Module docstring
{"# Affine bases and barycentric coordinates
Suppose P is an affine space modelled on the module V over the ring k, and p : ι → P is an
affine-independent family of points spanning P. Given this data, each point q : P may be written
uniquely as an affine combination: q = w₀ p₀ + w₁ p₁ + ⋯ for some (finitely-supported) weights
wᵢ. For each i : ι, we thus have an affine map P →ᵃ[k] k, namely q ↦ wᵢ. This family of
maps is known as the family of barycentric coordinates. It is defined in this file.
The construction
Fixing i : ι, and allowing j : ι to range over the values j ≠ i, we obtain a basis bᵢ of V
defined by bᵢ j = p j -ᵥ p i. Let fᵢ j : V →ₗ[k] k be the corresponding dual basis and let
fᵢ = ∑ j, fᵢ j : V →ₗ[k] k be the corresponding \"sum of all coordinates\" form. Then the ith
barycentric coordinate of q : P is 1 - fᵢ (q -ᵥ p i).
Main definitions
AffineBasis: a structure representing an affine basis of an affine space.AffineBasis.coord: the mapP →ᵃ[k] kcorresponding toi : ι.AffineBasis.coord_apply_eq: the behaviour ofAffineBasis.coord ionp i.AffineBasis.coord_apply_ne: the behaviour ofAffineBasis.coord ionp jwhenj ≠ i.AffineBasis.coord_apply: the behaviour ofAffineBasis.coord ionp jfor generalj.AffineBasis.coord_apply_combination: the characterisation ofAffineBasis.coord iin terms of affine combinations, i.e.,AffineBasis.coord i (w₀ p₀ + w₁ p₁ + ⋯) = wᵢ.
TODO
- Construct the affine equivalence between 
Pand{ f : ι →₀ k | f.sum = 1 }. 
"}