Module docstring
{"# Results on finitely supported functions.
TensorProduct.finsuppLeft, the tensor product ofι →₀ MandNis linearly equivalent toι →₀ M ⊗[R] NTensorProduct.finsuppScalarLeft, the tensor product ofι →₀ RandNis linearly equivalent toι →₀ NTensorProduct.finsuppRight, the tensor product ofMandι →₀ Nis linearly equivalent toι →₀ M ⊗[R] NTensorProduct.finsuppScalarRight, the tensor product ofMandι →₀ Ris linearly equivalent toι →₀ NTensorProduct.finsuppLeft', ifMis anS-module, then the tensor product ofι →₀ MandNisS-linearly equivalent toι →₀ M ⊗[R] NfinsuppTensorFinsupp, the tensor product ofι →₀ Mandκ →₀ Nis linearly equivalent to(ι × κ) →₀ (M ⊗ N).
Case of MvPolynomial
These functions apply to MvPolynomial, one can define
```
noncomputable def MvPolynomial.rTensor' :
    MvPolynomial σ S ⊗[R] N ≃ₗ[S] (σ →₀ ℕ) →₀ (S ⊗[R] N) :=
  TensorProduct.finsuppLeft'
noncomputable def MvPolynomial.rTensor : MvPolynomial σ R ⊗[R] N ≃ₗ[R] (σ →₀ ℕ) →₀ N := TensorProduct.finsuppScalarLeft ```
However, to be actually usable, these definitions need lemmas to be given in companion PR.
Case of Polynomial
Polynomial is a structure containing a Finsupp, so these functions
can't be applied directly to Polynomial.
Some linear equivs need to be added to mathlib for that. This belongs to a companion PR.
TODO
generalize to
MonoidAlgebra,AlgHomreprove
TensorProduct.finsuppLeft'using existing heterobasic version ofTensorProduct.congr"}