œ = ℝβ‰₯0`, the function is equal (up to conversion to `ℝ`)
to the usual Minkowski functional defined in `gauge`. -/
noncomputable def egauge (π•œ : Type*) [ENorm π•œ] {E : Type*} [SMul π•œ E] (s : Set E) (x : E) : ℝβ‰₯0∞ :=
  β¨… (c : π•œ) (_ : x ∈ c β€’ s), β€–cβ€–β‚‘
Minkowski functional for normed fields
Informal description
Given a normed field $\mathbb{K}$ with an extended norm $\|\cdot\|_e$, a vector space $E$ over $\mathbb{K}$ with a scalar multiplication operation, and a subset $s \subseteq E$, the Minkowski functional (or gauge) $\text{egauge}_{\mathbb{K}}(s, x)$ of $s$ at a point $x \in E$ is defined as the infimum of the extended norms $\|c\|_e$ over all $c \in \mathbb{K}$ such that $x$ belongs to the scaled set $c \cdot s$. In other words: \[ \text{egauge}_{\mathbb{K}}(s, x) = \inf \{\|c\|_e \mid c \in \mathbb{K}, x \in c \cdot s\} \] This functional generalizes the notion of the Minkowski functional to vector spaces over normed fields, including cases like $\mathbb{K} = \mathbb{R}_{\geq 0}$. The result takes values in the extended non-negative real numbers $\mathbb{R}_{\geq 0} \cup \{\infty\}$.
Set.MapsTo.egauge_le theorem
{E' F : Type*} [SMul π•œ E'] [FunLike F E E'] [MulActionHomClass F π•œ E E'] (f : F) {t : Set E'} (h : MapsTo f s t) (x : E) : egauge π•œ t (f x) ≀ egauge π•œ s x
Full source
lemma Set.MapsTo.egauge_le {E' F : Type*} [SMul π•œ E'] [FunLike F E E'] [MulActionHomClass F π•œ E E']
    (f : F) {t : Set E'} (h : MapsTo f s t) (x : E) : egauge π•œ t (f x) ≀ egauge π•œ s x :=
  iInf_mono fun c ↦ iInf_mono' fun hc ↦ ⟨h.smul_set c hc, le_rfl⟩
Minkowski Functional Inequality under Equivariant Maps: $\text{egauge}_{\mathbb{K}}(t, f(x)) \leq \text{egauge}_{\mathbb{K}}(s, x)$
Informal description
Let $\mathbb{K}$ be a normed field with an extended norm, and let $E$ and $E'$ be vector spaces over $\mathbb{K}$ with scalar multiplication operations. Let $F$ be a type of $\mathbb{K}$-equivariant maps from $E$ to $E'$, and let $f \in F$ be such that $f$ maps a subset $s \subseteq E$ into a subset $t \subseteq E'$. Then, for any $x \in E$, the Minkowski functional of $t$ at $f(x)$ is less than or equal to the Minkowski functional of $s$ at $x$, i.e., \[ \text{egauge}_{\mathbb{K}}(t, f(x)) \leq \text{egauge}_{\mathbb{K}}(s, x). \]
egauge_anti theorem
(h : s βŠ† t) (x : E) : egauge π•œ t x ≀ egauge π•œ s x
Full source
@[mono, gcongr]
lemma egauge_anti (h : s βŠ† t) (x : E) : egauge π•œ t x ≀ egauge π•œ s x :=
  MapsTo.egauge_le _ (MulActionHom.id ..) h _
Monotonicity of Minkowski Functional: $\text{egauge}_{\mathbb{K}}(t, x) \leq \text{egauge}_{\mathbb{K}}(s, x)$ for $s \subseteq t$
Informal description
For any subsets $s$ and $t$ of a vector space $E$ over a normed field $\mathbb{K}$ with $s \subseteq t$, and for any point $x \in E$, the Minkowski functional of $t$ at $x$ is less than or equal to the Minkowski functional of $s$ at $x$, i.e., \[ \text{egauge}_{\mathbb{K}}(t, x) \leq \text{egauge}_{\mathbb{K}}(s, x). \]
egauge_empty theorem
(x : E) : egauge π•œ βˆ… x = ∞
Full source
@[simp] lemma egauge_empty (x : E) : egauge π•œ βˆ… x = ∞ := by simp [egauge]
Minkowski Functional of Empty Set is Infinity
Informal description
For any vector space $E$ over a normed field $\mathbb{K}$ and any point $x \in E$, the Minkowski functional of the empty set $\emptyset$ evaluated at $x$ is equal to infinity, i.e., \[ \text{egauge}_{\mathbb{K}}(\emptyset, x) = \infty. \]
egauge_le_of_mem_smul theorem
(h : x ∈ c β€’ s) : egauge π•œ s x ≀ β€–cβ€–β‚‘
Full source
lemma egauge_le_of_mem_smul (h : x ∈ c β€’ s) : egauge π•œ s x ≀ β€–cβ€–β‚‘ := iInfβ‚‚_le c h
Upper Bound for Minkowski Functional via Scaled Set Membership
Informal description
For any element $x$ in a vector space $E$ over a normed field $\mathbb{K}$ with extended norm $\|\cdot\|_e$, if $x$ belongs to the scaled set $c \cdot s$ for some $c \in \mathbb{K}$ and subset $s \subseteq E$, then the Minkowski functional (gauge) of $s$ at $x$ satisfies $\text{egauge}_{\mathbb{K}}(s, x) \leq \|c\|_e$.
