Informal description
          Let $s$ be a set of indices of type $\iota'$, and for each $i' \in s$, let $g(i')$ be a finite set of indices of type $\iota$. Let $f \colon \iota \to \alpha$ be a function where $\alpha$ is a lattice with a bottom element $\bot$. Suppose that:
1. The set $s$ is pairwise disjoint under the function $\lambda i', \sup_{x \in g(i')} f(x)$, meaning that for any distinct $i', j' \in s$, the suprema $\sup_{x \in g(i')} f(x)$ and $\sup_{x \in g(j')} f(x)$ are disjoint.
2. For each $i' \in s$, the finite set $g(i')$ is pairwise disjoint under $f$, meaning that for any distinct $x, y \in g(i')$, $f(x)$ and $f(y)$ are disjoint.
Then the union $\bigcup_{i' \in s} g(i')$ is pairwise disjoint under $f$.