doc-next-gen

Mathlib.Analysis.Convex.Strict

Module docstring

{"# Strictly convex sets

This file defines strictly convex sets.

A set is strictly convex if the open segment between any two distinct points lies in its interior. ","#### Convex sets in an ordered space

Relates Convex and Set.OrdConnected. "}

StrictConvex definition
(π•œ : Type*) {E : Type*} [Semiring π•œ] [PartialOrder π•œ] [TopologicalSpace E] [AddCommMonoid E] [SMul π•œ E] (s : Set E) : Prop
Full source
/-- A set is strictly convex if the open segment between any two distinct points lies is in its
interior. This basically means "convex and not flat on the boundary". -/
def StrictConvex (π•œ : Type*) {E : Type*} [Semiring π•œ] [PartialOrder π•œ] [TopologicalSpace E]
    [AddCommMonoid E] [SMul π•œ E] (s : Set E) : Prop :=
  s.Pairwise fun x y => βˆ€ ⦃a b : π•œβ¦„, 0 < a β†’ 0 < b β†’ a + b = 1 β†’ a β€’ x + b β€’ y ∈ interior s
Strictly convex set
Informal description
A set $s$ in a topological space $E$ over a partially ordered semiring $\mathbb{K}$ is called *strictly convex* if for any two distinct points $x, y \in s$, the open segment connecting $x$ and $y$ (i.e., all points of the form $a x + b y$ where $a, b > 0$ and $a + b = 1$) lies entirely in the interior of $s$.
strictConvex_iff_openSegment_subset theorem
: StrictConvex π•œ s ↔ s.Pairwise fun x y => openSegment π•œ x y βŠ† interior s
Full source
theorem strictConvex_iff_openSegment_subset :
    StrictConvexStrictConvex π•œ s ↔ s.Pairwise fun x y => openSegment π•œ x y βŠ† interior s :=
  forallβ‚…_congr fun _ _ _ _ _ => (openSegment_subset_iff π•œ).symm
Characterization of Strictly Convex Sets via Open Segments
Informal description
A set $s$ in a topological space $E$ over a partially ordered semiring $\mathbb{K}$ is strictly convex if and only if for every pair of distinct points $x, y \in s$, the open segment connecting $x$ and $y$ is contained in the interior of $s$. That is, $s$ is strictly convex $\iff$ $\forall x, y \in s, x \neq y \implies \text{openSegment}_{\mathbb{K}}(x,y) \subseteq \text{interior}(s)$.
StrictConvex.openSegment_subset theorem
(hs : StrictConvex π•œ s) (hx : x ∈ s) (hy : y ∈ s) (h : x β‰  y) : openSegment π•œ x y βŠ† interior s
Full source
theorem StrictConvex.openSegment_subset (hs : StrictConvex π•œ s) (hx : x ∈ s) (hy : y ∈ s)
    (h : x β‰  y) : openSegmentopenSegment π•œ x y βŠ† interior s :=
  strictConvex_iff_openSegment_subset.1 hs hx hy h
Open Segment in Interior of Strictly Convex Set
Informal description
Let $s$ be a strictly convex set in a topological space $E$ over a partially ordered semiring $\mathbb{K}$. For any two distinct points $x, y \in s$, the open segment connecting $x$ and $y$ is contained in the interior of $s$, i.e., $\text{openSegment}_{\mathbb{K}}(x,y) \subseteq \text{interior}(s)$.
strictConvex_empty theorem
: StrictConvex π•œ (βˆ… : Set E)
Full source
theorem strictConvex_empty : StrictConvex π•œ (βˆ… : Set E) :=
  pairwise_empty _
Empty Set is Strictly Convex
Informal description
The empty set is strictly convex in any topological space $E$ over a partially ordered semiring $\mathbb{K}$.
strictConvex_univ theorem
: StrictConvex π•œ (univ : Set E)
Full source
theorem strictConvex_univ : StrictConvex π•œ (univ : Set E) := by
  intro x _ y _ _ a b _ _ _
  rw [interior_univ]
  exact mem_univ _
Universal Set is Strictly Convex
Informal description
The universal set in a topological space $E$ over a partially ordered semiring $\mathbb{K}$ is strictly convex. That is, for any two distinct points $x, y \in E$, the open segment connecting $x$ and $y$ lies entirely in the interior of $E$.
StrictConvex.eq theorem
(hs : StrictConvex π•œ s) (hx : x ∈ s) (hy : y ∈ s) (ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a β€’ x + b β€’ y βˆ‰ interior s) : x = y
Full source
protected nonrec theorem StrictConvex.eq (hs : StrictConvex π•œ s) (hx : x ∈ s) (hy : y ∈ s)
    (ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a β€’ x + b β€’ y βˆ‰ interior s) : x = y :=
  hs.eq hx hy fun H => h <| H ha hb hab
Equality Condition for Points in a Strictly Convex Set
Informal description
Let $s$ be a strictly convex set in a topological space $E$ over a partially ordered semiring $\mathbb{K}$. For any two points $x, y \in s$ and positive scalars $a, b > 0$ with $a + b = 1$, if the point $a x + b y$ does not lie in the interior of $s$, then $x = y$.
