Informal description
For a fixed element $a \in \alpha$, the function $\operatorname{single}(a) \colon M \to \alpha \to_{\text{f}} M$ is an equivariant additive monoid homomorphism (with respect to the monoid $R$) that maps each $m \in M$ to the finitely supported function $\operatorname{single}(a, m)$. Here, $\operatorname{single}(a, m)$ is the function that takes the value $m$ at $a$ and zero elsewhere. The homomorphism preserves both the additive structure and the scalar multiplication, satisfying:
1. $\operatorname{single}(a)(0) = \operatorname{single}(a, 0)$,
2. $\operatorname{single}(a)(m_1 + m_2) = \operatorname{single}(a, m_1) + \operatorname{single}(a, m_2)$ for all $m_1, m_2 \in M$, and
3. $\operatorname{single}(a)(r \cdot m) = r \cdot \operatorname{single}(a, m)$ for all $r \in R$ and $m \in M$.