doc-next-gen

Mathlib.Topology.Algebra.UniformConvergence

Module docstring

{"# Algebraic facts about the topology of uniform convergence

This file contains algebraic compatibility results about the uniform structure of uniform convergence / 𝔖-convergence. They will mostly be useful for defining strong topologies on the space of continuous linear maps between two topological vector spaces.

Main statements

  • UniformFun.uniform_group : if G is a uniform group, then α →ᵤ G a uniform group
  • UniformOnFun.uniform_group : if G is a uniform group, then for any 𝔖 : Set (Set α), α →ᵤ[𝔖] G a uniform group.

Implementation notes

Like in Mathlib.Topology.UniformSpace.UniformConvergenceTopology, we use the type aliases UniformFun (denoted α →ᵤ β) and UniformOnFun (denoted α →ᵤ[𝔖] β) for functions from α to β endowed with the structures of uniform convergence and 𝔖-convergence.

References

  • [N. Bourbaki, General Topology, Chapter X][bourbaki1966]
  • [N. Bourbaki, Topological Vector Spaces][bourbaki1987]

Tags

uniform convergence, strong dual

"}

instOneUniformFun instance
[One β] : One (α →ᵤ β)
Full source
@[to_additive] instance [One β] : One (α →ᵤ β) := Pi.instOne
Pointwise One Element on Uniform Functions
Informal description
For any type $\alpha$ and any type $\beta$ equipped with a one element $1$, the type of uniform functions $\alpha \toᵤ \beta$ is also equipped with a one element, defined pointwise as the constant function $x \mapsto 1$.
UniformFun.toFun_one theorem
[One β] : toFun (1 : α →ᵤ β) = 1
Full source
@[to_additive (attr := simp)]
lemma UniformFun.toFun_one [One β] : toFun (1 : α →ᵤ β) = 1 := rfl
Uniform Function to Function Preserves One
Informal description
For any type $\beta$ equipped with a one element $1$, the function `toFun` maps the constant uniform function $1 : \alpha \toᵤ \beta$ to the constant function $x \mapsto 1$ in $\alpha \to \beta$.
UniformFun.ofFun_one theorem
[One β] : ofFun (1 : α → β) = 1
Full source
@[to_additive (attr := simp)]
lemma UniformFun.ofFun_one [One β] : ofFun (1 : α → β) = 1 := rfl
Uniform Function Construction Preserves One Element
Informal description
For any type $\beta$ equipped with a multiplicative identity element $1$, the function `ofFun` maps the constant function $x \mapsto 1$ in $\alpha \to \beta$ to the constant uniform function $1$ in $\alpha \toᵤ \beta$.
instOneUniformOnFun instance
[One β] : One (α →ᵤ[𝔖] β)
Full source
@[to_additive] instance [One β] : One (α →ᵤ[𝔖] β) := Pi.instOne
One Element in Uniformly Convergent Function Space
Informal description
For any type $\beta$ with a one element and any family $\mathfrak{S}$ of subsets of $\alpha$, the space of functions $\alpha \to_{\mathfrak{S}} \beta$ with uniform convergence on $\mathfrak{S}$ has a one element given by the constant function equal to $1$.
UniformOnFun.toFun_one theorem
[One β] : toFun 𝔖 (1 : α →ᵤ[𝔖] β) = 1
Full source
@[to_additive (attr := simp)]
lemma UniformOnFun.toFun_one [One β] : toFun 𝔖 (1 : α →ᵤ[𝔖] β) = 1 := rfl
Uniformly Convergent Function Space Preserves Multiplicative Identity
Informal description
For any type $\beta$ with a multiplicative identity element $1$ and any family $\mathfrak{S}$ of subsets of $\alpha$, the function `toFun 𝔖` maps the constant function $1$ in the space $\alpha \to_{\mathfrak{S}} \beta$ of uniformly convergent functions to the multiplicative identity $1$ in $\beta$.
UniformOnFun.one_apply theorem
[One β] : ofFun 𝔖 (1 : α → β) = 1
Full source
@[to_additive (attr := simp)]
lemma UniformOnFun.one_apply [One β] : ofFun 𝔖 (1 : α → β) = 1 := rfl
Uniformly Convergent Function Space Preserves Constant One Function
Informal description
For any type $\beta$ with a multiplicative identity element $1$ and any family $\mathfrak{S}$ of subsets of $\alpha$, the function `ofFun 𝔖` maps the constant function $1 : \alpha \to \beta$ to the multiplicative identity $1$ in the space $\alpha \to_{\mathfrak{S}} \beta$ of uniformly convergent functions.
instMulUniformFun instance
[Mul β] : Mul (α →ᵤ β)
Full source
@[to_additive] instance [Mul β] : Mul (α →ᵤ β) := Pi.instMul
Pointwise Multiplication on Uniform Functions
Informal description
For any type $\alpha$ and a type $\beta$ equipped with a multiplication operation, the type $\alpha \toᵤ \beta$ of uniform functions from $\alpha$ to $\beta$ inherits a multiplication operation defined pointwise.
UniformFun.toFun_mul theorem
[Mul β] (f g : α →ᵤ β) : toFun (f * g) = toFun f * toFun g
Full source
@[to_additive (attr := simp)]
lemma UniformFun.toFun_mul [Mul β] (f g : α →ᵤ β) : toFun (f * g) = toFun f * toFun g := rfl
Preservation of Multiplication under Uniform Function Conversion
Informal description
For any type $\alpha$ and a type $\beta$ equipped with a multiplication operation, the map `toFun` from uniform functions $\alpha \toᵤ \beta$ to pointwise multiplication preserves the multiplication operation. That is, for any uniform functions $f, g : \alpha \toᵤ \beta$, we have $\text{toFun}(f * g) = \text{toFun}(f) * \text{toFun}(g)$.