StrictConvex.inter theorem
{t : Set E} (hs : StrictConvex π•œ s) (ht : StrictConvex π•œ t) : StrictConvex π•œ (s ∩ t)
Full source
protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex π•œ s) (ht : StrictConvex π•œ t) :
    StrictConvex π•œ (s ∩ t) := by
  intro x hx y hy hxy a b ha hb hab
  rw [interior_inter]
  exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩
Intersection of Strictly Convex Sets is Strictly Convex
Informal description
Let $s$ and $t$ be strictly convex sets in a topological space $E$ over a partially ordered semiring $\mathbb{K}$. Then their intersection $s \cap t$ is also strictly convex.
Directed.strictConvex_iUnion theorem
{ΞΉ : Sort*} {s : ΞΉ β†’ Set E} (hdir : Directed (Β· βŠ† Β·) s) (hs : βˆ€ ⦃i : ι⦄, StrictConvex π•œ (s i)) : StrictConvex π•œ (⋃ i, s i)
Full source
theorem Directed.strictConvex_iUnion {ΞΉ : Sort*} {s : ΞΉ β†’ Set E} (hdir : Directed (Β· βŠ† Β·) s)
    (hs : βˆ€ ⦃i : ι⦄, StrictConvex π•œ (s i)) : StrictConvex π•œ (⋃ i, s i) := by
  rintro x hx y hy hxy a b ha hb hab
  rw [mem_iUnion] at hx hy
  obtain ⟨i, hx⟩ := hx
  obtain ⟨j, hy⟩ := hy
  obtain ⟨k, hik, hjk⟩ := hdir i j
  exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab)
Union of Directed Family of Strictly Convex Sets is Strictly Convex
Informal description
Let $\{s_i\}_{i \in \iota}$ be a directed family of subsets of a topological space $E$ over a partially ordered semiring $\mathbb{K}$ with respect to the subset relation $\subseteq$. If each $s_i$ is strictly convex, then the union $\bigcup_{i \in \iota} s_i$ is also strictly convex.
DirectedOn.strictConvex_sUnion theorem
{S : Set (Set E)} (hdir : DirectedOn (Β· βŠ† Β·) S) (hS : βˆ€ s ∈ S, StrictConvex π•œ s) : StrictConvex π•œ (⋃₀ S)
Full source
theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (Β· βŠ† Β·) S)
    (hS : βˆ€ s ∈ S, StrictConvex π•œ s) : StrictConvex π•œ (⋃₀ S) := by
  rw [sUnion_eq_iUnion]
  exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2
Union of Directed Family of Strictly Convex Sets is Strictly Convex
Informal description
Let $S$ be a collection of subsets of a topological space $E$ over a partially ordered semiring $\mathbb{K}$. If $S$ is directed with respect to the subset relation $\subseteq$ and every set in $S$ is strictly convex, then the union $\bigcup_{s \in S} s$ is strictly convex.
StrictConvex.convex theorem
(hs : StrictConvex π•œ s) : Convex π•œ s
Full source
protected theorem StrictConvex.convex (hs : StrictConvex π•œ s) : Convex π•œ s :=
  convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab =>
    interior_subset <| hs hx hy hxy ha hb hab
Strictly convex sets are convex
Informal description
If a set $s$ in a topological space $E$ over a partially ordered semiring $\mathbb{K}$ is strictly convex, then it is convex.
Convex.strictConvex_of_isOpen theorem
(h : IsOpen s) (hs : Convex π•œ s) : StrictConvex π•œ s
Full source
/-- An open convex set is strictly convex. -/
protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex π•œ s) :
    StrictConvex π•œ s :=
  fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm β–Έ hs hx hy ha.le hb.le hab
Open Convex Sets are Strictly Convex
Informal description
Let $E$ be a topological space over a partially ordered semiring $\mathbb{K}$. If a set $s \subseteq E$ is both open and convex, then it is strictly convex.
IsOpen.strictConvex_iff theorem
(h : IsOpen s) : StrictConvex π•œ s ↔ Convex π•œ s
Full source
theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvexStrictConvex π•œ s ↔ Convex π•œ s :=
  ⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩
Open Sets are Strictly Convex if and only if They are Convex
Informal description
For an open set $s$ in a topological space $E$ over a partially ordered semiring $\mathbb{K}$, the set $s$ is strictly convex if and only if it is convex.
strictConvex_singleton theorem
(c : E) : StrictConvex π•œ ({ c } : Set E)
Full source
theorem strictConvex_singleton (c : E) : StrictConvex π•œ ({c} : Set E) :=
  pairwise_singleton _ _
Singleton Sets are Strictly Convex
Informal description
For any point $c$ in a topological space $E$ over a partially ordered semiring $\mathbb{K}$, the singleton set $\{c\}$ is strictly convex.
Set.Subsingleton.strictConvex theorem
(hs : s.Subsingleton) : StrictConvex π•œ s
Full source
theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex π•œ s :=
  hs.pairwise _
Subsingleton Sets are Strictly Convex
Informal description
For any set $s$ in a topological space $E$ over a partially ordered semiring $\mathbb{K}$, if $s$ is a subsingleton (i.e., contains at most one point), then $s$ is strictly convex.
