doc-next-gen

Mathlib.Topology.Algebra.Module.UniformConvergence

Module docstring

{"# Algebraic facts about the topology of uniform convergence

This file contains algebraic compatibility results about the uniform structure of uniform convergence / ๐”–-convergence. They will mostly be useful for defining strong topologies on the space of continuous linear maps between two topological vector spaces.

Main statements

  • UniformOnFun.continuousSMul_induced_of_image_bounded : let E be a TVS, ๐”– : Set (Set ฮฑ) and H a submodule of ฮฑ โ†’แตค[๐”–] E. If the image of any S โˆˆ ๐”– by any u โˆˆ H is bounded (in the sense of Bornology.IsVonNBounded), then H, equipped with the topology induced from ฮฑ โ†’แตค[๐”–] E, is a TVS.

Implementation notes

Like in Mathlib.Topology.UniformSpace.UniformConvergenceTopology, we use the type aliases UniformFun (denoted ฮฑ โ†’แตค ฮฒ) and UniformOnFun (denoted ฮฑ โ†’แตค[๐”–] ฮฒ) for functions from ฮฑ to ฮฒ endowed with the structures of uniform convergence and ๐”–-convergence.

References

  • [N. Bourbaki, General Topology, Chapter X][bourbaki1966]
  • [N. Bourbaki, Topological Vector Spaces][bourbaki1987]

Tags

uniform convergence, strong dual

"}

UniformFun.continuousSMul_induced_of_range_bounded theorem
(ฯ† : hom) (hฯ† : IsInducing (ofFun โˆ˜ ฯ†)) (h : โˆ€ u : H, Bornology.IsVonNBounded ๐•œ (Set.range (ฯ† u))) : ContinuousSMul ๐•œ H
Full source
/-- Let `E` be a topological vector space over a normed field `๐•œ`, let `ฮฑ` be any type.
Let `H` be a submodule of `ฮฑ โ†’แตค E` such that the range of each `f โˆˆ H` is von Neumann bounded.
Then `H` is a topological vector space over `๐•œ`,
i.e., the pointwise scalar multiplication is continuous in both variables.