UniformFun.ofFun_mul theorem
[Mul β] (f g : α → β) : ofFun (f * g) = ofFun f * ofFun g
Full source
@[to_additive (attr := simp)]
lemma UniformFun.ofFun_mul [Mul β] (f g : α → β) : ofFun (f * g) = ofFun f * ofFun g := rfl
Preservation of Pointwise Multiplication under Uniform Function Construction
Informal description
For any type $\alpha$ and a type $\beta$ equipped with a multiplication operation, the map $\text{ofFun}$ from functions $\alpha \to \beta$ to uniform functions $\alpha \toᵤ \beta$ preserves the pointwise multiplication operation. That is, for any functions $f, g : \alpha \to \beta$, we have $\text{ofFun}(f \cdot g) = \text{ofFun}(f) \cdot \text{ofFun}(g)$.
instMulUniformOnFun instance
[Mul β] : Mul (α →ᵤ[𝔖] β)
Full source
@[to_additive] instance [Mul β] : Mul (α →ᵤ[𝔖] β) := Pi.instMul
Pointwise Multiplication on Uniformly Convergent Functions
Informal description
For any type $\alpha$, a family of subsets $\mathfrak{S}$ of $\alpha$, and a type $\beta$ equipped with a multiplication operation, the space of functions $\alpha \to \beta$ with uniform convergence on $\mathfrak{S}$ inherits a multiplication operation defined pointwise.
UniformOnFun.toFun_mul theorem
[Mul β] (f g : α →ᵤ[𝔖] β) : toFun 𝔖 (f * g) = toFun 𝔖 f * toFun 𝔖 g
Full source
@[to_additive (attr := simp)]
lemma UniformOnFun.toFun_mul [Mul β] (f g : α →ᵤ[𝔖] β) :
    toFun 𝔖 (f * g) = toFun 𝔖 f * toFun 𝔖 g :=
  rfl
Pointwise Multiplication Preserves Uniform $\mathfrak{S}$-Convergence
Informal description
For any type $\alpha$, a family of subsets $\mathfrak{S}$ of $\alpha$, and a type $\beta$ equipped with a multiplication operation, the pointwise product of two uniformly $\mathfrak{S}$-convergent functions $f, g : \alpha \to_{\mathfrak{S}} \beta$ equals the product of their underlying functions. That is, $\operatorname{toFun}_{\mathfrak{S}}(f \cdot g) = \operatorname{toFun}_{\mathfrak{S}}(f) \cdot \operatorname{toFun}_{\mathfrak{S}}(g)$.
UniformOnFun.ofFun_mul theorem
[Mul β] (f g : α → β) : ofFun 𝔖 (f * g) = ofFun 𝔖 f * ofFun 𝔖 g
Full source
@[to_additive (attr := simp)]
lemma UniformOnFun.ofFun_mul [Mul β] (f g : α → β) : ofFun 𝔖 (f * g) = ofFun 𝔖 f * ofFun 𝔖 g := rfl
Uniform $\mathfrak{S}$-Convergence Structure Preserves Pointwise Multiplication
Informal description
For any type $\alpha$, a family of subsets $\mathfrak{S}$ of $\alpha$, and a type $\beta$ equipped with a multiplication operation, the uniform $\mathfrak{S}$-convergence structure on the pointwise product of two functions $f, g : \alpha \to \beta$ is equal to the product of their uniform $\mathfrak{S}$-convergence structures. That is, $\operatorname{ofFun}_{\mathfrak{S}}(f \cdot g) = \operatorname{ofFun}_{\mathfrak{S}}(f) \cdot \operatorname{ofFun}_{\mathfrak{S}}(g)$.
instInvUniformFun instance
[Inv β] : Inv (α →ᵤ β)
Full source
@[to_additive] instance [Inv β] : Inv (α →ᵤ β) := Pi.instInv
Pointwise Inversion on Uniformly Convergent Functions
Informal description
For any type $α$ and any type $β$ equipped with an inversion operation, the type of uniformly convergent functions from $α$ to $β$ is also equipped with an inversion operation, defined pointwise.
UniformFun.toFun_inv theorem
[Inv β] (f : α →ᵤ β) : toFun (f⁻¹) = (toFun f)⁻¹
Full source
@[to_additive (attr := simp)]
lemma UniformFun.toFun_inv [Inv β] (f : α →ᵤ β) : toFun (f⁻¹) = (toFun f)⁻¹ := rfl
Inversion Commutes with Uniform Function Evaluation
Informal description
For any type $\beta$ equipped with an inversion operation and any uniformly convergent function $f \colon \alpha \to_{\text{u}} \beta$, the pointwise inversion of $f$ (as a function) equals the inversion of $f$ (as a uniformly convergent function). That is, $\operatorname{toFun}(f^{-1}) = (\operatorname{toFun} f)^{-1}$.
UniformFun.ofFun_inv theorem
[Inv β] (f : α → β) : ofFun (f⁻¹) = (ofFun f)⁻¹
Full source
@[to_additive (attr := simp)]
lemma UniformFun.ofFun_inv [Inv β] (f : α → β) : ofFun (f⁻¹) = (ofFun f)⁻¹ := rfl
Inversion Commutes with Uniform Function Construction
Informal description
For any type $\beta$ equipped with an inversion operation and any function $f \colon \alpha \to \beta$, the uniform function obtained by applying the inversion pointwise to $f$ is equal to the inversion of the uniform function obtained from $f$. In other words, $\text{ofFun}(f^{-1}) = (\text{ofFun}(f))^{-1}$.
instInvUniformOnFun instance
[Inv β] : Inv (α →ᵤ[𝔖] β)
Full source
@[to_additive] instance [Inv β] : Inv (α →ᵤ[𝔖] β) := Pi.instInv
Inversion Operation on Uniformly Convergent Function Spaces
Informal description
For any type $\beta$ with an inversion operation and any family $\mathfrak{S}$ of subsets of $\alpha$, the space of functions $\alpha \to_{\mathfrak{S}} \beta$ equipped with the uniform convergence topology inherits an inversion operation.