StrictConvex.linear_image theorem
[Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F] [LinearMap.CompatibleSMul E F π•œ 𝕝] (hs : StrictConvex π•œ s) (f : E β†’β‚—[𝕝] F) (hf : IsOpenMap f) : StrictConvex π•œ (f '' s)
Full source
theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F]
    [LinearMap.CompatibleSMul E F π•œ 𝕝] (hs : StrictConvex π•œ s) (f : E β†’β‚—[𝕝] F) (hf : IsOpenMap f) :
    StrictConvex π•œ (f '' s) := by
  rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab
  refine hf.image_interior_subset _ ⟨a β€’ x + b β€’ y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, ?_⟩
  rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b]
Strict convexity is preserved under open linear maps
Informal description
Let $\mathbb{K}$ and $\mathbb{L}$ be semirings, and let $E$ and $F$ be modules over $\mathbb{L}$ with compatible scalar actions by $\mathbb{K}$. Suppose $s \subseteq E$ is a strictly convex set and $f \colon E \to F$ is a $\mathbb{L}$-linear map that is also an open map. Then the image $f(s)$ is strictly convex in $F$.
StrictConvex.is_linear_image theorem
(hs : StrictConvex π•œ s) {f : E β†’ F} (h : IsLinearMap π•œ f) (hf : IsOpenMap f) : StrictConvex π•œ (f '' s)
Full source
theorem StrictConvex.is_linear_image (hs : StrictConvex π•œ s) {f : E β†’ F} (h : IsLinearMap π•œ f)
    (hf : IsOpenMap f) : StrictConvex π•œ (f '' s) :=
  hs.linear_image (h.mk' f) hf
Strict convexity is preserved under open linear maps
Informal description
Let $\mathbb{K}$ be a partially ordered semiring, and let $E$ and $F$ be topological spaces equipped with a $\mathbb{K}$-module structure. If $s \subseteq E$ is a strictly convex set and $f \colon E \to F$ is a $\mathbb{K}$-linear map that is also an open map, then the image $f(s)$ is strictly convex in $F$.
StrictConvex.linear_preimage theorem
{s : Set F} (hs : StrictConvex π•œ s) (f : E β†’β‚—[π•œ] F) (hf : Continuous f) (hfinj : Injective f) : StrictConvex π•œ (s.preimage f)
Full source
theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex π•œ s) (f : E β†’β‚—[π•œ] F)
    (hf : Continuous f) (hfinj : Injective f) : StrictConvex π•œ (s.preimage f) := by
  intro x hx y hy hxy a b ha hb hab
  refine preimage_interior_subset_interior_preimage hf ?_
  rw [mem_preimage, f.map_add, f.map_smul, f.map_smul]
  exact hs hx hy (hfinj.ne hxy) ha hb hab
Preimage of Strictly Convex Set under Injective Continuous Linear Map is Strictly Convex
Informal description
Let $\mathbb{K}$ be a partially ordered semiring, and let $E$ and $F$ be topological vector spaces over $\mathbb{K}$. Suppose $s \subseteq F$ is a strictly convex set, and $f \colon E \to F$ is an injective continuous linear map. Then the preimage $f^{-1}(s)$ is strictly convex in $E$.
StrictConvex.is_linear_preimage theorem
{s : Set F} (hs : StrictConvex π•œ s) {f : E β†’ F} (h : IsLinearMap π•œ f) (hf : Continuous f) (hfinj : Injective f) : StrictConvex π•œ (s.preimage f)
Full source
theorem StrictConvex.is_linear_preimage {s : Set F} (hs : StrictConvex π•œ s) {f : E β†’ F}
    (h : IsLinearMap π•œ f) (hf : Continuous f) (hfinj : Injective f) :
    StrictConvex π•œ (s.preimage f) :=
  hs.linear_preimage (h.mk' f) hf hfinj
Preimage of Strictly Convex Set under Injective Continuous Linear Map is Strictly Convex
Informal description
Let $\mathbb{K}$ be a partially ordered semiring, and let $E$ and $F$ be topological vector spaces over $\mathbb{K}$. Suppose $s \subseteq F$ is a strictly convex set, and $f \colon E \to F$ is an injective continuous linear map. Then the preimage $f^{-1}(s)$ is strictly convex in $E$.
Set.OrdConnected.strictConvex theorem
{s : Set Ξ²} (hs : OrdConnected s) : StrictConvex π•œ s
Full source
protected theorem Set.OrdConnected.strictConvex {s : Set Ξ²} (hs : OrdConnected s) :
    StrictConvex π•œ s := by
  refine strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => ?_
  rcases hxy.lt_or_lt with hlt | hlt <;> [skip; rw [openSegment_symm]] <;>
    exact
      (openSegment_subset_Ioo hlt).trans
        (isOpen_Ioo.subset_interior_iff.2 <| Ioo_subset_Icc_self.trans <| hs.out β€Ή_β€Ί β€Ή_β€Ί)
Order-Connected Sets are Strictly Convex
Informal description
For any order-connected set $s$ in a topological space $\beta$ over a partially ordered semiring $\mathbb{K}$, the set $s$ is strictly convex. That is, if for any two points $x, y \in s$ the closed interval $[x, y]$ is contained in $s$, then for any two distinct points $x, y \in s$, the open segment connecting $x$ and $y$ lies entirely in the interior of $s$.
strictConvex_Iic theorem
(r : Ξ²) : StrictConvex π•œ (Iic r)
Full source
theorem strictConvex_Iic (r : Ξ²) : StrictConvex π•œ (Iic r) :=
  ordConnected_Iic.strictConvex
Strict Convexity of Left-Infinite Right-Closed Interval $(-\infty, r]$
Informal description
For any element $r$ in a topological space $\beta$ over a partially ordered semiring $\mathbb{K}$, the left-infinite right-closed interval $(-\infty, r]$ is strictly convex. That is, for any two distinct points $x, y \in (-\infty, r]$, the open segment connecting $x$ and $y$ lies entirely in the interior of $(-\infty, r]$.