le_egauge_iff theorem
: r ≀ egauge π•œ s x ↔ βˆ€ c : π•œ, x ∈ c β€’ s β†’ r ≀ β€–cβ€–β‚‘
Full source
lemma le_egauge_iff : r ≀ egauge π•œ s x ↔ βˆ€ c : π•œ, x ∈ c β€’ s β†’ r ≀ β€–cβ€–β‚‘ := le_iInfβ‚‚_iff
Characterization of Lower Bound for Minkowski Functional
Informal description
For any extended nonnegative real number $r$, the Minkowski functional $\text{egauge}_{\mathbb{K}}(s, x)$ satisfies $r \leq \text{egauge}_{\mathbb{K}}(s, x)$ if and only if for every $c \in \mathbb{K}$ such that $x \in c \cdot s$, we have $r \leq \|c\|_e$. In other words: \[ r \leq \inf\{\|c\|_e \mid c \in \mathbb{K}, x \in c \cdot s\} \leftrightarrow \forall c \in \mathbb{K}, (x \in c \cdot s \rightarrow r \leq \|c\|_e) \]
egauge_eq_top theorem
: egauge π•œ s x = ∞ ↔ βˆ€ c : π•œ, x βˆ‰ c β€’ s
Full source
lemma egauge_eq_top : egaugeegauge π•œ s x = ∞ ↔ βˆ€ c : π•œ, x βˆ‰ c β€’ s := by simp [egauge]
Minkowski Functional Equals Infinity if and only if No Scalar Multiple Contains the Point
Informal description
For a subset $s$ of a vector space $E$ over a normed field $\mathbb{K}$ and a point $x \in E$, the Minkowski functional $\text{egauge}_{\mathbb{K}}(s, x)$ equals infinity if and only if there does not exist any scalar $c \in \mathbb{K}$ such that $x$ belongs to the scaled set $c \cdot s$. In other words: \[ \text{egauge}_{\mathbb{K}}(s, x) = \infty \leftrightarrow \forall c \in \mathbb{K}, \, x \notin c \cdot s \]
egauge_lt_iff theorem
: egauge π•œ s x < r ↔ βˆƒ c : π•œ, x ∈ c β€’ s ∧ β€–cβ€–β‚‘ < r
Full source
lemma egauge_lt_iff : egaugeegauge π•œ s x < r ↔ βˆƒ c : π•œ, x ∈ c β€’ s ∧ β€–cβ€–β‚‘ < r := by
  simp [egauge, iInf_lt_iff]
Characterization of Minkowski Functional via Strict Inequality
Informal description
For a normed field $\mathbb{K}$ with extended norm $\|\cdot\|_e$, a vector space $E$ over $\mathbb{K}$, a subset $s \subseteq E$, and a point $x \in E$, the Minkowski functional $\text{egauge}_{\mathbb{K}}(s, x)$ is strictly less than $r \in \mathbb{R}_{\geq 0} \cup \{\infty\}$ if and only if there exists $c \in \mathbb{K}$ such that $x \in c \cdot s$ and $\|c\|_e < r$. In other words: \[ \text{egauge}_{\mathbb{K}}(s, x) < r \iff \exists c \in \mathbb{K}, (x \in c \cdot s) \land (\|c\|_e < r) \]
egauge_union theorem
(s t : Set E) (x : E) : egauge π•œ (s βˆͺ t) x = egauge π•œ s x βŠ“ egauge π•œ t x
Full source
lemma egauge_union (s t : Set E) (x : E) : egauge π•œ (s βˆͺ t) x = egaugeegauge π•œ s x βŠ“ egauge π•œ t x := by
  unfold egauge
  simp [smul_set_union, iInf_or, iInf_inf_eq]
Minkowski Functional of Union is Minimum of Individual Functionals
Informal description
For any subsets $s$ and $t$ of a vector space $E$ over a normed field $\mathbb{K}$ and any point $x \in E$, the Minkowski functional of the union $s \cup t$ at $x$ equals the infimum of the Minkowski functionals of $s$ and $t$ at $x$. In other words: \[ \text{egauge}_{\mathbb{K}}(s \cup t, x) = \min \left( \text{egauge}_{\mathbb{K}}(s, x), \text{egauge}_{\mathbb{K}}(t, x) \right) \]
le_egauge_inter theorem
(s t : Set E) (x : E) : egauge π•œ s x βŠ” egauge π•œ t x ≀ egauge π•œ (s ∩ t) x
Full source
lemma le_egauge_inter (s t : Set E) (x : E) :
    egaugeegauge π•œ s x βŠ” egauge π•œ t x ≀ egauge π•œ (s ∩ t) x :=
  max_le (egauge_anti _ inter_subset_left _) (egauge_anti _ inter_subset_right _)
Minkowski Functional Inequality for Set Intersection: $\max(\text{egauge}_{\mathbb{K}}(s, x), \text{egauge}_{\mathbb{K}}(t, x)) \leq \text{egauge}_{\mathbb{K}}(s \cap t, x)$
Informal description
For any subsets $s$ and $t$ of a vector space $E$ over a normed field $\mathbb{K}$, and for any point $x \in E$, the maximum of the Minkowski functionals of $s$ and $t$ at $x$ is less than or equal to the Minkowski functional of their intersection $s \cap t$ at $x$. In other words: \[ \max \left( \text{egauge}_{\mathbb{K}}(s, x), \text{egauge}_{\mathbb{K}}(t, x) \right) \leq \text{egauge}_{\mathbb{K}}(s \cap t, x) \]
le_egauge_pi theorem
{ΞΉ : Type*} {E : ΞΉ β†’ Type*} [βˆ€ i, SMul π•œ (E i)] {I : Set ΞΉ} {i : ΞΉ} (hi : i ∈ I) (s : βˆ€ i, Set (E i)) (x : βˆ€ i, E i) : egauge π•œ (s i) (x i) ≀ egauge π•œ (I.pi s) x
Full source
lemma le_egauge_pi {ΞΉ : Type*} {E : ΞΉ β†’ Type*} [βˆ€ i, SMul π•œ (E i)] {I : Set ΞΉ} {i : ΞΉ}
    (hi : i ∈ I) (s : βˆ€ i, Set (E i)) (x : βˆ€ i, E i) :
    egauge π•œ (s i) (x i) ≀ egauge π•œ (I.pi s) x :=
  MapsTo.egauge_le _ (Pi.evalMulActionHom i) (fun x hx ↦ by exact hx i hi) _
Minkowski Functional Inequality for Product Sets: $\text{egauge}_{\mathbb{K}}(s_i, x_i) \leq \text{egauge}_{\mathbb{K}}(\prod_{i \in I} s_i, x)$
Informal description
Let $\mathbb{K}$ be a normed field with extended norm, and let $\{E_i\}_{i \in \iota}$ be a family of vector spaces over $\mathbb{K}$ equipped with scalar multiplication. For any index set $I \subseteq \iota$ and any index $i \in I$, given a family of subsets $s_i \subseteq E_i$ and a point $x = (x_i)_{i \in \iota}$ in the product space $\prod_{i \in \iota} E_i$, the Minkowski functional of $s_i$ at $x_i$ is less than or equal to the Minkowski functional of the product set $\prod_{i \in I} s_i$ at $x$. In other words: \[ \text{egauge}_{\mathbb{K}}(s_i, x_i) \leq \text{egauge}_{\mathbb{K}}\left(\prod_{i \in I} s_i, x\right) \]
le_egauge_prod theorem
(s : Set E) (t : Set F) (a : E) (b : F) : max (egauge π•œ s a) (egauge π•œ t b) ≀ egauge π•œ (s Γ—Λ’ t) (a, b)
Full source
lemma le_egauge_prod (s : Set E) (t : Set F) (a : E) (b : F) :
    max (egauge π•œ s a) (egauge π•œ t b) ≀ egauge π•œ (s Γ—Λ’ t) (a, b) :=
  max_le (mapsTo_fst_prod.egauge_le π•œ (MulActionHom.fst π•œ E F) (a, b))
    (MapsTo.egauge_le π•œ (MulActionHom.snd π•œ E F) mapsTo_snd_prod (a, b))
Minkowski Functional Inequality for Cartesian Products: $\max(\text{egauge}_{\mathbb{K}}(s, a), \text{egauge}_{\mathbb{K}}(t, b)) \leq \text{egauge}_{\mathbb{K}}(s \times t, (a, b))$
Informal description
Let $\mathbb{K}$ be a normed field with an extended norm, and let $E$ and $F$ be vector spaces over $\mathbb{K}$. For any subsets $s \subseteq E$ and $t \subseteq F$, and any elements $a \in E$ and $b \in F$, the maximum of the Minkowski functionals of $s$ at $a$ and of $t$ at $b$ is less than or equal to the Minkowski functional of the Cartesian product $s \times t$ at the point $(a, b)$. In other words: \[ \max \left( \text{egauge}_{\mathbb{K}}(s, a), \text{egauge}_{\mathbb{K}}(t, b) \right) \leq \text{egauge}_{\mathbb{K}}(s \times t, (a, b)) \]
egauge_zero_left_eq_top theorem
: egauge π•œ 0 x = ∞ ↔ x β‰  0
Full source
@[simp] lemma egauge_zero_left_eq_top : egaugeegauge π•œ 0 x = ∞ ↔ x β‰  0 := by
  simp [egauge_eq_top]
Minkowski Functional of Zero Set is Infinite for Nonzero Vectors
Informal description
For any normed field $\mathbb{K}$ with extended norm $\|\cdot\|_e$, vector space $E$ over $\mathbb{K}$, and nonzero element $x \in E$, the Minkowski functional of the zero set at $x$ is infinite, i.e., $\text{egauge}_{\mathbb{K}}(0, x) = \infty$ if and only if $x \neq 0$.