UniformOnFun.toFun_inv theorem
[Inv β] (f : α →ᵤ[𝔖] β) : toFun 𝔖 (f⁻¹) = (toFun 𝔖 f)⁻¹
Full source
@[to_additive (attr := simp)]
lemma UniformOnFun.toFun_inv [Inv β] (f : α →ᵤ[𝔖] β) : toFun 𝔖 (f⁻¹) = (toFun 𝔖 f)⁻¹ := rfl
Inversion Commutes with Evaluation in Uniformly Convergent Function Spaces
Informal description
For any type $\beta$ with an inversion operation and any family $\mathfrak{S}$ of subsets of $\alpha$, the inversion operation on the space of uniformly convergent functions $\alpha \to_{\mathfrak{S}} \beta$ commutes with the evaluation map, i.e., $(f^{-1})(x) = (f(x))^{-1}$ for all $x \in \alpha$.
UniformOnFun.ofFun_inv theorem
[Inv β] (f : α → β) : ofFun 𝔖 (f⁻¹) = (ofFun 𝔖 f)⁻¹
Full source
@[to_additive (attr := simp)]
lemma UniformOnFun.ofFun_inv [Inv β] (f : α → β) : ofFun 𝔖 (f⁻¹) = (ofFun 𝔖 f)⁻¹ := rfl
Inversion Commutes with Uniform Function Embedding
Informal description
For any type $\beta$ with an inversion operation and any family $\mathfrak{S}$ of subsets of $\alpha$, the inversion operation commutes with the embedding of functions into the space of uniformly convergent functions $\alpha \to_{\mathfrak{S}} \beta$. That is, for any function $f : \alpha \to \beta$, we have $\text{ofFun}_{\mathfrak{S}}(f^{-1}) = (\text{ofFun}_{\mathfrak{S}} f)^{-1}$.
instDivUniformFun instance
[Div β] : Div (α →ᵤ β)
Full source
@[to_additive] instance [Div β] : Div (α →ᵤ β) := Pi.instDiv
Pointwise Division on Uniformly Convergent Functions
Informal description
For any type $α$ and any type $β$ equipped with a division operation, the space of uniformly convergent functions $α →ᵤ β$ inherits a division operation defined pointwise.
UniformFun.toFun_div theorem
[Div β] (f g : α →ᵤ β) : toFun (f / g) = toFun f / toFun g
Full source
@[to_additive (attr := simp)]
lemma UniformFun.toFun_div [Div β] (f g : α →ᵤ β) : toFun (f / g) = toFun f / toFun g := rfl
Evaluation Preserves Pointwise Division for Uniformly Convergent Functions
Informal description
For any type $\beta$ equipped with a division operation and any uniformly convergent functions $f, g : \alpha \toᵤ \beta$, the evaluation map $\text{toFun}$ preserves division, i.e., $\text{toFun}(f / g) = \text{toFun}(f) / \text{toFun}(g)$.
UniformFun.ofFun_div theorem
[Div β] (f g : α → β) : ofFun (f / g) = ofFun f / ofFun g
Full source
@[to_additive (attr := simp)]
lemma UniformFun.ofFun_div [Div β] (f g : α → β) : ofFun (f / g) = ofFun f / ofFun g := rfl
Embedding Preserves Pointwise Division for Uniformly Convergent Functions
Informal description
For any type $\alpha$ and any type $\beta$ equipped with a division operation, the embedding `ofFun` from pointwise-divisible functions $\alpha \to \beta$ to uniformly convergent functions $\alpha \toᵤ \beta$ preserves division. That is, for any functions $f, g : \alpha \to \beta$, we have $\text{ofFun}(f/g) = \text{ofFun}(f) / \text{ofFun}(g)$.
instDivUniformOnFun instance
[Div β] : Div (α →ᵤ[𝔖] β)
Full source
@[to_additive] instance [Div β] : Div (α →ᵤ[𝔖] β) := Pi.instDiv
Pointwise Division on Uniformly Convergent Functions
Informal description
For any type $α$, collection of subsets $\mathfrak{S}$ of $α$, and type $β$ equipped with a division operation, the space of functions $α \to_{[\mathfrak{S}]} β$ with uniform convergence on $\mathfrak{S}$ inherits a division operation defined pointwise.
UniformOnFun.toFun_div theorem
[Div β] (f g : α →ᵤ[𝔖] β) : toFun 𝔖 (f / g) = toFun 𝔖 f / toFun 𝔖 g
Full source
@[to_additive (attr := simp)]
lemma UniformOnFun.toFun_div [Div β] (f g : α →ᵤ[𝔖] β) :
    toFun 𝔖 (f / g) = toFun 𝔖 f / toFun 𝔖 g :=
  rfl
Preservation of Division under Uniform Convergence Evaluation
Informal description
For any type $\alpha$, collection of subsets $\mathfrak{S}$ of $\alpha$, and type $\beta$ equipped with a division operation, the evaluation map $\text{toFun}_{\mathfrak{S}}$ from uniformly convergent functions $\alpha \to_{[\mathfrak{S}]} \beta$ to pointwise-divisible functions $\alpha \to \beta$ preserves division. That is, for any functions $f, g : \alpha \to_{[\mathfrak{S}]} \beta$, we have $\text{toFun}_{\mathfrak{S}}(f / g) = \text{toFun}_{\mathfrak{S}} f / \text{toFun}_{\mathfrak{S}} g$.
