Module docstring
{"# Monoid, group etc structures on M × N
In this file we define one-binop (Monoid, Group etc) structures on M × N.
We also prove trivial simp lemmas, and define the following operations on MonoidHoms:
fst M N : M × N →* M,snd M N : M × N →* N: projectionsProd.fstandProd.sndasMonoidHoms;inl M N : M →* M × N,inr M N : N →* M × N: inclusions of first/second monoid into the product;f.prod g:M →* N × P: sendsxto(f x, g x);- When
Pis commutative,f.coprod g : M × N →* Psends(x, y)tof x * g y(without the commutativity assumption onP, seeMonoidHom.noncommPiCoprod); f.prodMap g : M × N → M' × N':Prod.map f gas aMonoidHom, sends(x, y)to(f x, g y).
Main declarations
mulMulHom/mulMonoidHom: Multiplication bundled as a multiplicative/monoid homomorphism.divMonoidHom: Division bundled as a monoid homomorphism. ","### Multiplication and division as homomorphisms "}