Informal description
Let $\mathbb{K}$ be a normed field, $\iota$ a finite type, and $E_i$ for $i \in \iota$ and $F$ topological vector spaces over $\mathbb{K}$. The range of the map `toUniformOnFun`, which sends a continuous multilinear map $f \colon \prod_{i \in \iota} E_i \to F$ to the space of functions with the uniform structure of uniform convergence on von Neumann bounded subsets, is equal to the set of functions $f \colon \prod_{i \in \iota} E_i \to F$ such that:
1. $f$ is continuous,
2. For any $m \in \prod_{i \in \iota} E_i$, any $i \in \iota$, and any $x, y \in E_i$, we have
\[
f(m[i \mapsto x + y]) = f(m[i \mapsto x]) + f(m[i \mapsto y]),
\]
3. For any $m \in \prod_{i \in \iota} E_i$, any $i \in \iota$, any $c \in \mathbb{K}$, and any $x \in E_i$, we have
\[
f(m[i \mapsto c \cdot x]) = c \cdot f(m[i \mapsto x]),
\]
where $m[i \mapsto v]$ denotes the function that updates the $i$-th component of $m$ to $v$ while keeping all other components unchanged.