UniformOnFun.ofFun_div theorem
[Div β] (f g : α → β) : ofFun 𝔖 (f / g) = ofFun 𝔖 f / ofFun 𝔖 g
Full source
@[to_additive (attr := simp)]
lemma UniformOnFun.ofFun_div [Div β] (f g : α → β) : ofFun 𝔖 (f / g) = ofFun 𝔖 f / ofFun 𝔖 g := rfl
Preservation of Division under Uniform Convergence Embedding
Informal description
For any type $\alpha$, collection of subsets $\mathfrak{S}$ of $\alpha$, and type $\beta$ equipped with a division operation, the embedding $\text{ofFun}_{\mathfrak{S}}$ from pointwise-divisible functions $\alpha \to \beta$ to uniformly convergent functions $\alpha \to_{[\mathfrak{S}]} \beta$ preserves division. That is, for any functions $f, g : \alpha \to \beta$, we have $\text{ofFun}_{\mathfrak{S}}(f / g) = \text{ofFun}_{\mathfrak{S}} f / \text{ofFun}_{\mathfrak{S}} g$.
instMonoidUniformFun instance
[Monoid β] : Monoid (α →ᵤ β)
Full source
@[to_additive]
instance [Monoid β] : Monoid (α →ᵤ β) :=
  Pi.monoid
Monoid Structure on Uniformly Convergent Functions
Informal description
For any monoid $\beta$, the space of functions $\alpha \to \beta$ equipped with the uniform convergence topology forms a monoid under pointwise multiplication.
instMonoidUniformOnFun instance
[Monoid β] : Monoid (α →ᵤ[𝔖] β)
Full source
@[to_additive]
instance [Monoid β] : Monoid (α →ᵤ[𝔖] β) :=
  Pi.monoid
Monoid Structure on Uniformly Convergent Functions with Respect to a Collection of Subsets
Informal description
For any monoid $\beta$ and any collection $\mathfrak{S}$ of subsets of $\alpha$, the space of functions $\alpha \to \beta$ equipped with the uniform convergence topology on $\mathfrak{S}$ forms a monoid under pointwise multiplication.
instCommMonoidUniformFun instance
[CommMonoid β] : CommMonoid (α →ᵤ β)
Full source
@[to_additive]
instance [CommMonoid β] : CommMonoid (α →ᵤ β) :=
  Pi.commMonoid
Commutative Monoid Structure on Uniformly Convergent Functions
Informal description
For any commutative monoid $\beta$, the space of functions $\alpha \to \beta$ equipped with the uniform convergence topology forms a commutative monoid under pointwise multiplication.
instCommMonoidUniformOnFun instance
[CommMonoid β] : CommMonoid (α →ᵤ[𝔖] β)
Full source
@[to_additive]
instance [CommMonoid β] : CommMonoid (α →ᵤ[𝔖] β) :=
  Pi.commMonoid
Commutative Monoid Structure on Uniformly Convergent Functions
Informal description
For any commutative monoid $\beta$ and any collection $\mathfrak{S}$ of subsets of $\alpha$, the space of functions $\alpha \to_{\mathfrak{S}} \beta$ equipped with the uniform convergence topology forms a commutative monoid.
instGroupUniformFun instance
[Group β] : Group (α →ᵤ β)
Full source
@[to_additive]
instance [Group β] : Group (α →ᵤ β) :=
  Pi.group
Group Structure on Uniformly Convergent Function Spaces
Informal description
For any group $\beta$, the space of functions $\alpha \to \beta$ equipped with the uniform convergence topology forms a group, where the group operations are defined pointwise.
instGroupUniformOnFun instance
[Group β] : Group (α →ᵤ[𝔖] β)
Full source
@[to_additive]
instance [Group β] : Group (α →ᵤ[𝔖] β) :=
  Pi.group
Group Structure on Uniformly Convergent Function Spaces
Informal description
For any group $\beta$ and any collection $\mathfrak{S}$ of subsets of $\alpha$, the space of functions $\alpha \to_{\mathfrak{S}} \beta$ equipped with the uniform convergence topology forms a group.
instCommGroupUniformFun instance
[CommGroup β] : CommGroup (α →ᵤ β)
Full source
@[to_additive]
instance [CommGroup β] : CommGroup (α →ᵤ β) :=
  Pi.commGroup
Commutative Group Structure on Uniformly Convergent Functions
Informal description
For any commutative group $\beta$, the space of functions $\alpha \to \beta$ with the uniform convergence topology forms a commutative group.
instCommGroupUniformOnFun instance
[CommGroup β] : CommGroup (α →ᵤ[𝔖] β)
Full source
@[to_additive]
instance [CommGroup β] : CommGroup (α →ᵤ[𝔖] β) :=
  Pi.commGroup
Commutative Group Structure on Uniformly Convergent Functions
Informal description
For any commutative group $\beta$ and any collection $\mathfrak{S}$ of subsets of $\alpha$, the space of functions $\alpha \to_{\mathfrak{S}} \beta$ equipped with the uniform convergence topology forms a commutative group.
instSMulUniformFun instance
{M : Type*} [SMul M β] : SMul M (α →ᵤ β)
Full source
instance {M : Type*} [SMul M β] : SMul M (α →ᵤ β) := Pi.instSMul
Scalar Multiplication on Uniformly Convergent Functions
Informal description
For any type $M$ with a scalar multiplication operation on $\beta$, the space of functions $\alpha \to \beta$ with the uniform convergence structure inherits a scalar multiplication operation from $\beta$.
