Informal description
Given a semiring $R$, $R$-modules $M$ and $N$, an equivalence $e_1 \colon \iota \simeq \kappa$ between index types, and a linear equivalence $e_2 \colon M \simeq_{\text{lin}[R]} N$, the linear equivalence $\text{lcongr}\, e_1\, e_2$ maps the finitely supported function $\text{single}\, i\, m$ (which takes value $m$ at $i$ and zero elsewhere) to the finitely supported function $\text{single}\, (e_1(i))\, (e_2(m))$ (which takes value $e_2(m)$ at $e_1(i)$ and zero elsewhere).
In other words:
$$\text{lcongr}\, e_1\, e_2\, (\text{single}\, i\, m) = \text{single}\, (e_1(i))\, (e_2(m)).$$