egauge_le_of_smul_mem_of_ne theorem
(h : c β€’ x ∈ s) (hc : c β‰  0) : egauge π•œ s x ≀ (β€–cβ€–β‚Šβ»ΒΉ : ℝβ‰₯0)
Full source
/-- If `c β€’ x ∈ s` and `c β‰  0`, then `egauge π•œ s x` is at most `(β€–cβ€–β‚Šβ»ΒΉ : ℝβ‰₯0)`.

See also `egauge_le_of_smul_mem`. -/
lemma egauge_le_of_smul_mem_of_ne (h : c β€’ x ∈ s) (hc : c β‰  0) : egauge π•œ s x ≀ (β€–cβ€–β‚Šβ€–cβ€–β‚Šβ»ΒΉ : ℝβ‰₯0) := by
  rw [← nnnorm_inv]
  exact egauge_le_of_mem_smul <| (mem_inv_smul_set_iffβ‚€ hc _ _).2 h
Upper Bound for Minkowski Functional via Nonzero Scaled Membership: $\text{egauge}_{\mathbb{K}}(s, x) \leq \|c\|^{-1}$
Informal description
Let $\mathbb{K}$ be a normed field, $E$ a vector space over $\mathbb{K}$, and $s \subseteq E$. For any $x \in E$ and $c \in \mathbb{K}$ with $c \neq 0$, if $c \cdot x \in s$, then the Minkowski functional $\text{egauge}_{\mathbb{K}}(s, x)$ satisfies $\text{egauge}_{\mathbb{K}}(s, x) \leq \|c\|_{\mathbb{R}_{\geq 0}}^{-1}$.
egauge_le_of_smul_mem theorem
(h : c β€’ x ∈ s) : egauge π•œ s x ≀ β€–c‖ₑ⁻¹
Full source
/-- If `c β€’ x ∈ s`, then `egauge π•œ s x` is at most `β€–c‖ₑ⁻¹`.

See also `egauge_le_of_smul_mem_of_ne`. -/
lemma egauge_le_of_smul_mem (h : c β€’ x ∈ s) : egauge π•œ s x ≀ β€–cβ€–β‚‘β€–c‖ₑ⁻¹ := by
  rcases eq_or_ne c 0 with rfl | hc
  Β· simp
  Β· exact (egauge_le_of_smul_mem_of_ne h hc).trans ENNReal.coe_inv_le
Upper Bound for Minkowski Functional via Scaled Membership: $\text{egauge}_{\mathbb{K}}(s, x) \leq \|c\|_e^{-1}$
Informal description
For any normed field $\mathbb{K}$ with extended norm $\|\cdot\|_e$, vector space $E$ over $\mathbb{K}$, subset $s \subseteq E$, and $x \in E$, if there exists $c \in \mathbb{K}$ such that $c \cdot x \in s$, then the Minkowski functional $\text{egauge}_{\mathbb{K}}(s, x)$ satisfies $\text{egauge}_{\mathbb{K}}(s, x) \leq \|c\|_e^{-1}$.