strictConvex_Ici theorem
(r : Ξ²) : StrictConvex π•œ (Ici r)
Full source
theorem strictConvex_Ici (r : Ξ²) : StrictConvex π•œ (Ici r) :=
  ordConnected_Ici.strictConvex
Strict convexity of the interval $[r, \infty)$
Informal description
For any element $r$ in a topological space $\beta$ over a partially ordered semiring $\mathbb{K}$, the left-closed right-infinite interval $[r, \infty)$ is strictly convex. That is, for any two distinct points $x, y \in [r, \infty)$, the open segment connecting $x$ and $y$ lies entirely in the interior of $[r, \infty)$.
strictConvex_Iio theorem
(r : Ξ²) : StrictConvex π•œ (Iio r)
Full source
theorem strictConvex_Iio (r : Ξ²) : StrictConvex π•œ (Iio r) :=
  ordConnected_Iio.strictConvex
Strict convexity of the open interval $(-\infty, r)$
Informal description
For any element $r$ in a topological space $\beta$ over a partially ordered semiring $\mathbb{K}$, the open interval $(-\infty, r)$ is strictly convex. That is, for any two distinct points $x, y \in (-\infty, r)$, the open segment connecting $x$ and $y$ lies entirely in the interior of $(-\infty, r)$.
strictConvex_Ioi theorem
(r : Ξ²) : StrictConvex π•œ (Ioi r)
Full source
theorem strictConvex_Ioi (r : Ξ²) : StrictConvex π•œ (Ioi r) :=
  ordConnected_Ioi.strictConvex
Open upper interval $(r, \infty)$ is strictly convex
Informal description
For any element $r$ in a topological space $\beta$ over a partially ordered semiring $\mathbb{K}$, the open interval $(r, \infty)$ is strictly convex. That is, for any two distinct points $x, y \in (r, \infty)$, the open segment connecting $x$ and $y$ lies entirely in the interior of $(r, \infty)$.
strictConvex_Icc theorem
(r s : Ξ²) : StrictConvex π•œ (Icc r s)
Full source
theorem strictConvex_Icc (r s : Ξ²) : StrictConvex π•œ (Icc r s) :=
  ordConnected_Icc.strictConvex
Closed Intervals are Strictly Convex
Informal description
For any elements $r$ and $s$ in a topological space $\beta$ over a partially ordered semiring $\mathbb{K}$, the closed interval $[r, s] = \{x \in \beta \mid r \leq x \leq s\}$ is strictly convex. That is, for any two distinct points $x, y \in [r, s]$, the open segment connecting $x$ and $y$ lies entirely in the interior of $[r, s]$.
strictConvex_Ioo theorem
(r s : Ξ²) : StrictConvex π•œ (Ioo r s)
Full source
theorem strictConvex_Ioo (r s : Ξ²) : StrictConvex π•œ (Ioo r s) :=
  ordConnected_Ioo.strictConvex
Open intervals are strictly convex
Informal description
For any elements $r$ and $s$ in a topological space $\beta$ over a partially ordered semiring $\mathbb{K}$, the open interval $(r, s) = \{x \in \beta \mid r < x < s\}$ is strictly convex. That is, for any two distinct points $x, y \in (r, s)$, the open segment connecting $x$ and $y$ lies entirely in the interior of $(r, s)$.
strictConvex_Ico theorem
(r s : Ξ²) : StrictConvex π•œ (Ico r s)
Full source
theorem strictConvex_Ico (r s : Ξ²) : StrictConvex π•œ (Ico r s) :=
  ordConnected_Ico.strictConvex
Strict convexity of the interval $[r, s)$
Informal description
For any two elements $r$ and $s$ in a topological space $\beta$ over a partially ordered semiring $\mathbb{K}$, the left-closed right-open interval $[r, s)$ is strictly convex. That is, for any two distinct points $x, y \in [r, s)$, the open segment connecting $x$ and $y$ lies entirely in the interior of $[r, s)$.
strictConvex_Ioc theorem
(r s : Ξ²) : StrictConvex π•œ (Ioc r s)
Full source
theorem strictConvex_Ioc (r s : Ξ²) : StrictConvex π•œ (Ioc r s) :=
  ordConnected_Ioc.strictConvex
Strict convexity of the interval $(r, s]$
Informal description
For any two elements $r$ and $s$ in a topological space $\beta$ over a partially ordered semiring $\mathbb{K}$, the left-open right-closed interval $(r, s] = \{x \in \beta \mid r < x \leq s\}$ is strictly convex. That is, for any two distinct points $x, y \in (r, s]$, the open segment connecting $x$ and $y$ lies entirely in the interior of $(r, s]$.
strictConvex_uIcc theorem
(r s : Ξ²) : StrictConvex π•œ (uIcc r s)
Full source
theorem strictConvex_uIcc (r s : Ξ²) : StrictConvex π•œ (uIcc r s) :=
  strictConvex_Icc _ _
Strict Convexity of Unordered Closed Intervals
Informal description
For any two elements $r$ and $s$ in a topological space $\beta$ over a partially ordered semiring $\mathbb{K}$, the unordered closed interval $\text{uIcc}(r, s) = [r \sqcap s, r \sqcup s]$ is strictly convex. That is, for any two distinct points $x, y \in \text{uIcc}(r, s)$, the open segment connecting $x$ and $y$ lies entirely in the interior of $\text{uIcc}(r, s)$.
