Module docstring
{"# Asymptotic statements about the operator norm
This file contains lemmas about how operator norm on continuous linear maps interacts with IsBigO.
"}
{"# Asymptotic statements about the operator norm
This file contains lemmas about how operator norm on continuous linear maps interacts with IsBigO.
"}
ContinuousLinearMap.isBigOWith_id
theorem
: IsBigOWith ‖f‖ l f fun x => x
theorem isBigOWith_id : IsBigOWith ‖f‖ l f fun x => x :=
isBigOWith_of_le' _ f.le_opNorm
ContinuousLinearMap.isBigO_id
theorem
: f =O[l] fun x => x
theorem isBigO_id : f =O[l] fun x => x :=
(f.isBigOWith_id l).isBigO
ContinuousLinearMap.isBigOWith_comp
theorem
[RingHomIsometric σ₂₃] {α : Type*} (g : F →SL[σ₂₃] G) (f : α → F) (l : Filter α) :
IsBigOWith ‖g‖ l (fun x' => g (f x')) f
theorem isBigOWith_comp [RingHomIsometric σ₂₃] {α : Type*} (g : F →SL[σ₂₃] G) (f : α → F)
(l : Filter α) : IsBigOWith ‖g‖ l (fun x' => g (f x')) f :=
(g.isBigOWith_id ⊤).comp_tendsto le_top
ContinuousLinearMap.isBigO_comp
theorem
[RingHomIsometric σ₂₃] {α : Type*} (g : F →SL[σ₂₃] G) (f : α → F) (l : Filter α) : (fun x' => g (f x')) =O[l] f
theorem isBigO_comp [RingHomIsometric σ₂₃] {α : Type*} (g : F →SL[σ₂₃] G) (f : α → F)
(l : Filter α) : (fun x' => g (f x')) =O[l] f :=
(g.isBigOWith_comp f l).isBigO
ContinuousLinearMap.isBigOWith_sub
theorem
(x : E) : IsBigOWith ‖f‖ l (fun x' => f (x' - x)) fun x' => x' - x
theorem isBigOWith_sub (x : E) :
IsBigOWith ‖f‖ l (fun x' => f (x' - x)) fun x' => x' - x :=
f.isBigOWith_comp _ l
ContinuousLinearMap.isBigO_sub
theorem
(x : E) : (fun x' => f (x' - x)) =O[l] fun x' => x' - x
theorem isBigO_sub (x : E) :
(fun x' => f (x' - x)) =O[l] fun x' => x' - x :=
f.isBigO_comp _ l
ContinuousLinearEquiv.isBigO_comp
theorem
{α : Type*} (f : α → E) (l : Filter α) : (fun x' => e (f x')) =O[l] f
theorem isBigO_comp {α : Type*} (f : α → E) (l : Filter α) : (fun x' => e (f x')) =O[l] f :=
(e : E →SL[σ₁₂] F).isBigO_comp f l
ContinuousLinearEquiv.isBigO_sub
theorem
(l : Filter E) (x : E) : (fun x' => e (x' - x)) =O[l] fun x' => x' - x
theorem isBigO_sub (l : Filter E) (x : E) : (fun x' => e (x' - x)) =O[l] fun x' => x' - x :=
(e : E →SL[σ₁₂] F).isBigO_sub l x
ContinuousLinearEquiv.isBigO_comp_rev
theorem
{α : Type*} (f : α → E) (l : Filter α) : f =O[l] fun x' => e (f x')
theorem isBigO_comp_rev {α : Type*} (f : α → E) (l : Filter α) : f =O[l] fun x' => e (f x') :=
(e.symm.isBigO_comp _ l).congr_left fun _ => e.symm_apply_apply _
ContinuousLinearEquiv.isBigO_sub_rev
theorem
(l : Filter E) (x : E) : (fun x' => x' - x) =O[l] fun x' => e (x' - x)
theorem isBigO_sub_rev (l : Filter E) (x : E) : (fun x' => x' - x) =O[l] fun x' => e (x' - x) :=
e.isBigO_comp_rev _ _