mem_smul_of_egauge_lt theorem
(hs : Balanced π•œ s) (hc : egauge π•œ s x < β€–cβ€–β‚‘) : x ∈ c β€’ s
Full source
lemma mem_smul_of_egauge_lt (hs : Balanced π•œ s) (hc : egauge π•œ s x < β€–cβ€–β‚‘) : x ∈ c β€’ s :=
  let ⟨a, hxa, ha⟩ := egauge_lt_iff.1 hc
  hs.smul_mono (by simpa [enorm] using ha.le) hxa
Membership in Scaled Set via Minkowski Functional: $\text{egauge}_{\mathbb{K}}(s, x) < \|c\|_e \implies x \in c \cdot s$
Informal description
Let $\mathbb{K}$ be a normed field, $E$ a vector space over $\mathbb{K}$, and $s \subseteq E$ a balanced set. For any $x \in E$ and $c \in \mathbb{K}$, if the Minkowski functional $\text{egauge}_{\mathbb{K}}(s, x)$ satisfies $\text{egauge}_{\mathbb{K}}(s, x) < \|c\|_e$, then $x$ belongs to the scaled set $c \cdot s$. In other words: \[ \text{If } s \text{ is balanced and } \text{egauge}_{\mathbb{K}}(s, x) < \|c\|_e, \text{ then } x \in c \cdot s. \]
mem_of_egauge_lt_one theorem
(hs : Balanced π•œ s) (hx : egauge π•œ s x < 1) : x ∈ s
Full source
lemma mem_of_egauge_lt_one (hs : Balanced π•œ s) (hx : egauge π•œ s x < 1) : x ∈ s :=
  one_smul π•œ s β–Έ mem_smul_of_egauge_lt hs (by simpa)
Membership in Set via Minkowski Functional: $\text{egauge}_{\mathbb{K}}(s, x) < 1 \implies x \in s$
Informal description
Let $\mathbb{K}$ be a normed field, $E$ a vector space over $\mathbb{K}$, and $s \subseteq E$ a balanced set. For any $x \in E$, if the Minkowski functional $\text{egauge}_{\mathbb{K}}(s, x)$ satisfies $\text{egauge}_{\mathbb{K}}(s, x) < 1$, then $x$ belongs to $s$. In other words: \[ \text{If } s \text{ is balanced and } \text{egauge}_{\mathbb{K}}(s, x) < 1, \text{ then } x \in s. \]
egauge_eq_zero_iff theorem
: egauge π•œ s x = 0 ↔ βˆƒαΆ  c : π•œ in 𝓝 0, x ∈ c β€’ s
Full source
lemma egauge_eq_zero_iff : egaugeegauge π•œ s x = 0 ↔ βˆƒαΆ  c : π•œ in 𝓝 0, x ∈ c β€’ s := by
  refine (iInfβ‚‚_eq_bot _).trans ?_
  rw [(nhds_basis_uniformity uniformity_basis_edist).frequently_iff]
  simp [and_comm]
Minkowski Functional Vanishes if and only if Zero is a Limit Point of Scalars Mapping $x$ into $s$
Informal description
For a normed field $\mathbb{K}$ and a subset $s$ of a vector space $E$ over $\mathbb{K}$, the Minkowski functional $\text{egauge}_{\mathbb{K}}(s, x)$ evaluated at $x \in E$ equals zero if and only if there exists a net of scalars $c \in \mathbb{K}$ converging to zero such that $x$ belongs to $c \cdot s$ frequently (i.e., for every neighborhood of zero, there exists such a $c$ in that neighborhood). In other words: \[ \text{egauge}_{\mathbb{K}}(s, x) = 0 \leftrightarrow \text{For every neighborhood } U \text{ of } 0 \text{ in } \mathbb{K}, \exists c \in U \text{ such that } x \in c \cdot s. \]
egauge_univ theorem
[(𝓝[β‰ ] (0 : π•œ)).NeBot] : egauge π•œ univ x = 0
Full source
@[simp]
lemma egauge_univ [(𝓝[β‰ ] (0 : π•œ)).NeBot] : egauge π•œ univ x = 0 := by
  rw [egauge_eq_zero_iff]
  refine (frequently_iff_neBot.2 β€Ή_β€Ί).mono fun c hc ↦ ?_
  simp_all [smul_set_univβ‚€]
Minkowski Functional of Universal Set Vanishes Everywhere
Informal description
For any normed field $\mathbb{K}$ where the punctured neighborhood filter at zero is non-trivial, the Minkowski functional of the universal set $\text{univ}$ in a vector space $E$ over $\mathbb{K}$ evaluated at any point $x \in E$ is zero, i.e., $\text{egauge}_{\mathbb{K}}(\text{univ}, x) = 0$.
egauge_zero_right theorem
(hs : s.Nonempty) : egauge π•œ s 0 = 0
Full source
@[simp]
lemma egauge_zero_right (hs : s.Nonempty) : egauge π•œ s 0 = 0 := by
  have : 0 ∈ (0 : π•œ) β€’ s := by simp [zero_smul_set hs]
  simpa using egauge_le_of_mem_smul this
Minkowski Functional of Nonempty Set at Zero is Zero
Informal description
For any nonempty subset $s$ of a vector space $E$ over a normed field $\mathbb{K}$, the Minkowski functional (gauge) of $s$ evaluated at the zero vector is zero, i.e., $\text{egauge}_{\mathbb{K}}(s, 0) = 0$.
egauge_zero_zero theorem
: egauge π•œ (0 : Set E) 0 = 0
Full source
lemma egauge_zero_zero : egauge π•œ (0 : Set E) 0 = 0 := by simp
Minkowski Functional of Zero Set at Zero is Zero
Informal description
For any normed field $\mathbb{K}$ and vector space $E$ over $\mathbb{K}$, the Minkowski functional (gauge) of the zero set evaluated at the zero vector is zero, i.e., $\text{egauge}_{\mathbb{K}}(\{0\}, 0) = 0$.
egauge_le_one theorem
(h : x ∈ s) : egauge π•œ s x ≀ 1
Full source
lemma egauge_le_one (h : x ∈ s) : egauge π•œ s x ≀ 1 := by
  rw [← one_smul π•œ s] at h
  simpa using egauge_le_of_mem_smul h
Upper bound of Minkowski functional for elements in the set
Informal description
For any element $x$ in a subset $s$ of a vector space $E$ over a normed field $\mathbb{K}$, the Minkowski functional (gauge) of $s$ at $x$ satisfies $\text{egauge}_{\mathbb{K}}(s, x) \leq 1$.
le_egauge_smul_left theorem
(c : π•œ) (s : Set E) (x : E) : egauge π•œ s x / β€–cβ€–β‚‘ ≀ egauge π•œ (c β€’ s) x
Full source
lemma le_egauge_smul_left (c : π•œ) (s : Set E) (x : E) :
    egauge π•œ s x / β€–cβ€–β‚‘ ≀ egauge π•œ (c β€’ s) x := by
  simp_rw [le_egauge_iff, smul_smul]
  rintro a ⟨x, hx, rfl⟩
  apply ENNReal.div_le_of_le_mul
  rw [← enorm_mul]
  exact egauge_le_of_mem_smul <| smul_mem_smul_set hx
Lower Bound for Scaled Minkowski Functional: $\text{egauge}(s, x) / \|c\|_e \leq \text{egauge}(c \cdot s, x)$
Informal description
For any element $x$ in a vector space $E$ over a normed field $\mathbb{K}$ with extended norm $\|\cdot\|_e$, and for any subset $s \subseteq E$ and scalar $c \in \mathbb{K}$, the Minkowski functional (gauge) satisfies the inequality: \[ \frac{\text{egauge}_{\mathbb{K}}(s, x)}{\|c\|_e} \leq \text{egauge}_{\mathbb{K}}(c \cdot s, x) \] where $c \cdot s$ denotes the scaled set $\{c \cdot y \mid y \in s\}$.
