Module docstring
{"# Submodules of normed groups "}
{"# Submodules of normed groups "}
Submodule.seminormedAddCommGroup
instance
[Ring 𝕜] [SeminormedAddCommGroup E] [Module 𝕜 E] (s : Submodule 𝕜 E) : SeminormedAddCommGroup s
/-- A submodule of a seminormed group is also a seminormed group, with the restriction of the norm.
-/
instance seminormedAddCommGroup [Ring 𝕜] [SeminormedAddCommGroup E] [Module 𝕜 E]
(s : Submodule 𝕜 E) : SeminormedAddCommGroup s :=
SeminormedAddCommGroup.induced _ _ s.subtype.toAddMonoidHom
Submodule.coe_norm
theorem
[Ring 𝕜] [SeminormedAddCommGroup E] [Module 𝕜 E] {s : Submodule 𝕜 E} (x : s) : ‖x‖ = ‖(x : E)‖
Submodule.norm_coe
theorem
[Ring 𝕜] [SeminormedAddCommGroup E] [Module 𝕜 E] {s : Submodule 𝕜 E} (x : s) : ‖(x : E)‖ = ‖x‖
/-- If `x` is an element of a submodule `s` of a normed group `E`, its norm in `E` is equal to its
norm in `s`.
This is a reversed version of the `simp` lemma `Submodule.coe_norm` for use by `norm_cast`. -/
@[norm_cast]
theorem norm_coe [Ring 𝕜] [SeminormedAddCommGroup E] [Module 𝕜 E] {s : Submodule 𝕜 E}
(x : s) : ‖(x : E)‖ = ‖x‖ :=
rfl
Submodule.normedAddCommGroup
instance
[Ring 𝕜] [NormedAddCommGroup E] [Module 𝕜 E] (s : Submodule 𝕜 E) : NormedAddCommGroup s
/-- A submodule of a normed group is also a normed group, with the restriction of the norm. -/
instance normedAddCommGroup [Ring 𝕜] [NormedAddCommGroup E] [Module 𝕜 E]
(s : Submodule 𝕜 E) : NormedAddCommGroup s :=
{ Submodule.seminormedAddCommGroup s with
eq_of_dist_eq_zero := eq_of_dist_eq_zero }