Module docstring
{"# Presheaves on a topological space
We define TopCat.Presheaf C X simply as (TopologicalSpace.Opens X)ᵒᵖ ⥤ C,
and inherit the category structure with natural transformations as morphisms.
We define
* Given {X Y : TopCat.{w}} and f : X ⟶ Y, we define
TopCat.Presheaf.pushforward C f : X.Presheaf C ⥤ Y.Presheaf C,
with notation f _* ℱ for ℱ : X.Presheaf C.
and for ℱ : X.Presheaf C provide the natural isomorphisms
* TopCat.Presheaf.Pushforward.id : (𝟙 X) _* ℱ ≅ ℱ
* TopCat.Presheaf.Pushforward.comp : (f ≫ g) _* ℱ ≅ g _* (f _* ℱ)
along with their @[simp] lemmas.
We also define the functors pullback C f : Y.Presheaf C ⥤ X.Presheaf c,
and provide their adjunction at
TopCat.Presheaf.pushforwardPullbackAdjunction.
"}