egauge_smul_left theorem
(hc : c β‰  0) (s : Set E) (x : E) : egauge π•œ (c β€’ s) x = egauge π•œ s x / β€–cβ€–β‚‘
Full source
lemma egauge_smul_left (hc : c β‰  0) (s : Set E) (x : E) :
    egauge π•œ (c β€’ s) x = egauge π•œ s x / β€–cβ€–β‚‘ := by
  refine le_antisymm ?_ (le_egauge_smul_left _ _ _)
  rw [ENNReal.le_div_iff_mul_le (by simp [*]) (by simp)]
  calc
    egauge π•œ (c β€’ s) x * β€–cβ€–β‚‘ = egauge π•œ (c β€’ s) x / β€–c⁻¹‖ₑ := by
      rw [enorm_inv (by simpa), div_eq_mul_inv, inv_inv]
    _ ≀ egauge π•œ (c⁻¹ β€’ c β€’ s) x := le_egauge_smul_left _ _ _
    _ = egauge π•œ s x := by rw [inv_smul_smulβ‚€ hc]
Minkowski Functional Scaling Identity: $\text{egauge}(c \cdot s, x) = \text{egauge}(s, x) / \|c\|_e$ for $c \neq 0$
Informal description
For any nonzero scalar $c$ in a normed field $\mathbb{K}$ with extended norm $\|\cdot\|_e$, any subset $s$ of a vector space $E$ over $\mathbb{K}$, and any vector $x \in E$, the Minkowski functional satisfies: \[ \text{egauge}_{\mathbb{K}}(c \cdot s, x) = \frac{\text{egauge}_{\mathbb{K}}(s, x)}{\|c\|_e} \] where $c \cdot s$ denotes the scaled set $\{c \cdot y \mid y \in s\}$.
le_egauge_smul_right theorem
(c : π•œ) (s : Set E) (x : E) : β€–cβ€–β‚‘ * egauge π•œ s x ≀ egauge π•œ s (c β€’ x)
Full source
lemma le_egauge_smul_right (c : π•œ) (s : Set E) (x : E) :
    β€–cβ€–β‚‘ * egauge π•œ s x ≀ egauge π•œ s (c β€’ x) := by
  rw [le_egauge_iff]
  rintro a ⟨y, hy, hxy⟩
  rcases eq_or_ne c 0 with rfl | hc
  Β· simp
  Β· refine ENNReal.mul_le_of_le_div' <| le_trans ?_ ENNReal.coe_div_le
    rw [div_eq_inv_mul, ← nnnorm_inv, ← nnnorm_mul]
    refine egauge_le_of_mem_smul ⟨y, hy, ?_⟩
    simp only [mul_smul, hxy, inv_smul_smulβ‚€ hc]
Lower Bound for Minkowski Functional under Scalar Multiplication: $\|c\|_e \cdot \text{egauge}(s, x) \leq \text{egauge}(s, c \cdot x)$
Informal description
For any scalar $c$ in a normed field $\mathbb{K}$ with extended norm $\|\cdot\|_e$, any subset $s$ of a vector space $E$ over $\mathbb{K}$, and any vector $x \in E$, the Minkowski functional satisfies the inequality: \[ \|c\|_e \cdot \text{egauge}_{\mathbb{K}}(s, x) \leq \text{egauge}_{\mathbb{K}}(s, c \cdot x). \]
egauge_smul_right theorem
(h : c = 0 β†’ s.Nonempty) (x : E) : egauge π•œ s (c β€’ x) = β€–cβ€–β‚‘ * egauge π•œ s x
Full source
lemma egauge_smul_right (h : c = 0 β†’ s.Nonempty) (x : E) :
    egauge π•œ s (c β€’ x) = β€–cβ€–β‚‘ * egauge π•œ s x := by
  refine le_antisymm ?_ (le_egauge_smul_right c s x)
  rcases eq_or_ne c 0 with rfl | hc
  Β· simp [egauge_zero_right _ (h rfl)]
  Β· rw [mul_comm, ← ENNReal.div_le_iff_le_mul (.inl <| by simpa) (.inl enorm_ne_top),
      ENNReal.div_eq_inv_mul, ← enorm_inv (by simpa)]
    refine (le_egauge_smul_right _ _ _).trans_eq ?_
    rw [inv_smul_smulβ‚€ hc]
Minkowski Functional Scaling Identity: $\text{egauge}(s, c \cdot x) = \|c\|_e \cdot \text{egauge}(s, x)$ under Nonemptiness Condition
Informal description
For any scalar $c$ in a normed field $\mathbb{K}$ with extended norm $\|\cdot\|_e$, any subset $s$ of a vector space $E$ over $\mathbb{K}$, and any vector $x \in E$, if $c = 0$ implies that $s$ is nonempty, then the Minkowski functional satisfies: \[ \text{egauge}_{\mathbb{K}}(s, c \cdot x) = \|c\|_e \cdot \text{egauge}_{\mathbb{K}}(s, x). \]
egauge_prod_mk theorem
{F : Type*} [AddCommGroup F] [Module π•œ F] {U : Set E} {V : Set F} (hU : Balanced π•œ U) (hV : Balanced π•œ V) (a : E) (b : F) : egauge π•œ (U Γ—Λ’ V) (a, b) = max (egauge π•œ U a) (egauge π•œ V b)
Full source
/-- The extended gauge of a point `(a, b)` with respect to the product of balanced sets `U` and `V`
is equal to the maximum of the extended gauges of `a` with respect to `U`
and `b` with respect to `V`.
