Full source
protected theorem add_assoc : ∀ a b c : Int, a + b + c = a + (b + c)
| (m:Nat), (n:Nat), _ => aux1 ..
| Nat.cast m, b, Nat.cast k => by
rw [Int.add_comm, ← aux1, Int.add_comm k, aux1, Int.add_comm b]
| a, (n:Nat), (k:Nat) => by
rw [Int.add_comm, Int.add_comm a, ← aux1, Int.add_comm a, Int.add_comm k]
| -[_+1], -[_+1], (k:Nat) => aux2 ..
| -[m+1], (n:Nat), -[k+1] => by
rw [Int.add_comm, ← aux2, Int.add_comm n, ← aux2, Int.add_comm -[m+1]]
| (m:Nat), -[n+1], -[k+1] => by
rw [Int.add_comm, Int.add_comm m, Int.add_comm m, ← aux2, Int.add_comm -[k+1]]
| -[m+1], -[n+1], -[k+1] => by
simp [Nat.add_comm, Nat.add_left_comm, Nat.add_assoc]
where
aux1 (m n : Nat) : ∀ c : Int, m + n + c = m + (n + c)
| (k:Nat) => by simp [Nat.add_assoc]
| -[k+1] => by simp [subNatNat_add]
aux2 (m n k : Nat) : -[m+1] + -[n+1] + k = -[m+1] + (-[n+1] + k) := by
simp
rw [Int.add_comm, subNatNat_add_negSucc]
simp [Nat.add_comm, Nat.add_left_comm, Nat.add_assoc]