For convenience we require that `H` is a vector space over `๐•œ`
with a topology induced by `UniformFun.ofFun โˆ˜ ฯ†`, where `ฯ† : H โ†’โ‚—[๐•œ] (ฮฑ โ†’ E)`. -/
lemma UniformFun.continuousSMul_induced_of_range_bounded (ฯ† : hom)
    (hฯ† : IsInducing (ofFunofFun โˆ˜ ฯ†)) (h : โˆ€ u : H, Bornology.IsVonNBounded ๐•œ (Set.range (ฯ† u))) :
    ContinuousSMul ๐•œ H := by
  have : IsTopologicalAddGroup H :=
    let ofFun' : (ฮฑ โ†’ E) โ†’+ (ฮฑ โ†’แตค E) := AddMonoidHom.id _
    IsInducing.topologicalAddGroup (ofFun'.comp (ฯ† : H โ†’+ (ฮฑ โ†’ E))) hฯ†
  have hb : (๐“ (0 : H)).HasBasis (ยท โˆˆ ๐“ (0 : E)) fun V โ†ฆ {u | โˆ€ x, ฯ† u x โˆˆ V} := by
    simp only [hฯ†.nhds_eq_comap, Function.comp_apply, map_zero]
    exact UniformFun.hasBasis_nhds_zero.comap _
  apply ContinuousSMul.of_basis_zero hb
  ยท intro U hU
    have : Tendsto (fun x : ๐•œ ร— E โ†ฆ x.1 โ€ข x.2) (๐“ 0) (๐“ 0) :=
      continuous_smul.tendsto' _ _ (zero_smul _ _)
    rcases ((Filter.basis_sets _).prod_nhds (Filter.basis_sets _)).tendsto_left_iff.1 this U hU
      with โŸจโŸจV, WโŸฉ, โŸจhV, hWโŸฉ, hVWโŸฉ
    refine โŸจV, hV, W, hW, Set.smul_subset_iff.2 fun a ha u hu x โ†ฆ ?_โŸฉ
    rw [map_smul]
    exact hVW (Set.mk_mem_prod ha (hu x))
  ยท intro c U hU
    have : Tendsto (c โ€ข ยท : E โ†’ E) (๐“ 0) (๐“ 0) :=
      (continuous_const_smul c).tendsto' _ _ (smul_zero _)
    refine โŸจ_, this hU, fun u hu x โ†ฆ ?_โŸฉ
    simpa only [map_smul] using hu x
  ยท intro u U hU
    simp only [Set.mem_setOf_eq, map_smul, Pi.smul_apply]
    simpa only [Set.mapsTo_range_iff] using (h u hU).eventually_nhds_zero (mem_of_mem_nhds hU)
Continuity of Scalar Multiplication in Induced Topology for Uniform Function Spaces with Bounded Range
Informal description
Let $E$ be a topological vector space over a normed field $\mathbb{K}$, and let $\alpha$ be any type. Let $H$ be a submodule of the space $\alpha \to_{\text{u}} E$ of functions from $\alpha$ to $E$ equipped with the uniform convergence structure. Suppose that: 1. The topology on $H$ is induced by the composition $\text{ofFun} \circ \varphi$, where $\varphi : H \to \alpha \to E$ is a linear map. 2. For every $u \in H$, the range of $\varphi(u)$ is von Neumann bounded in $E$. Then the scalar multiplication operation $\mathbb{K} \times H \to H$ is jointly continuous, making $H$ a topological vector space over $\mathbb{K}$.
UniformOnFun.continuousSMul_induced_of_image_bounded theorem
(ฯ† : hom) (hฯ† : IsInducing (ofFun ๐”– โˆ˜ ฯ†)) (h : โˆ€ u : H, โˆ€ s โˆˆ ๐”–, Bornology.IsVonNBounded ๐•œ ((ฯ† u : ฮฑ โ†’ E) '' s)) : ContinuousSMul ๐•œ H
Full source
/-- Let `E` be a TVS, `๐”– : Set (Set ฮฑ)` and `H` a submodule of `ฮฑ โ†’แตค[๐”–] E`. If the image of any
`S โˆˆ ๐”–` by any `u โˆˆ H` is bounded (in the sense of `Bornology.IsVonNBounded`), then `H`,
equipped with the topology of `๐”–`-convergence, is a TVS.