-/
theorem egauge_prod_mk {F : Type*} [AddCommGroup F] [Module π•œ F] {U : Set E} {V : Set F}
    (hU : Balanced π•œ U) (hV : Balanced π•œ V) (a : E) (b : F) :
    egauge π•œ (U Γ—Λ’ V) (a, b) = max (egauge π•œ U a) (egauge π•œ V b) := by
  refine le_antisymm (le_of_forall_lt' fun r hr ↦ ?_) (le_egauge_prod _ _ _ _)
  simp only [max_lt_iff, egauge_lt_iff, smul_set_prod, mk_mem_prod] at hr ⊒
  rcases hr with ⟨⟨x, hx, hxr⟩, ⟨y, hy, hyr⟩⟩
  cases le_total β€–xβ€– β€–yβ€– with
  | inl hle => exact ⟨y, ⟨hU.smul_mono hle hx, hy⟩, hyr⟩
  | inr hle => exact ⟨x, ⟨hx, hV.smul_mono hle hy⟩, hxr⟩
Minkowski Functional of Product Set Equals Maximum of Component Functionals
Informal description
Let $\mathbb{K}$ be a normed field, $E$ and $F$ be vector spaces over $\mathbb{K}$, and $U \subseteq E$, $V \subseteq F$ be balanced sets. For any elements $a \in E$ and $b \in F$, the Minkowski functional of the product set $U \times V$ at the point $(a, b)$ equals the maximum of the Minkowski functionals of $U$ at $a$ and of $V$ at $b$. That is: \[ \text{egauge}_{\mathbb{K}}(U \times V, (a, b)) = \max \left( \text{egauge}_{\mathbb{K}}(U, a), \text{egauge}_{\mathbb{K}}(V, b) \right). \]
egauge_add_add_le theorem
{U V : Set E} (hU : Balanced π•œ U) (hV : Balanced π•œ V) (a b : E) : egauge π•œ (U + V) (a + b) ≀ max (egauge π•œ U a) (egauge π•œ V b)
Full source
theorem egauge_add_add_le {U V : Set E} (hU : Balanced π•œ U) (hV : Balanced π•œ V) (a b : E) :
    egauge π•œ (U + V) (a + b) ≀ max (egauge π•œ U a) (egauge π•œ V b) := by
  rw [← egauge_prod_mk hU hV a b, ← add_image_prod]
  exact MapsTo.egauge_le π•œ (LinearMap.fst π•œ E E + LinearMap.snd π•œ E E) (mapsTo_image _ _) (a, b)
Subadditivity of Minkowski Functional for Balanced Sets: $\text{egauge}_{\mathbb{K}}(U + V, a + b) \leq \max(\text{egauge}_{\mathbb{K}}(U, a), \text{egauge}_{\mathbb{K}}(V, b))$
Informal description
Let $\mathbb{K}$ be a normed field, $E$ a vector space over $\mathbb{K}$, and $U, V \subseteq E$ balanced sets. For any elements $a, b \in E$, the Minkowski functional of the Minkowski sum $U + V$ at the point $a + b$ satisfies the inequality: \[ \text{egauge}_{\mathbb{K}}(U + V, a + b) \leq \max \left( \text{egauge}_{\mathbb{K}}(U, a), \text{egauge}_{\mathbb{K}}(V, b) \right). \]
egauge_pi' theorem
{I : Set ΞΉ} (hI : I.Finite) {U : βˆ€ i, Set (E i)} (hU : βˆ€ i ∈ I, Balanced π•œ (U i)) (x : βˆ€ i, E i) (hIβ‚€ : I = univ ∨ (βˆƒ i ∈ I, x i β‰  0) ∨ (𝓝[β‰ ] (0 : π•œ)).NeBot) : egauge π•œ (I.pi U) x = ⨆ i ∈ I, egauge π•œ (U i) (x i)
Full source
/-- The extended gauge of a point `x` in an indexed product
with respect to a product of finitely many balanced sets `U i`, `i ∈ I`,
(and the whole spaces for the other indices)
is the supremum of the extended gauges of the components of `x`
with respect to the corresponding balanced set.

This version assumes the following technical condition:
- either `I` is the universal set;
- or one of `x i`, `i ∈ I`, is nonzero;
- or `π•œ` is nontrivially normed.
-/
theorem egauge_pi' {I : Set ΞΉ} (hI : I.Finite)
    {U : βˆ€ i, Set (E i)} (hU : βˆ€ i ∈ I, Balanced π•œ (U i))
    (x : βˆ€ i, E i) (hIβ‚€ : I = univ ∨ (βˆƒ i ∈ I, x i β‰  0) ∨ (𝓝[β‰ ] (0 : π•œ)).NeBot) :
    egauge π•œ (I.pi U) x = ⨆ i ∈ I, egauge π•œ (U i) (x i) := by
  refine le_antisymm ?_ (iSupβ‚‚_le fun i hi ↦ le_egauge_pi hi _ _)
  refine le_of_forall_lt' fun r hr ↦ ?_
  have : βˆ€ i ∈ I, βˆƒ c : π•œ, x i ∈ c β€’ U i ∧ β€–cβ€–β‚‘ < r := fun i hi ↦
    egauge_lt_iff.mp <| (le_iSupβ‚‚ i hi).trans_lt hr
  choose! c hc hcr using this
  obtain ⟨cβ‚€, hcβ‚€, hcβ‚€I, hcβ‚€r⟩ :
      βˆƒ cβ‚€ : π•œ, (cβ‚€ β‰  0 ∨ I = univ) ∧ (βˆ€ i ∈ I, β€–c iβ€– ≀ β€–cβ‚€β€–) ∧ β€–cβ‚€β€–β‚‘ < r := by
    have hrβ‚€ : 0 < r := hr.bot_lt
    rcases I.eq_empty_or_nonempty with rfl | hIne
    Β· obtain hΞΉ | hbot : IsEmptyIsEmpty ΞΉ ∨ (𝓝[β‰ ] (0 : π•œ)).NeBot := by simpa [@eq_comm _ βˆ…] using hIβ‚€
      Β· use 0
        simp [@eq_comm _ βˆ…, hΞΉ, hrβ‚€]
      Β· rcases exists_enorm_lt π•œ hrβ‚€.ne' with ⟨cβ‚€, hcβ‚€, hcβ‚€r⟩
        exact ⟨cβ‚€, .inl hcβ‚€, by simp, hcβ‚€r⟩
    Β· obtain ⟨iβ‚€, hiβ‚€I, hc_max⟩ : βˆƒ iβ‚€ ∈ I, IsMaxOn (β€–c Β·β€–β‚‘) I iβ‚€ :=
        exists_max_image _ (β€–c Β·β€–β‚‘) hI hIne
      by_cases H : c iβ‚€ β‰  0 ∨ I = univ
      Β· exact ⟨c iβ‚€, H, fun i hi ↦ by simpa [enorm] using hc_max hi, hcr _ hiβ‚€I⟩
      Β· push_neg at H
        have hc0 (i : ι) (hi : i ∈ I) : c i = 0 := by simpa [H] using hc_max hi
        have heg0 (i : ι) (hi : i ∈ I) : x i = 0 :=
          zero_smul_set_subset (Ξ± := π•œ) (U i) (hc0 i hi β–Έ hc i hi)
        have : (𝓝[β‰ ] (0 : π•œ)).NeBot := (hIβ‚€.resolve_left H.2).resolve_left (by simpa)
        rcases exists_enorm_lt π•œ hrβ‚€.ne' with ⟨c₁, hc₁, hc₁r⟩
        refine ⟨c₁, .inl hc₁, fun i hi ↦ ?_, hc₁r⟩
        simp [hc0 i hi]
  refine egauge_lt_iff.2 ⟨cβ‚€, ?_, hcβ‚€r⟩
  rw [smul_set_piβ‚€' hcβ‚€]
  intro i hi
  exact (hU i hi).smul_mono (hcβ‚€I i hi) (hc i hi)
Minkowski Functional of Product Set: $\text{egauge}_{\mathbb{K}}(\prod_{i \in I} U_i, x) = \sup_{i \in I} \text{egauge}_{\mathbb{K}}(U_i, x_i)$ under Technical Conditions
Informal description
Let $\mathbb{K}$ be a normed field, $\{E_i\}_{i \in \iota}$ a family of vector spaces over $\mathbb{K}$, and $I \subseteq \iota$ a finite subset. For each $i \in I$, let $U_i \subseteq E_i$ be a balanced set. Given a point $x = (x_i)_{i \in \iota} \in \prod_{i \in \iota} E_i$, the Minkowski functional of the product set $\prod_{i \in I} U_i$ at $x$ satisfies \[ \text{egauge}_{\mathbb{K}}\left(\prod_{i \in I} U_i, x\right) = \sup_{i \in I} \text{egauge}_{\mathbb{K}}(U_i, x_i), \] provided that either: 1. $I$ is the universal set (i.e., $I = \iota$), or 2. there exists $i \in I$ such that $x_i \neq 0$, or 3. the punctured neighborhood filter of $0$ in $\mathbb{K}$ is nontrivial (i.e., $\mathbb{K}$ is a nontrivially normed field).
