Module docstring
{"# Canonical homomorphism from a finite family of monoids
This file defines the construction of the canonical homomorphism from a family of monoids.
Given a family of morphisms ϕ i : N i →* M for each i : ι where elements in the
images of different morphisms commute, we obtain a canonical morphism
MonoidHom.noncommPiCoprod : (Π i, N i) →* M that coincides with ϕ
Main definitions
MonoidHom.noncommPiCoprod : (Π i, N i) →* Mis the main homomorphismSubgroup.noncommPiCoprod : (Π i, H i) →* Gis the specialization toH i : Subgroup Gand the subgroup embedding.
Main theorems
MonoidHom.noncommPiCoprodcoincides withϕ iwhen restricted toN iMonoidHom.noncommPiCoprod_mrange: The range ofMonoidHom.noncommPiCoprodis⨆ (i : ι), (ϕ i).mrangeMonoidHom.noncommPiCoprod_range: The range ofMonoidHom.noncommPiCoprodis⨆ (i : ι), (ϕ i).rangeSubgroup.noncommPiCoprod_range: The range ofSubgroup.noncommPiCoprodis⨆ (i : ι), H i.MonoidHom.injective_noncommPiCoprod_of_iSupIndep: in the case of groups,pi_hom.homis injective if theϕare injective and the ranges of theϕare independent.MonoidHom.independent_range_of_coprime_order: If theN ihave coprime orders, then the ranges of theϕare independent.Subgroup.independent_of_coprime_order: If commuting normal subgroupsH ihave coprime orders, they are independent.
"}