For convenience, we don't literally ask for `H : Submodule (ฮฑ โ†’แตค[๐”–] E)`. Instead, we prove the
result for any vector space `H` equipped with a linear inducing to `ฮฑ โ†’แตค[๐”–] E`, which is often
easier to use. We also state the `Submodule` version as
`UniformOnFun.continuousSMul_submodule_of_image_bounded`. -/
lemma UniformOnFun.continuousSMul_induced_of_image_bounded (ฯ† : hom) (hฯ† : IsInducing (ofFunofFun ๐”– โˆ˜ ฯ†))
    (h : โˆ€ u : H, โˆ€ s โˆˆ ๐”–, Bornology.IsVonNBounded ๐•œ ((ฯ† u : ฮฑ โ†’ E) '' s)) :
    ContinuousSMul ๐•œ H := by
  obtain rfl := hฯ†.eq_induced; clear hฯ†
  simp only [induced_iInf, UniformOnFun.topologicalSpace_eq, induced_compose]
  refine continuousSMul_iInf fun s โ†ฆ continuousSMul_iInf fun hs โ†ฆ ?_
  letI : TopologicalSpace H :=
    .induced (UniformFun.ofFunUniformFun.ofFun โˆ˜ s.restrict โˆ˜ ฯ†) (UniformFun.topologicalSpace s E)
  set ฯ†' : H โ†’โ‚—[๐•œ] (s โ†’ E) :=
    { toFun := s.restrict โˆ˜ ฯ†,
      map_smul' := fun c x โ†ฆ by exact congr_arg s.restrict (map_smul ฯ† c x),
      map_add' := fun x y โ†ฆ by exact congr_arg s.restrict (map_add ฯ† x y) }
  refine UniformFun.continuousSMul_induced_of_range_bounded ๐•œ s E H ฯ†' โŸจrflโŸฉ fun u โ†ฆ ?_
  simpa only [Set.image_eq_range] using h u s hs
Continuity of Scalar Multiplication in Induced Topology for $\mathfrak{S}$-Convergence with Bounded Images
Informal description
Let $E$ be a topological vector space over a normed field $\mathbb{K}$, $\mathfrak{S}$ a family of subsets of $\alpha$, and $H$ a vector space equipped with a linear map $\varphi : H \to \alpha \to E$. Suppose that: 1. The topology on $H$ is induced by the composition $\text{ofFun}_{\mathfrak{S}} \circ \varphi$, where $\text{ofFun}_{\mathfrak{S}}$ is the canonical embedding into the space $\alpha \to_{\mathfrak{S}} E$ of functions with $\mathfrak{S}$-convergence. 2. For every $u \in H$ and every $S \in \mathfrak{S}$, the image $(\varphi u)(S)$ is von Neumann bounded in $E$. Then the scalar multiplication operation $\mathbb{K} \times H \to H$ is jointly continuous, making $H$ a topological vector space over $\mathbb{K}$.
UniformOnFun.continuousSMul_submodule_of_image_bounded theorem
(H : Submodule ๐•œ (ฮฑ โ†’แตค[๐”–] E)) (h : โˆ€ u โˆˆ H, โˆ€ s โˆˆ ๐”–, Bornology.IsVonNBounded ๐•œ (u '' s)) : @ContinuousSMul ๐•œ H _ _ ((UniformOnFun.topologicalSpace ฮฑ E ๐”–).induced ((โ†‘) : H โ†’ ฮฑ โ†’แตค[๐”–] E))
Full source
/-- Let `E` be a TVS, `๐”– : Set (Set ฮฑ)` and `H` a submodule of `ฮฑ โ†’แตค[๐”–] E`. If the image of any
`S โˆˆ ๐”–` by any `u โˆˆ H` is bounded (in the sense of `Bornology.IsVonNBounded`), then `H`,
equipped with the topology of `๐”–`-convergence, is a TVS.

If you have a hard time using this lemma, try the one above instead. -/
theorem UniformOnFun.continuousSMul_submodule_of_image_bounded (H : Submodule ๐•œ (ฮฑ โ†’แตค[๐”–] E))
    (h : โˆ€ u โˆˆ H, โˆ€ s โˆˆ ๐”–, Bornology.IsVonNBounded ๐•œ (u '' s)) :
    @ContinuousSMul ๐•œ H _ _ ((UniformOnFun.topologicalSpace ฮฑ E ๐”–).induced ((โ†‘) : H โ†’ ฮฑ โ†’แตค[๐”–] E)) :=
  UniformOnFun.continuousSMul_induced_of_image_bounded ๐•œ ฮฑ E H
    (LinearMap.id.domRestrict H : H โ†’โ‚—[๐•œ] ฮฑ โ†’ E) IsInducing.subtypeVal fun โŸจu, huโŸฉ => h u hu
Continuity of Scalar Multiplication for Submodules with Bounded Images under $\mathfrak{S}$-Convergence
Informal description
Let $E$ be a topological vector space over a normed field $\mathbb{K}$, $\mathfrak{S}$ a family of subsets of $\alpha$, and $H$ a submodule of the space $\alpha \to_{\mathfrak{S}} E$ of functions with $\mathfrak{S}$-convergence. Suppose that for every $u \in H$ and every $S \in \mathfrak{S}$, the image $u(S)$ is von Neumann bounded in $E$. Then $H$, equipped with the topology induced from $\alpha \to_{\mathfrak{S}} E$, is a topological vector space over $\mathbb{K}$ (i.e., scalar multiplication is jointly continuous).