egauge_univ_pi theorem
[Finite ΞΉ] {U : βˆ€ i, Set (E i)} (hU : βˆ€ i, Balanced π•œ (U i)) (x : βˆ€ i, E i) : egauge π•œ (univ.pi U) x = ⨆ i, egauge π•œ (U i) (x i)
Full source
/-- The extended gauge of a point `x` in an indexed product with finite index type
with respect to a product of balanced sets `U i`,
is the supremum of the extended gauges of the components of `x`
with respect to the corresponding balanced set.
-/
theorem egauge_univ_pi [Finite ΞΉ] {U : βˆ€ i, Set (E i)} (hU : βˆ€ i, Balanced π•œ (U i)) (x : βˆ€ i, E i) :
    egauge π•œ (univ.pi U) x = ⨆ i, egauge π•œ (U i) (x i) :=
  egauge_pi' finite_univ (fun i _ ↦ hU i) x (.inl rfl) |>.trans <| by simp
Minkowski Functional of Universal Product Set: $\text{egauge}_{\mathbb{K}}(\prod_{i} U_i, x) = \sup_i \text{egauge}_{\mathbb{K}}(U_i, x_i)$ for Finite Index Sets
Informal description
Let $\mathbb{K}$ be a normed field, $\{E_i\}_{i \in \iota}$ a finite family of vector spaces over $\mathbb{K}$, and for each $i \in \iota$, let $U_i \subseteq E_i$ be a balanced set. Given a point $x = (x_i)_{i \in \iota} \in \prod_{i \in \iota} E_i$, the Minkowski functional of the product set $\prod_{i \in \iota} U_i$ at $x$ satisfies \[ \text{egauge}_{\mathbb{K}}\left(\prod_{i \in \iota} U_i, x\right) = \sup_{i \in \iota} \text{egauge}_{\mathbb{K}}(U_i, x_i). \]
egauge_pi theorem
[(𝓝[β‰ ] (0 : π•œ)).NeBot] {I : Set ΞΉ} {U : βˆ€ i, Set (E i)} (hI : I.Finite) (hU : βˆ€ i ∈ I, Balanced π•œ (U i)) (x : βˆ€ i, E i) : egauge π•œ (I.pi U) x = ⨆ i ∈ I, egauge π•œ (U i) (x i)
Full source
/-- The extended gauge of a point `x` in an indexed product
with respect to a product of finitely many balanced sets `U i`, `i ∈ I`,
(and the whole spaces for the other indices)
is the supremum of the extended gauges of the components of `x`
with respect to the corresponding balanced set.

This version assumes that `π•œ` is a nontrivially normed division ring.
See also `egauge_univ_pi` for when `s = univ`,
and `egauge_pi'` for a version with more choices of the technical assumptions.
-/
theorem egauge_pi [(𝓝[β‰ ] (0 : π•œ)).NeBot] {I : Set ΞΉ} {U : βˆ€ i, Set (E i)}
    (hI : I.Finite) (hU : βˆ€ i ∈ I, Balanced π•œ (U i)) (x : βˆ€ i, E i) :
    egauge π•œ (I.pi U) x = ⨆ i ∈ I, egauge π•œ (U i) (x i) :=
  egauge_pi' hI hU x <| .inr <| .inr inferInstance
Minkowski Functional of Finite Product of Balanced Sets: $\text{egauge}_{\mathbb{K}}(\prod_{i \in I} U_i, x) = \sup_{i \in I} \text{egauge}_{\mathbb{K}}(U_i, x_i)$ for Nontrivially Normed $\mathbb{K}$
Informal description
Let $\mathbb{K}$ be a nontrivially normed division ring, $\{E_i\}_{i \in \iota}$ a family of vector spaces over $\mathbb{K}$, and $I \subseteq \iota$ a finite subset. For each $i \in I$, let $U_i \subseteq E_i$ be a balanced set. Given a point $x = (x_i)_{i \in \iota} \in \prod_{i \in \iota} E_i$, the Minkowski functional of the product set $\prod_{i \in I} U_i$ at $x$ satisfies \[ \text{egauge}_{\mathbb{K}}\left(\prod_{i \in I} U_i, x\right) = \sup_{i \in I} \text{egauge}_{\mathbb{K}}(U_i, x_i). \]
div_le_egauge_closedBall theorem
(r : ℝβ‰₯0) (x : E) : β€–xβ€–β‚‘ / r ≀ egauge π•œ (closedBall 0 r) x
Full source
lemma div_le_egauge_closedBall (r : ℝβ‰₯0) (x : E) : β€–xβ€–β‚‘ / r ≀ egauge π•œ (closedBall 0 r) x := by
  rw [le_egauge_iff]
  rintro c ⟨y, hy, rfl⟩
  rw [mem_closedBall_zero_iff, ← coe_nnnorm, NNReal.coe_le_coe] at hy
  rw [enorm_smul]
  apply ENNReal.div_le_of_le_mul
  gcongr
  rwa [enorm_le_coe]
Ratio of Extended Norm to Radius is Bounded by Minkowski Functional of Closed Ball
Informal description
For any non-negative real number $r$ and any vector $x$ in a normed space $E$ over a normed field $\mathbb{K}$, the ratio of the extended norm $\|x\|_e$ to $r$ is bounded above by the Minkowski functional of the closed ball $\overline{B}(0, r)$ centered at the origin with radius $r$ evaluated at $x$. In other words: \[ \frac{\|x\|_e}{r} \leq \text{egauge}_{\mathbb{K}}(\overline{B}(0, r), x). \]
le_egauge_closedBall_one theorem
(x : E) : β€–xβ€–β‚‘ ≀ egauge π•œ (closedBall 0 1) x
Full source
lemma le_egauge_closedBall_one (x : E) : β€–xβ€–β‚‘ ≀ egauge π•œ (closedBall 0 1) x := by
  simpa using div_le_egauge_closedBall π•œ 1 x
Extended Norm Bounded by Minkowski Functional of Closed Unit Ball
Informal description