strictConvex_uIoc theorem
(r s : Ξ²) : StrictConvex π•œ (uIoc r s)
Full source
theorem strictConvex_uIoc (r s : Ξ²) : StrictConvex π•œ (uIoc r s) :=
  strictConvex_Ioc _ _
Strict convexity of the unordered open-closed interval $\text{uIoc}(r, s)$
Informal description
For any two elements $r$ and $s$ in a topological space $\beta$ over a partially ordered semiring $\mathbb{K}$, the unordered open-closed interval $\text{uIoc}(r, s) = \{x \in \beta \mid \min(r, s) < x \leq \max(r, s)\}$ is strictly convex. That is, for any two distinct points $x, y \in \text{uIoc}(r, s)$, the open segment connecting $x$ and $y$ lies entirely in the interior of $\text{uIoc}(r, s)$.
StrictConvex.preimage_add_right theorem
(hs : StrictConvex π•œ s) (z : E) : StrictConvex π•œ ((fun x => z + x) ⁻¹' s)
Full source
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.preimage_add_right (hs : StrictConvex π•œ s) (z : E) :
    StrictConvex π•œ ((fun x => z + x) ⁻¹' s) := by
  intro x hx y hy hxy a b ha hb hab
  refine preimage_interior_subset_interior_preimage (continuous_add_left _) ?_
  have h := hs hx hy ((add_right_injective _).ne hxy) ha hb hab
  rwa [smul_add, smul_add, add_add_add_comm, ← _root_.add_smul, hab, one_smul] at h
Strict convexity is preserved under right translation preimages
Informal description
Let $E$ be a topological space with an additive commutative monoid structure and a scalar multiplication by a partially ordered semiring $\mathbb{K}$. If $s \subseteq E$ is a strictly convex set, then for any $z \in E$, the preimage of $s$ under the function $x \mapsto z + x$ is also strictly convex.
StrictConvex.preimage_add_left theorem
(hs : StrictConvex π•œ s) (z : E) : StrictConvex π•œ ((fun x => x + z) ⁻¹' s)
Full source
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.preimage_add_left (hs : StrictConvex π•œ s) (z : E) :
    StrictConvex π•œ ((fun x => x + z) ⁻¹' s) := by
  simpa only [add_comm] using hs.preimage_add_right z
Strict convexity is preserved under left translation preimages
Informal description
Let $E$ be a topological space with an additive commutative monoid structure and a scalar multiplication by a partially ordered semiring $\mathbb{K}$. If $s \subseteq E$ is a strictly convex set, then for any $z \in E$, the preimage of $s$ under the function $x \mapsto x + z$ is also strictly convex.
StrictConvex.add theorem
(hs : StrictConvex π•œ s) (ht : StrictConvex π•œ t) : StrictConvex π•œ (s + t)
Full source
theorem StrictConvex.add (hs : StrictConvex π•œ s) (ht : StrictConvex π•œ t) :
    StrictConvex π•œ (s + t) := by
  rintro _ ⟨v, hv, w, hw, rfl⟩ _ ⟨x, hx, y, hy, rfl⟩ h a b ha hb hab
  rw [smul_add, smul_add, add_add_add_comm]
  obtain rfl | hvx := eq_or_ne v x
  Β· refine interior_mono (add_subset_add (singleton_subset_iff.2 hv) Subset.rfl) ?_
    rw [Convex.combo_self hab, singleton_add]
    exact
      (isOpenMap_add_left _).image_interior_subset _
        (mem_image_of_mem _ <| ht hw hy (ne_of_apply_ne _ h) ha hb hab)
  exact
    subset_interior_add_left
      (add_mem_add (hs hv hx hvx ha hb hab) <| ht.convex hw hy ha.le hb.le hab)
Minkowski Sum of Strictly Convex Sets is Strictly Convex
Informal description
Let $E$ be a topological space with an additive commutative monoid structure and a scalar multiplication by a partially ordered semiring $\mathbb{K}$. If $s, t \subseteq E$ are strictly convex sets, then their Minkowski sum $s + t = \{x + y \mid x \in s, y \in t\}$ is also strictly convex.
StrictConvex.add_left theorem
(hs : StrictConvex π•œ s) (z : E) : StrictConvex π•œ ((fun x => z + x) '' s)
Full source
theorem StrictConvex.add_left (hs : StrictConvex π•œ s) (z : E) :
    StrictConvex π•œ ((fun x => z + x) '' s) := by
  simpa only [singleton_add] using (strictConvex_singleton z).add hs
Strict convexity is preserved under left translation images
Informal description
Let $E$ be a topological space with an additive commutative monoid structure and a scalar multiplication by a partially ordered semiring $\mathbb{K}$. If $s \subseteq E$ is a strictly convex set, then for any $z \in E$, the image of $s$ under the function $x \mapsto z + x$ is also strictly convex.
StrictConvex.add_right theorem
(hs : StrictConvex π•œ s) (z : E) : StrictConvex π•œ ((fun x => x + z) '' s)
Full source
theorem StrictConvex.add_right (hs : StrictConvex π•œ s) (z : E) :
    StrictConvex π•œ ((fun x => x + z) '' s) := by simpa only [add_comm] using hs.add_left z
Strict convexity is preserved under right translation images
Informal description
Let $E$ be a topological space with an additive commutative monoid structure and a scalar multiplication by a partially ordered semiring $\mathbb{K}$. If $s \subseteq E$ is a strictly convex set, then for any $z \in E$, the image of $s$ under the function $x \mapsto x + z$ is also strictly convex.