UniformFun.toFun_smul theorem
{M : Type*} [SMul M β] (c : M) (f : α →ᵤ β) : toFun (c • f) = c • toFun f
Full source
@[simp]
lemma UniformFun.toFun_smul {M : Type*} [SMul M β] (c : M) (f : α →ᵤ β) :
    toFun (c • f) = c • toFun f :=
  rfl
Scalar Multiplication Commutes with Uniform Function Evaluation
Informal description
For any type $M$ with a scalar multiplication operation on $\beta$, any scalar $c \in M$, and any uniformly convergent function $f \colon \alpha \to \beta$, the evaluation of the scalar multiple $c \cdot f$ as a function equals the scalar multiple of the evaluation of $f$, i.e., $\text{toFun}(c \cdot f) = c \cdot \text{toFun}(f)$.
UniformFun.ofFun_smul theorem
{M : Type*} [SMul M β] (c : M) (f : α → β) : ofFun (c • f) = c • ofFun f
Full source
@[simp]
lemma UniformFun.ofFun_smul {M : Type*} [SMul M β] (c : M) (f : α → β) :
    ofFun (c • f) = c • ofFun f :=
  rfl
Scalar Multiplication Commutes with Uniform Function Embedding
Informal description
For any type $M$ with a scalar multiplication operation on $\beta$, and for any scalar $c \in M$ and function $f \colon \alpha \to \beta$, the uniform convergence structure's embedding `ofFun` satisfies $\text{ofFun}(c \cdot f) = c \cdot \text{ofFun}(f)$.
instSMulUniformOnFun instance
{M : Type*} [SMul M β] : SMul M (α →ᵤ[𝔖] β)
Full source
instance {M : Type*} [SMul M β] : SMul M (α →ᵤ[𝔖] β) := Pi.instSMul
Scalar Multiplication on Uniformly Convergent Functions
Informal description
For any type $M$ with a scalar multiplication operation on $\beta$, the space of functions $\alpha \to_{\mathfrak{S}} \beta$ (uniformly convergent on sets in $\mathfrak{S}$) inherits a scalar multiplication structure from $\beta$.
UniformOnFun.toFun_smul theorem
{M : Type*} [SMul M β] (c : M) (f : α →ᵤ[𝔖] β) : toFun 𝔖 (c • f) = c • toFun 𝔖 f
Full source
@[simp]
lemma UniformOnFun.toFun_smul {M : Type*} [SMul M β] (c : M) (f : α →ᵤ[𝔖] β) :
    toFun 𝔖 (c • f) = c • toFun 𝔖 f :=
  rfl
Compatibility of Scalar Multiplication with Pointwise Evaluation in Uniform-on-$\mathfrak{S}$ Functions
Informal description
For any type $M$ with a scalar multiplication operation on $\beta$, any scalar $c \in M$, and any function $f \colon \alpha \to_{\mathfrak{S}} \beta$ (uniformly convergent on sets in $\mathfrak{S}$), the pointwise evaluation of the scalar multiplication $c \cdot f$ equals the scalar multiplication of $c$ with the pointwise evaluation of $f$. In symbols: $$ \text{toFun}_{\mathfrak{S}}(c \cdot f) = c \cdot \text{toFun}_{\mathfrak{S}}(f). $$
UniformOnFun.ofFun_smul theorem
{M : Type*} [SMul M β] (c : M) (f : α → β) : ofFun 𝔖 (c • f) = c • ofFun 𝔖 f
Full source
@[simp]
lemma UniformOnFun.ofFun_smul {M : Type*} [SMul M β] (c : M) (f : α → β) :
    ofFun 𝔖 (c • f) = c • ofFun 𝔖 f :=
  rfl
Compatibility of Pointwise Scalar Multiplication with Uniform-on-$\mathfrak{S}$ Construction
Informal description
For any type $M$ with a scalar multiplication operation on $\beta$, any scalar $c \in M$, and any function $f \colon \alpha \to \beta$, the uniform-on-$\mathfrak{S}$ function obtained from the pointwise scalar multiplication $c \cdot f$ is equal to the scalar multiplication of $c$ with the uniform-on-$\mathfrak{S}$ function obtained from $f$. In symbols: $$ \text{ofFun}_{\mathfrak{S}}(c \cdot f) = c \cdot \text{ofFun}_{\mathfrak{S}}(f). $$
instIsScalarTowerUniformFun instance
{M N : Type*} [SMul M N] [SMul M β] [SMul N β] [IsScalarTower M N β] : IsScalarTower M N (α →ᵤ β)
Full source
instance {M N : Type*} [SMul M N] [SMul M β] [SMul N β] [IsScalarTower M N β] :
    IsScalarTower M N (α →ᵤ β) :=
  Pi.isScalarTower
Scalar Tower Structure on Uniformly Convergent Functions
Informal description
For any types $M$ and $N$ with scalar multiplication operations on $\beta$ such that $M$ and $N$ form a scalar tower over $\beta$, the space of uniformly convergent functions $\alpha \to \beta$ also forms a scalar tower with $M$ and $N$.
instIsScalarTowerUniformOnFun instance
{M N : Type*} [SMul M N] [SMul M β] [SMul N β] [IsScalarTower M N β] : IsScalarTower M N (α →ᵤ[𝔖] β)
Full source
instance {M N : Type*} [SMul M N] [SMul M β] [SMul N β] [IsScalarTower M N β] :
    IsScalarTower M N (α →ᵤ[𝔖] β) :=
  Pi.isScalarTower
Scalar Multiplication Tower Property for Uniformly Convergent Functions
Informal description
For any types $M$ and $N$ with scalar multiplication operations on $\beta$ such that $M$ acts on $N$ and $\beta$, and the scalar multiplications satisfy the tower property $(m \cdot n) \cdot b = m \cdot (n \cdot b)$ for all $m \in M$, $n \in N$, and $b \in \beta$, the space of functions $\alpha \to_{\mathfrak{S}} \beta$ (uniformly convergent on sets in $\mathfrak{S}$) inherits the tower property for scalar multiplication.