For any vector $x$ in a normed space $E$ over a normed field $\mathbb{K}$, the extended norm $\|x\|_e$ is bounded above by the Minkowski functional of the closed unit ball $\overline{B}(0, 1)$ evaluated at $x$, i.e., \[ \|x\|_e \leq \text{egauge}_{\mathbb{K}}(\overline{B}(0, 1), x). \]
div_le_egauge_ball theorem
(r : ℝβ‰₯0) (x : E) : β€–xβ€–β‚‘ / r ≀ egauge π•œ (ball 0 r) x
Full source
lemma div_le_egauge_ball (r : ℝβ‰₯0) (x : E) : β€–xβ€–β‚‘ / r ≀ egauge π•œ (ball 0 r) x :=
  (div_le_egauge_closedBall π•œ r x).trans <| egauge_anti _ ball_subset_closedBall _
Ratio of Extended Norm to Radius is Bounded by Minkowski Functional of Open Ball
Informal description
For any non-negative real number $r$ and any vector $x$ in a normed space $E$ over a normed field $\mathbb{K}$, the ratio of the extended norm $\|x\|_e$ to $r$ is bounded above by the Minkowski functional of the open ball $B(0, r)$ centered at the origin with radius $r$ evaluated at $x$. In other words: \[ \frac{\|x\|_e}{r} \leq \text{egauge}_{\mathbb{K}}(B(0, r), x). \]
le_egauge_ball_one theorem
(x : E) : β€–xβ€–β‚‘ ≀ egauge π•œ (ball 0 1) x
Full source
lemma le_egauge_ball_one (x : E) : β€–xβ€–β‚‘ ≀ egauge π•œ (ball 0 1) x := by
  simpa using div_le_egauge_ball π•œ 1 x
Extended Norm Bounded by Minkowski Functional of Open Unit Ball
Informal description
For any vector $x$ in a normed space $E$ over a normed field $\mathbb{K}$, the extended norm $\|x\|_e$ is bounded above by the Minkowski functional of the open unit ball $B(0, 1)$ evaluated at $x$, i.e., \[ \|x\|_e \leq \text{egauge}_{\mathbb{K}}(B(0, 1), x). \]
egauge_ball_le_of_one_lt_norm theorem
(hc : 1 < β€–cβ€–) (hβ‚€ : r β‰  0 ∨ β€–xβ€– β‰  0) : egauge π•œ (ball 0 r) x ≀ β€–cβ€–β‚‘ * β€–xβ€–β‚‘ / r
Full source
lemma egauge_ball_le_of_one_lt_norm (hc : 1 < β€–cβ€–) (hβ‚€ : r β‰  0r β‰  0 ∨ β€–xβ€– β‰  0) :
    egauge π•œ (ball 0 r) x ≀ β€–cβ€–β‚‘ * β€–xβ€–β‚‘ / r := by
  letI : NontriviallyNormedField π•œ := ⟨c, hc⟩
  rcases (zero_le r).eq_or_lt with rfl | hr
  Β· rw [ENNReal.coe_zero, ENNReal.div_zero (mul_ne_zero _ _)]
    Β· apply le_top
    Β· simpa using one_pos.trans hc
    Β· simpa [enorm, ← NNReal.coe_eq_zero] using hβ‚€
  Β· rcases eq_or_ne β€–xβ€– 0 with hx | hx
    Β· have hx' : β€–xβ€–β‚‘ = 0 := by simpa [enorm, ← coe_nnnorm, NNReal.coe_eq_zero] using hx
      simp only [hx', mul_zero, ENNReal.zero_div, nonpos_iff_eq_zero, egauge_eq_zero_iff]
      refine (frequently_iff_neBot.2 (inferInstance : NeBot (𝓝[β‰ ] (0 : π•œ)))).mono fun c hc ↦ ?_
      simp [mem_smul_set_iff_inv_smul_memβ‚€ hc, norm_smul, hx, hr]
    Β· rcases rescale_to_shell_semi_normed hc hr hx with ⟨a, haβ‚€, har, -, hainv⟩
      calc
        egauge π•œ (ball 0 r) x ≀ ↑(β€–aβ€–β‚Šβ€–aβ€–β‚Šβ»ΒΉ) :=
          egauge_le_of_smul_mem_of_ne (mem_ball_zero_iff.2 har) haβ‚€
        _ ≀ ↑(β€–cβ€–β‚Š * β€–xβ€–β‚Š / r) := by rwa [ENNReal.coe_le_coe, div_eq_inv_mul, ← mul_assoc]
        _ ≀ β€–cβ€–β‚‘ * β€–xβ€–β‚‘ / r := ENNReal.coe_div_le.trans <| by simp [ENNReal.coe_mul, enorm]
Upper Bound for Minkowski Functional of Ball: $\text{egauge}_{\mathbb{K}}(\text{ball}(0, r), x) \leq \|c\|_e \cdot \frac{\|x\|_e}{r}$
Informal description
Let $\mathbb{K}$ be a normed field and $E$ a vector space over $\mathbb{K}$. For any $c \in \mathbb{K}$ with $\|c\| > 1$, any $r \in \mathbb{R}_{\geq 0}$ with $r \neq 0$ or $\|x\| \neq 0$, and any $x \in E$, the Minkowski functional of the open ball $\text{ball}(0, r)$ satisfies: \[ \text{egauge}_{\mathbb{K}}(\text{ball}(0, r), x) \leq \|c\|_e \cdot \frac{\|x\|_e}{r} \] where $\|\cdot\|_e$ denotes the extended norm on $\mathbb{K}$.
egauge_ball_one_le_of_one_lt_norm theorem
(hc : 1 < β€–cβ€–) (x : E) : egauge π•œ (ball 0 1) x ≀ β€–cβ€–β‚‘ * β€–xβ€–β‚‘
Full source
lemma egauge_ball_one_le_of_one_lt_norm (hc : 1 < β€–cβ€–) (x : E) :
    egauge π•œ (ball 0 1) x ≀ β€–cβ€–β‚‘ * β€–xβ€–β‚‘ := by
  simpa using egauge_ball_le_of_one_lt_norm hc (.inl one_ne_zero)
Upper Bound for Minkowski Functional of Unit Ball: $\text{egauge}_{\mathbb{K}}(\text{ball}(0, 1), x) \leq \|c\|_e \cdot \|x\|_e$
Informal description
Let $\mathbb{K}$ be a normed field and $E$ a vector space over $\mathbb{K}$. For any $c \in \mathbb{K}$ with $\|c\| > 1$ and any $x \in E$, the Minkowski functional of the unit open ball $\text{ball}(0, 1)$ satisfies: \[ \text{egauge}_{\mathbb{K}}(\text{ball}(0, 1), x) \leq \|c\|_e \cdot \|x\|_e \] where $\|\cdot\|_e$ denotes the extended norm on $\mathbb{K}$.