StrictConvex.vadd theorem
(hs : StrictConvex π•œ s) (x : E) : StrictConvex π•œ (x +α΅₯ s)
Full source
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.vadd (hs : StrictConvex π•œ s) (x : E) : StrictConvex π•œ (x +α΅₯ s) :=
  hs.add_left x
Strict convexity is preserved under vector addition translation
Informal description
Let $E$ be a topological space with an additive commutative monoid structure and a scalar multiplication by a partially ordered semiring $\mathbb{K}$. If $s \subseteq E$ is a strictly convex set, then for any $x \in E$, the set $x +α΅₯ s$ (the translation of $s$ by $x$) is also strictly convex.
StrictConvex.smul theorem
(hs : StrictConvex π•œ s) (c : 𝕝) : StrictConvex π•œ (c β€’ s)
Full source
theorem StrictConvex.smul (hs : StrictConvex π•œ s) (c : 𝕝) : StrictConvex π•œ (c β€’ s) := by
  obtain rfl | hc := eq_or_ne c 0
  Β· exact (subsingleton_zero_smul_set _).strictConvex
  Β· exact hs.linear_image (LinearMap.lsmul _ _ c) (isOpenMap_smulβ‚€ hc)
Strict convexity is preserved under scalar multiplication
Informal description
Let $E$ be a topological space with an additive commutative monoid structure and a scalar multiplication action by a semiring $\mathbb{K}$. If $s \subseteq E$ is a strictly convex set and $c$ is an element of a semiring $\mathbb{L}$ acting on $E$, then the scaled set $c \cdot s$ is also strictly convex.
StrictConvex.affinity theorem
[ContinuousAdd E] (hs : StrictConvex π•œ s) (z : E) (c : 𝕝) : StrictConvex π•œ (z +α΅₯ c β€’ s)
Full source
theorem StrictConvex.affinity [ContinuousAdd E] (hs : StrictConvex π•œ s) (z : E) (c : 𝕝) :
    StrictConvex π•œ (z +α΅₯ c β€’ s) :=
  (hs.smul c).vadd z
Strict Convexity is Preserved under Affine Transformations
Informal description
Let $E$ be a topological space with a continuous addition operation and a scalar multiplication action by a partially ordered semiring $\mathbb{K}$. If $s \subseteq E$ is a strictly convex set, then for any $z \in E$ and scalar $c \in \mathbb{L}$, the affine transformation $z + c \cdot s$ is also strictly convex.
StrictConvex.preimage_smul theorem
(hs : StrictConvex π•œ s) (c : π•œ) : StrictConvex π•œ ((fun z => c β€’ z) ⁻¹' s)
Full source
theorem StrictConvex.preimage_smul (hs : StrictConvex π•œ s) (c : π•œ) :
    StrictConvex π•œ ((fun z => c β€’ z) ⁻¹' s) := by
  classical
    obtain rfl | hc := eq_or_ne c 0
    Β· simp_rw [zero_smul, preimage_const]
      split_ifs
      Β· exact strictConvex_univ
      Β· exact strictConvex_empty
    refine hs.linear_preimage (LinearMap.lsmul _ _ c) ?_ (smul_right_injective E hc)
    unfold LinearMap.lsmul LinearMap.mkβ‚‚ LinearMap.mkβ‚‚' LinearMap.mkβ‚‚'β‚›β‚—
    exact continuous_const_smul _
Preimage of Strictly Convex Set under Scalar Multiplication is Strictly Convex
Informal description
Let $\mathbb{K}$ be a partially ordered semiring and $E$ be a topological space with an additive commutative monoid structure and a scalar multiplication by $\mathbb{K}$. If $s \subseteq E$ is a strictly convex set and $c \in \mathbb{K}$, then the preimage of $s$ under the scalar multiplication map $z \mapsto c \cdot z$ is strictly convex in $E$.
StrictConvex.add_smul_mem theorem
[AddRightStrictMono π•œ] (hs : StrictConvex π•œ s) (hx : x ∈ s) (hxy : x + y ∈ s) (hy : y β‰  0) {t : π•œ} (htβ‚€ : 0 < t) (ht₁ : t < 1) : x + t β€’ y ∈ interior s
Full source
theorem StrictConvex.add_smul_mem [AddRightStrictMono π•œ]
    (hs : StrictConvex π•œ s) (hx : x ∈ s) (hxy : x + y ∈ s)
    (hy : y β‰  0) {t : π•œ} (htβ‚€ : 0 < t) (ht₁ : t < 1) : x + t β€’ y ∈ interior s := by
  have h : x + t β€’ y = (1 - t) β€’ x + t β€’ (x + y) := by match_scalars <;> field_simp
  rw [h]
  exact hs hx hxy (fun h => hy <| add_left_cancel (a := x) (by rw [← h, add_zero]))
    (sub_pos_of_lt ht₁) htβ‚€ (sub_add_cancel 1 t)
Strictly Convex Set Property: $x + t y \in \text{interior}(s)$ for $0 < t < 1$
Informal description
Let $\mathbb{K}$ be a partially ordered semiring and $E$ be a topological space with an additive commutative monoid structure and a scalar multiplication by $\mathbb{K}$. Given a strictly convex set $s \subseteq E$, a point $x \in s$, and a vector $y \neq 0$ such that $x + y \in s$, then for any $t \in \mathbb{K}$ with $0 < t < 1$, the point $x + t y$ lies in the interior of $s$.