instSMulCommClassUniformFun instance
{M N : Type*} [SMul M β] [SMul N β] [SMulCommClass M N β] : SMulCommClass M N (α →ᵤ β)
Full source
instance {M N : Type*} [SMul M β] [SMul N β] [SMulCommClass M N β] :
    SMulCommClass M N (α →ᵤ β) :=
  Pi.smulCommClass
Commuting Scalar Multiplication on Uniformly Convergent Functions
Informal description
For any types $M$ and $N$ with scalar multiplication operations on $\beta$ that commute with each other, the space of functions $\alpha \to \beta$ with the uniform convergence structure inherits commuting scalar multiplication operations from $M$ and $N$.
instSMulCommClassUniformOnFun instance
{M N : Type*} [SMul M β] [SMul N β] [SMulCommClass M N β] : SMulCommClass M N (α →ᵤ[𝔖] β)
Full source
instance {M N : Type*} [SMul M β] [SMul N β] [SMulCommClass M N β] :
    SMulCommClass M N (α →ᵤ[𝔖] β) :=
  Pi.smulCommClass
Commutativity of Scalar Actions on Uniformly Convergent Functions
Informal description
For any types $M$ and $N$ with scalar multiplication operations on $\beta$ that commute with each other, the space of functions $\alpha \to_{\mathfrak{S}} \beta$ (uniformly convergent on sets in $\mathfrak{S}$) inherits a scalar multiplication structure where the actions of $M$ and $N$ commute.
instMulActionUniformFun instance
{M : Type*} [Monoid M] [MulAction M β] : MulAction M (α →ᵤ β)
Full source
instance {M : Type*} [Monoid M] [MulAction M β] : MulAction M (α →ᵤ β) := Pi.mulAction _
Multiplicative Action on Uniformly Convergent Functions
Informal description
For any monoid $M$ acting on a type $\beta$, the space of functions $\alpha \to \beta$ with the uniform convergence topology inherits a multiplicative action from $M$.
instMulActionUniformOnFun instance
{M : Type*} [Monoid M] [MulAction M β] : MulAction M (α →ᵤ[𝔖] β)
Full source
instance {M : Type*} [Monoid M] [MulAction M β] : MulAction M (α →ᵤ[𝔖] β) := Pi.mulAction _
Multiplicative Action on Uniformly Convergent Functions
Informal description
For any monoid $M$ acting on a type $\beta$, the space of functions $\alpha \to_{\mathfrak{S}} \beta$ (uniformly convergent on sets in $\mathfrak{S}$) inherits a multiplicative action from $M$.
instDistribMulActionUniformFun instance
{M : Type*} [Monoid M] [AddMonoid β] [DistribMulAction M β] : DistribMulAction M (α →ᵤ β)
Full source
instance {M : Type*} [Monoid M] [AddMonoid β] [DistribMulAction M β] :
    DistribMulAction M (α →ᵤ β) :=
  Pi.distribMulAction _
Distributive Multiplicative Action on Uniformly Convergent Functions
Informal description
For any monoid $M$ and an additive monoid $\beta$ equipped with a distributive multiplicative action of $M$, the space of functions $\alpha \to \beta$ with the uniform convergence topology inherits a distributive multiplicative action from $M$.
instDistribMulActionUniformOnFun instance
{M : Type*} [Monoid M] [AddMonoid β] [DistribMulAction M β] : DistribMulAction M (α →ᵤ[𝔖] β)
Full source
instance {M : Type*} [Monoid M] [AddMonoid β] [DistribMulAction M β] :
    DistribMulAction M (α →ᵤ[𝔖] β) :=
  Pi.distribMulAction _
Distributive Multiplicative Action on Uniformly Convergent Functions
Informal description
For any monoid $M$, additive monoid $\beta$, and distributive multiplicative action of $M$ on $\beta$, the space of functions $\alpha \to_{\mathfrak{S}} \beta$ (uniformly convergent on sets in $\mathfrak{S}$) inherits a distributive multiplicative action from $M$.
instModuleUniformFun instance
[Semiring R] [AddCommMonoid β] [Module R β] : Module R (α →ᵤ β)
Full source
instance [Semiring R] [AddCommMonoid β] [Module R β] : Module R (α →ᵤ β) :=
  Pi.module _ _ _
Module Structure on Uniformly Convergent Functions
Informal description
For any semiring $R$, additively commutative monoid $\beta$, and module structure of $R$ over $\beta$, the space of uniformly convergent functions $\alpha \to \beta$ inherits a canonical $R$-module structure.
instModuleUniformOnFun instance
[Semiring R] [AddCommMonoid β] [Module R β] : Module R (α →ᵤ[𝔖] β)
Full source
instance [Semiring R] [AddCommMonoid β] [Module R β] : Module R (α →ᵤ[𝔖] β) :=
  Pi.module _ _ _
Module Structure on Uniformly Convergent Functions
Informal description
For any semiring $R$, additively commutative monoid $\beta$ with an $R$-module structure, and any family $\mathfrak{S}$ of subsets of $\alpha$, the space of functions $\alpha \to_{\mathfrak{S}} \beta$ (endowed with the uniform convergence structure on $\mathfrak{S}$) inherits an $R$-module structure.