StrictConvex.smul_mem_of_zero_mem theorem
[AddRightStrictMono π•œ] (hs : StrictConvex π•œ s) (zero_mem : (0 : E) ∈ s) (hx : x ∈ s) (hxβ‚€ : x β‰  0) {t : π•œ} (htβ‚€ : 0 < t) (ht₁ : t < 1) : t β€’ x ∈ interior s
Full source
theorem StrictConvex.smul_mem_of_zero_mem [AddRightStrictMono π•œ]
    (hs : StrictConvex π•œ s) (zero_mem : (0 : E) ∈ s)
    (hx : x ∈ s) (hxβ‚€ : x β‰  0) {t : π•œ} (htβ‚€ : 0 < t) (ht₁ : t < 1) : t β€’ x ∈ interior s := by
  simpa using hs.add_smul_mem zero_mem (by simpa using hx) hxβ‚€ htβ‚€ ht₁
Strictly Convex Set Property: $t x \in \text{interior}(s)$ for $0 < t < 1$ and $x \neq 0$
Informal description
Let $\mathbb{K}$ be a partially ordered semiring and $E$ be a topological space with an additive commutative monoid structure and a scalar multiplication by $\mathbb{K}$. Given a strictly convex set $s \subseteq E$ containing $0$, a nonzero point $x \in s$, and a scalar $t \in \mathbb{K}$ with $0 < t < 1$, the point $t x$ lies in the interior of $s$.
StrictConvex.add_smul_sub_mem theorem
[AddRightMono π•œ] (h : StrictConvex π•œ s) (hx : x ∈ s) (hy : y ∈ s) (hxy : x β‰  y) {t : π•œ} (htβ‚€ : 0 < t) (ht₁ : t < 1) : x + t β€’ (y - x) ∈ interior s
Full source
theorem StrictConvex.add_smul_sub_mem [AddRightMono π•œ]
    (h : StrictConvex π•œ s) (hx : x ∈ s) (hy : y ∈ s) (hxy : x β‰  y)
    {t : π•œ} (htβ‚€ : 0 < t) (ht₁ : t < 1) : x + t β€’ (y - x) ∈ interior s := by
  apply h.openSegment_subset hx hy hxy
  rw [openSegment_eq_image']
  exact mem_image_of_mem _ ⟨htβ‚€, htβ‚βŸ©
Strictly Convex Set Property: Convex Combination of Distinct Points Lies in Interior
Informal description
Let $\mathbb{K}$ be a partially ordered semiring and $E$ be a topological space with an additive commutative monoid structure and a scalar multiplication by $\mathbb{K}$. Given a strictly convex set $s \subseteq E$ and two distinct points $x, y \in s$, for any $t \in \mathbb{K}$ with $0 < t < 1$, the point $x + t(y - x)$ lies in the interior of $s$.
StrictConvex.affine_preimage theorem
{s : Set F} (hs : StrictConvex π•œ s) {f : E →ᡃ[π•œ] F} (hf : Continuous f) (hfinj : Injective f) : StrictConvex π•œ (f ⁻¹' s)
Full source
/-- The preimage of a strictly convex set under an affine map is strictly convex. -/
theorem StrictConvex.affine_preimage {s : Set F} (hs : StrictConvex π•œ s) {f : E →ᡃ[π•œ] F}
    (hf : Continuous f) (hfinj : Injective f) : StrictConvex π•œ (f ⁻¹' s) := by
  intro x hx y hy hxy a b ha hb hab
  refine preimage_interior_subset_interior_preimage hf ?_
  rw [mem_preimage, Convex.combo_affine_apply hab]
  exact hs hx hy (hfinj.ne hxy) ha hb hab
Preimage of Strictly Convex Set under Injective Continuous Affine Map is Strictly Convex
Informal description
Let $E$ and $F$ be topological vector spaces over a partially ordered semiring $\mathbb{K}$, and let $s \subseteq F$ be a strictly convex set. If $f \colon E \to F$ is an injective continuous affine map, then the preimage $f^{-1}(s) \subseteq E$ is strictly convex.
StrictConvex.affine_image theorem
(hs : StrictConvex π•œ s) {f : E →ᡃ[π•œ] F} (hf : IsOpenMap f) : StrictConvex π•œ (f '' s)
Full source
/-- The image of a strictly convex set under an affine map is strictly convex. -/
theorem StrictConvex.affine_image (hs : StrictConvex π•œ s) {f : E →ᡃ[π•œ] F} (hf : IsOpenMap f) :
    StrictConvex π•œ (f '' s) := by
  rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab
  exact
    hf.image_interior_subset _
      ⟨a β€’ x + b β€’ y, ⟨hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, Convex.combo_affine_apply hab⟩⟩
Strict Convexity is Preserved under Open Affine Maps
Informal description
Let $E$ and $F$ be topological vector spaces over a partially ordered semiring $\mathbb{K}$, and let $s \subseteq E$ be a strictly convex set. If $f \colon E \to F$ is an affine map that is also an open map, then the image $f(s) \subseteq F$ is strictly convex.
StrictConvex.neg theorem
(hs : StrictConvex π•œ s) : StrictConvex π•œ (-s)
Full source
theorem StrictConvex.neg (hs : StrictConvex π•œ s) : StrictConvex π•œ (-s) :=
  hs.is_linear_preimage IsLinearMap.isLinearMap_neg continuous_id.neg neg_injective
Negation preserves strict convexity
Informal description
If a set $s$ in a topological vector space over a partially ordered semiring $\mathbb{K}$ is strictly convex, then its negation $-s = \{-x \mid x \in s\}$ is also strictly convex.
StrictConvex.sub theorem
(hs : StrictConvex π•œ s) (ht : StrictConvex π•œ t) : StrictConvex π•œ (s - t)
Full source
theorem StrictConvex.sub (hs : StrictConvex π•œ s) (ht : StrictConvex π•œ t) : StrictConvex π•œ (s - t) :=
  (sub_eq_add_neg s t).symm β–Έ hs.add ht.neg
Minkowski Difference of Strictly Convex Sets is Strictly Convex
Informal description
Let $E$ be a topological space with an additive commutative monoid structure and a scalar multiplication by a partially ordered semiring $\mathbb{K}$. If $s, t \subseteq E$ are strictly convex sets, then their Minkowski difference $s - t = \{x - y \mid x \in s, y \in t\}$ is also strictly convex.
strictConvex_iff_div theorem
: StrictConvex π•œ s ↔ s.Pairwise fun x y => βˆ€ ⦃a b : π•œβ¦„, 0 < a β†’ 0 < b β†’ (a / (a + b)) β€’ x + (b / (a + b)) β€’ y ∈ interior s
Full source
/-- Alternative definition of set strict convexity, using division. -/
theorem strictConvex_iff_div :
    StrictConvexStrictConvex π•œ s ↔
      s.Pairwise fun x y =>
        βˆ€ ⦃a b : π•œβ¦„, 0 < a β†’ 0 < b β†’ (a / (a + b)) β€’ x + (b / (a + b)) β€’ y ∈ interior s :=
  ⟨fun h x hx y hy hxy a b ha hb ↦ h hx hy hxy (by positivity) (by positivity) (by field_simp),
    fun h x hx y hy hxy a b ha hb hab ↦ by
    convert h hx hy hxy ha hb <;> rw [hab, div_one]⟩
Characterization of Strictly Convex Sets via Division
Informal description
A set $s$ in a topological space $E$ over a partially ordered semiring $\mathbb{K}$ is strictly convex if and only if for every pair of distinct points $x, y \in s$ and for any positive elements $a, b \in \mathbb{K}$, the point $\left(\frac{a}{a+b}\right) \cdot x + \left(\frac{b}{a+b}\right) \cdot y$ lies in the interior of $s$.
StrictConvex.mem_smul_of_zero_mem theorem
(hs : StrictConvex π•œ s) (zero_mem : (0 : E) ∈ s) (hx : x ∈ s) (hxβ‚€ : x β‰  0) {t : π•œ} (ht : 1 < t) : x ∈ t β€’ interior s
Full source
theorem StrictConvex.mem_smul_of_zero_mem (hs : StrictConvex π•œ s) (zero_mem : (0 : E) ∈ s)
    (hx : x ∈ s) (hxβ‚€ : x β‰  0) {t : π•œ} (ht : 1 < t) : x ∈ t β€’ interior s := by
  rw [mem_smul_set_iff_inv_smul_memβ‚€ (by positivity)]
  exact hs.smul_mem_of_zero_mem zero_mem hx hxβ‚€ (by positivity) (inv_lt_one_of_one_ltβ‚€ ht)
Strictly Convex Set Property: $x \in t \cdot \text{interior}(s)$ for $t > 1$ and $x \neq 0$
Informal description
Let $\mathbb{K}$ be a partially ordered semiring and $E$ be a topological space with an additive commutative monoid structure and a scalar multiplication by $\mathbb{K}$. Given a strictly convex set $s \subseteq E$ containing $0$, a nonzero point $x \in s$, and a scalar $t \in \mathbb{K}$ with $t > 1$, the point $x$ lies in the dilation $t \cdot \text{interior}(s)$ of the interior of $s$.
strictConvex_iff_convex theorem
: StrictConvex π•œ s ↔ Convex π•œ s
Full source
/-- A set in a linear ordered field is strictly convex if and only if it is convex. -/
@[simp]
theorem strictConvex_iff_convex : StrictConvexStrictConvex π•œ s ↔ Convex π•œ s :=
  ⟨StrictConvex.convex, fun hs => hs.ordConnected.strictConvex⟩
Equivalence of Strict Convexity and Convexity in Ordered Semirings
Informal description
A set $s$ in a topological space $E$ over a partially ordered semiring $\mathbb{K}$ is strictly convex if and only if it is convex.
strictConvex_iff_ordConnected theorem
: StrictConvex π•œ s ↔ s.OrdConnected
Full source
theorem strictConvex_iff_ordConnected : StrictConvexStrictConvex π•œ s ↔ s.OrdConnected :=
  strictConvex_iff_convex.trans convex_iff_ordConnected
Equivalence of Strict Convexity and Order Connectedness
Informal description
A set $s$ in a topological space $E$ over a partially ordered semiring $\mathbb{K}$ is strictly convex if and only if it is order connected, meaning that for any two points $x, y \in s$, the closed interval $[x, y]$ is entirely contained in $s$.