instIsUniformGroupUniformFun instance
: IsUniformGroup (α →ᵤ G)
Full source
/-- If `G` is a uniform group, then `α →ᵤ G` is a uniform group as well. -/
@[to_additive "If `G` is a uniform additive group,
then `α →ᵤ G` is a uniform additive group as well."]
instance : IsUniformGroup (α →ᵤ G) :=
  ⟨(-- Since `(/) : G × G → G` is uniformly continuous,
    -- `UniformFun.postcomp_uniformContinuous` tells us that
    -- `((/) ∘ —) : (α →ᵤ G × G) → (α →ᵤ G)` is uniformly continuous too. By precomposing with
    -- `UniformFun.uniformEquivProdArrow`, this gives that
    -- `(/) : (α →ᵤ G) × (α →ᵤ G) → (α →ᵤ G)` is also uniformly continuous
    UniformFun.postcomp_uniformContinuous uniformContinuous_div).comp
    UniformFun.uniformEquivProdArrow.symm.uniformContinuous⟩
Uniform Group Structure on Uniformly Convergent Function Spaces
Informal description
For any uniform group $G$, the space of uniformly convergent functions $\alpha \to G$ forms a uniform group, where the group operations are defined pointwise and the uniform structure is inherited from $G$.
UniformFun.hasBasis_nhds_one_of_basis theorem
{p : ι → Prop} {b : ι → Set G} (h : (𝓝 1 : Filter G).HasBasis p b) : (𝓝 1 : Filter (α →ᵤ G)).HasBasis p fun i => {f : α →ᵤ G | ∀ x, toFun f x ∈ b i}
Full source
@[to_additive]
protected theorem UniformFun.hasBasis_nhds_one_of_basis {p : ι → Prop} {b : ι → Set G}
    (h : (𝓝 1 : Filter G).HasBasis p b) :
    (𝓝 1 : Filter (α →ᵤ G)).HasBasis p fun i => { f : α →ᵤ G | ∀ x, toFun f x ∈ b i } := by
  convert UniformFun.hasBasis_nhds_of_basis α _ (1 : α →ᵤ G) h.uniformity_of_nhds_one
  simp
Neighborhood Basis at Identity for Uniform Functions via Basis on $G$
Informal description
Let $G$ be a topological group with a neighborhood basis $\{b_i\}_{i \in \iota}$ at the identity element $1$, indexed by a predicate $p$ on $\iota$. Then the neighborhood basis at the identity in the space of uniform functions $\alpha \toᵤ G$ is given by the sets $\{f : \alpha \to G \mid \forall x, f(x) \in b_i\}$ for each $i \in \iota$ satisfying $p(i)$.
UniformFun.hasBasis_nhds_one theorem
: (𝓝 1 : Filter (α →ᵤ G)).HasBasis (fun V : Set G => V ∈ (𝓝 1 : Filter G)) fun V => {f : α → G | ∀ x, f x ∈ V}
Full source
@[to_additive]
protected theorem UniformFun.hasBasis_nhds_one :
    (𝓝 1 : Filter (α →ᵤ G)).HasBasis (fun V : Set G => V ∈ (𝓝 1 : Filter G)) fun V =>
      { f : α → G | ∀ x, f x ∈ V } :=
  UniformFun.hasBasis_nhds_one_of_basis (basis_sets _)
Basis for Identity Neighborhood Filter in Uniform Function Space
Informal description
The neighborhood filter of the identity element in the space of uniform functions $\alpha \toᵤ G$ has a basis consisting of sets of the form $\{f : \alpha \to G \mid \forall x, f(x) \in V\}$, where $V$ ranges over all neighborhoods of the identity in $G$.
instIsUniformGroupUniformOnFun instance
: IsUniformGroup (α →ᵤ[𝔖] G)
Full source
/-- Let `𝔖 : Set (Set α)`. If `G` is a uniform group, then `α →ᵤ[𝔖] G` is a uniform group as
well. -/
@[to_additive "Let `𝔖 : Set (Set α)`. If `G` is a uniform additive group,
then `α →ᵤ[𝔖] G` is a uniform additive group as well."]
instance : IsUniformGroup (α →ᵤ[𝔖] G) :=
  ⟨(-- Since `(/) : G × G → G` is uniformly continuous,
    -- `UniformOnFun.postcomp_uniformContinuous` tells us that
    -- `((/) ∘ —) : (α →ᵤ[𝔖] G × G) → (α →ᵤ[𝔖] G)` is uniformly continuous too. By precomposing with
    -- `UniformOnFun.uniformEquivProdArrow`, this gives that
    -- `(/) : (α →ᵤ[𝔖] G) × (α →ᵤ[𝔖] G) → (α →ᵤ[𝔖] G)` is also uniformly continuous
    UniformOnFun.postcomp_uniformContinuous uniformContinuous_div).comp
    UniformOnFun.uniformEquivProdArrow.symm.uniformContinuous⟩
Uniform Group Structure on Uniformly Convergent Function Spaces
Informal description
For any uniform group $G$ and any collection $\mathfrak{S}$ of subsets of $\alpha$, the space of functions $\alpha \to_{\mathfrak{S}} G$ equipped with the uniform convergence topology is a uniform group.
UniformOnFun.hasBasis_nhds_one_of_basis theorem
(𝔖 : Set <| Set α) (h𝔖₁ : 𝔖.Nonempty) (h𝔖₂ : DirectedOn (· ⊆ ·) 𝔖) {p : ι → Prop} {b : ι → Set G} (h : (𝓝 1 : Filter G).HasBasis p b) : (𝓝 1 : Filter (α →ᵤ[𝔖] G)).HasBasis (fun Si : Set α × ι => Si.1 ∈ 𝔖 ∧ p Si.2) fun Si => {f : α →ᵤ[𝔖] G | ∀ x ∈ Si.1, toFun 𝔖 f x ∈ b Si.2}
Full source
@[to_additive]
protected theorem UniformOnFun.hasBasis_nhds_one_of_basis (𝔖 : Set <| Set α) (h𝔖₁ : 𝔖.Nonempty)
    (h𝔖₂ : DirectedOn (· ⊆ ·) 𝔖) {p : ι → Prop} {b : ι → Set G}
    (h : (𝓝 1 : Filter G).HasBasis p b) :
    (𝓝 1 : Filter (α →ᵤ[𝔖] G)).HasBasis (fun Si : SetSet α × ι => Si.1 ∈ 𝔖Si.1 ∈ 𝔖 ∧ p Si.2) fun Si =>
      { f : α →ᵤ[𝔖] G | ∀ x ∈ Si.1, toFun 𝔖 f x ∈ b Si.2 } := by
  convert UniformOnFun.hasBasis_nhds_of_basis α _ 𝔖 (1 : α →ᵤ[𝔖] G) h𝔖₁ h𝔖₂ <|
    h.uniformity_of_nhds_one_swapped
  simp [UniformOnFun.gen]
Basis for Identity Neighborhood Filter in Uniformly Convergent Function Space
Informal description
Let $\mathfrak{S}$ be a nonempty family of subsets of $\alpha$ that is directed under inclusion, and let $G$ be a topological group with a filter basis $\{b_i\}_{i \in \iota}$ for the neighborhood filter of the identity, indexed by a predicate $p$. Then the neighborhood filter of the identity in the space of functions $\alpha \to_{\mathfrak{S}} G$ (with uniform convergence on $\mathfrak{S}$) has a basis consisting of sets of the form $\{f \mid \forall x \in S, f(x) \in b_i\}$ where $S \in \mathfrak{S}$ and $p(i)$ holds.
UniformOnFun.hasBasis_nhds_one theorem
(𝔖 : Set <| Set α) (h𝔖₁ : 𝔖.Nonempty) (h𝔖₂ : DirectedOn (· ⊆ ·) 𝔖) : (𝓝 1 : Filter (α →ᵤ[𝔖] G)).HasBasis (fun SV : Set α × Set G => SV.1 ∈ 𝔖 ∧ SV.2 ∈ (𝓝 1 : Filter G)) fun SV => {f : α →ᵤ[𝔖] G | ∀ x ∈ SV.1, f x ∈ SV.2}
Full source
@[to_additive]
protected theorem UniformOnFun.hasBasis_nhds_one (𝔖 : Set <| Set α) (h𝔖₁ : 𝔖.Nonempty)
    (h𝔖₂ : DirectedOn (· ⊆ ·) 𝔖) :
    (𝓝 1 : Filter (α →ᵤ[𝔖] G)).HasBasis
      (fun SV : SetSet α × Set G => SV.1 ∈ 𝔖SV.1 ∈ 𝔖 ∧ SV.2 ∈ (𝓝 1 : Filter G)) fun SV =>
      { f : α →ᵤ[𝔖] G | ∀ x ∈ SV.1, f x ∈ SV.2 } :=
  UniformOnFun.hasBasis_nhds_one_of_basis 𝔖 h𝔖₁ h𝔖₂ (basis_sets _)
Basis for Identity Neighborhood Filter in Uniformly Convergent Function Space
Informal description
Let $\mathfrak{S}$ be a nonempty family of subsets of $\alpha$ that is directed under inclusion, and let $G$ be a topological group. Then the neighborhood filter of the identity in the space of functions $\alpha \to_{\mathfrak{S}} G$ (with uniform convergence on $\mathfrak{S}$) has a basis consisting of sets of the form $\{f \mid \forall x \in S, f(x) \in V\}$ where $S \in \mathfrak{S}$ and $V$ is a neighborhood of the identity in $G$.
UniformFun.uniformContinuousConstSMul instance
: UniformContinuousConstSMul M (α →ᵤ X)
Full source
instance UniformFun.uniformContinuousConstSMul :
    UniformContinuousConstSMul M (α →ᵤ X) where
  uniformContinuous_const_smul c := UniformFun.postcomp_uniformContinuous <|
    uniformContinuous_const_smul c
Uniformly Continuous Scalar Multiplication on Uniformly Convergent Functions
Informal description
For any type $M$ with a scalar multiplication operation on a uniform space $X$, the space of functions $\alpha \to X$ with the uniform convergence structure has uniformly continuous scalar multiplication. That is, for each $c \in M$, the map $f \mapsto c \cdot f$ is uniformly continuous on $\alpha \to X$.
UniformFunOn.uniformContinuousConstSMul instance
{𝔖 : Set (Set α)} : UniformContinuousConstSMul M (α →ᵤ[𝔖] X)
Full source
instance UniformFunOn.uniformContinuousConstSMul {𝔖 : Set (Set α)} :
    UniformContinuousConstSMul M (α →ᵤ[𝔖] X) where
  uniformContinuous_const_smul c := UniformOnFun.postcomp_uniformContinuous <|
    uniformContinuous_const_smul c
Uniformly Continuous Scalar Multiplication on Uniformly Convergent Functions
Informal description
For any type $M$ with a scalar multiplication operation on a uniform space $X$, the space of functions $\alpha \to_{\mathfrak{S}} X$ (uniformly convergent on sets in $\mathfrak{S}$) has uniformly continuous scalar multiplication. This means that for each $c \in M$, the map $f \mapsto c \cdot f$ is uniformly continuous on $\alpha \to_{\mathfrak{S}} X$.